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Can telomere shortening be the main
indicator of non-viable fetus elimination?
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Abstract

Background: Telomeres are transcriptionally inactive genomic areas, which, if shortened, are associated with
pathological processes, unsuccessful fertilization, aging, and death. Telomere dysfunction has also been linked to
chromosomal rearrangements and genomic instability. The role of telomeres in postnatal life has been extensively
studied and discussed both in physiological as well as in pathological processes. However, the role of telomere length
in prenatal development is still poorly understood, and mainly concerns the preimplantation stage. The aim of this
study was to estimate relative telomere length in spontaneously eliminated human embryos between 5th and 12th
week of gestation.

Results: Relative telomere length was measured from total genomic DNA using a real-time polymerase chain reaction
approach. In this study, we examined relative telomere length in 80 spontaneously eliminated embryos and in 25
embryos eliminated due to induced abortions. Relative telomere length in spontaneous abortions was significantly
lower (P = 0.000001) compared to the induced abortions. Spontaneous abortions with aneuploid anomalies (monosomy
X, trisomy 21, trisomy 16 and triploidy) were characterized by shorter telomeres, compared to spontaneous abortions,
subgroup with euploid (46,XN) karyotype.

Conclusion: Spontaneously lost pregnancies are characterized by shortened telomeres, especially in embryos with
aneuploidies. We hypothesize that the shortening of telomeres is involved in the processes leading to spontaneous
abortions.
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Background
Telomeres are transcriptionally inactive areas of the hu-
man genome, involved in maintenance of genomic integ-
rity. Telomere DNA consists of 10–15 kb long hexamer
iterations (TTAGGG)n [1, 2], which end with a 3′-sin-
gle-helixed area, creating a D-loop [3, 4]. Formation of
telomeric loop takes place with support of the shelterin
complex, which consists of 6 proteins (TRF1, TRF2,
TIN2, RAP1, TPP1 and POT1). The main function of
this complex is to prevent degradation of telomeres [5].
During each cellular division, telomeric DNA is short-
ened by 50–200 bp [6–8]. As soon as the length of telo-
meres becomes critically low, the cells stop dividing and
enter apoptosis [9, 10]. Thus, telomeres are believed to
be the so-called cellular clock, which controls division

and cellular death. Moreover, telomere dysfunction is
linked to chromosomal rearrangements, genomic in-
stability, tumorigenesis and cellular senescence [11, 12].
Telomere length (TL) is proposed to be an indicator of

biological age of an organism, and a significant correlation
between age and TL has been shown [13]. Role of telomeres
during postnatal development was intensely studied and
discussed both for normal and pathological conditions. In
particular, telomere length is decreased in diabetes mellitus
[14], cardiovascular disease [15], liver disorders [16, 17],
cancer [18], and severe premature aging phenotypes [19].
Decreased TL has also been linked to adiposity [20, 21], low
social and economic status [22], chronic emotional stress
[23], smoking [24], increased mortality [25] and others.
However, the role of telomere length in prenatal hu-

man development remains mostly unknown, both under
pathological as well as under physiological conditions,
and the available data is contradictory [26–29]. Few re-
cent studies mainly focused on preimplantation stages of
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human embryonic development available due to preim-
plantation diagnostic procedures [30–33]. According to
the recent data, aneuploid human polar bodies possess
significantly shorter telomeres than euploid polar bodies
from sibling oocytes, although, at the blastocyst stage,
telomeres did not differ in euploid and aneuploid em-
bryos [30, 31]. It is also likely that the chance of success-
ful in vitro fertilization decreases along with the
decrease in TL in oocytes. In particular, it has been
shown by Keefe et al. [32, 33] that oocytes from women
who did not conceive after in vitro fertilization had
shorter telomeres compared to those who did. In
addition, oocytes from cycles that produced fragmented
embryos also had shorter telomeres.
In summary, shortened telomeres were already associ-

ated with pathological processes, unsuccessful fertilization,
aging, and death. In this regard, here we estimated the
relative telomere length in spontaneously aborted human
embryos at 5–12 weeks of gestation (w.o.g). In addition,
the results of this pioneering study were interpreted taking
into account the presence of chromosomal anomalies.

Methods
In this work, we have studied relative telomere lengths
(RTL) in 80 chorionic villi samples (CVS) from spontan-
eously eliminated product of conception at 5–12 weeks of
gestational age (spontaneous abortions - SA) and from 25
induced abortions (IA) due to personal reasons at the
same term of gestation. All studied pregnancies occurred
naturally. Maternal age ranged from 20 to 34 years.

Collection of chorionic villi samples
A total of 105 chorionic villi samples (CVS) at 5–
12 weeks of gestation were obtained from pregnant
women, 80 of them from spontaneous abortions with
the following selected karyotype:

– 46,XX or 46,XY – 32 samples;
– 69,XXN – 13 samples;
– trisomy 16–13 samples;
– trisomy 21–10 samples;
– monosomy X – 12 samples;

and 25 samples from induced abortions with euploid
karyotype 46,XN (46,XX or 46,XY).
All CVS samples were tested for absence of maternal de-

ciduae by histological analysis. Samples were washed twice
with PBS and stored at − 20 °C until DNA extraction.

DNA extraction
Genomic DNA was extracted using salting-out or phe-
nol/chloroform method, and dissolved in Tris-EDTA
pH 8.0. DNA concentration and purity was assessed
using Qubit® 2.0 Fluorometer (Thermo Fisher Scientific).

All DNA samples were stored at − 20 °C until telomere
length analysis.

RTL measurement by real-time PCR
Relative telomere length was measured from total gen-
omic DNA using a real-time PCR assay [34]. PCR reac-
tions were performed in the Eco Real-Time PCR System
(Illumina, Inc), using 1X GoTaq® qPCR Master Mix
(Promega) and specific primers (Table 1) in recom-
mended concentrations [34].
Two reaction mixes of PCR reagents were prepared,

one for amplification of telomere repeats (T), the other
for gene 36B4 (S). Each PCR reaction contained 12 μl of
the reaction mix (GoTaq® qPCR Master Mix and primers)
and 7 μl (14 ng/aliquot) DNA. Tel1 and tel2 primers for
telomeres were added to the final concentrations 270 nM
and 900 nM, respectively. The final 36B4 gene primer con-
centrations were: 36B4u - 300 nM and 36B4d - 500 nM.
For each sample in whom T/S ratio was measured, tree
identical aliquots of DNA were added to plate T (telomere)
and another tree aliquots were added to the same well po-
sitions in plate SCG (single copy gene). Reference DNA
was included into each PCR run.
The reference DNA for measurement standardization

was obtained from whole blood of two healthy individ-
uals (male and female). Standard curves for telomere
length and for the single copy gene were generated by
performing serial dilutions (dilution factor 1.68) from a
reference DNA sample to produce concentrations of
DNA ranging from 0.63 to 5 ng/μl in two parallel reac-
tions – one for the telomeric sequences and the other
for the reference gene (36B4) (Fig. 1). The data ob-
tained from reference DNA measurement were used to
setup calibration curves needed to estimate reaction ef-
ficiency and the average RTL. The relative ratio of telo-
mere repeats copy number to 36B4 gene copy number
(T/S ratio) in experimental samples were compared to
the reference DNA sample. Telomere length was
expressed as a relative T/S ratio, based on the calcula-
tion of the ΔCt [Ct(telomere)/Ct(single gene)] value, which
was normalized to the average T/S ratio of the refer-
ence sample [2-(ΔCt(sample)- ΔCt(control) = 2-ΔΔCt].
Illumina Eco Software v4.1.11.2 was used to generate

curves for the telomere signal (Т) or the single copy

Table 1 List of specific primers used for determination of
telomere length

Primer name Sequence (5′-3′)

Tel 1 GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT

Tel 2 TCCCGACTATCCCTATCCCTATCCCTATCCCTATCCCTA

36B4u CAGCAAGTGGGAAGGTGTAATCC

36B4d CCCATTCTATCATCAACGGGTACAA
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gene signal (S) and to determine quantity of DNA for
our research.
The coefficient of variation (standard deviation/mean)

was calculated to be 0.89% for within plate measure-
ments and 0.77% for measurement between plates.

Statistical analysis
The data acquired from RLT measurement was normally
distributed (Shapiro-Wilk test, p = 0.00001). Statistical
differences between means were tested with ANOVA
and t-test using Statistica 12 (StatSoft, Inc., USA).

Results
The average RTL in the combined group was 0.60 and
was characterized by inter-individual variations within
the range of 0.03 to 2.94. In the IA group, the average
RTL was 1.17 with inter-individual variations ranging
from 0.14 to 2.94. In the main SA investigated group,
the mean of RTL was 0.43 with inter-individual varia-
tions ranging from 0.03 to 2.40 (Table 2).

Statistical analysis showed that RTL were significantly
lower in SA group compared to IA group (SA: 0.43 ±
0.06 vs IA: 1.17 ± 0.14, P = 0.000001) (Fig. 2).
The SA group was further divided into subgroups de-

pending on the karyotype. Molecular cytogenetic (inter-
phase mFISH with centromeric probe panels for
chromosomes 13, 21, 14, 22, 15, 16, 17, 18, X and Y)
and cytogenetic studies showed the following results in
this group: 32 cases with euploid karyotype (46,XX or
46,XY) and 48 with aneuploid karyotype (autosomal tri-
somy 21 or 16, triploidy, monosomy X). Variability of
the mean RTL for SA with or without chromosome
number abnormalities are shown in Table 3.
As indicated in Table 3, the aneuploid SA was charac-

terized by shorter telomeres in comparison to the eu-
ploid SA with interindividual variations from 0.07 to
1.66 and from 0.03 to 2.40, respectively.
Statistical analysis showed a highly significant differ-

ence in RTL between SA with aneuploid and SA with
euploid karyotype (aneuploid: 0.29 ± 0.03 vs euploid:
0.64 ± 0.12, P = 0.0015) (Fig. 3).
Further, we compared RTL in SA with different types of

aneuploidy - trisomy chromosome 21, trisomy chromo-
some 16, triploidy and monosomy X (Table 4). The results
showed no significant variation in RTL length among the
various aneuploid groups (monosomy X: 0.36 ± 0.12; tri-
somy 21: 0.26 ± 0.03; trisomy 16: 0.28 ± 0.04; and triploidy:
0.27 ± 0.02, P > 0.05) (Fig. 4). Consequently, the telomere

Fig. 1 Standard curves used for calculation of relative DNA
concentrations of telomeres (a) and 36B4 (b)

Table 2 Relative telomere length ratios in spontaneous and
artificial abortions overall and within each group

Overall Spontaneous abortions Artificial abortions

Mean (max-min) N Mean (max-min) n Mean (max-min) n

0.60 (0.03–2.94) 105 0.43 (0.03–2.40) 80 1.17 (0.14–2.94) 25

n- number of samples

Fig. 2 Relative telomere length in chorionic villus samples. 1 – artificial
abortions; 2 – spontaneous abortions

Table 3 Relative telomere length ratios in spontaneous
abortions with euploid or aneuploid karyotype

Overall Euploid karyotype Aneuploid karyotype

Mean (max-min) n Mean (max-min) n Mean (max-min) n

0.43 (0.03–2.40) 80 0.64 (0.03–2.40) 32 0.29 (0.07–1.66) 48

n- number of samples
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length does not depend on the kind of aneuploidy in CVS
of spontaneously lost pregnancies.
It should be noted that aneuploidy was not detected in

IA group. In fact, euploid karyotype (46,XX or 46,XY)
was found in all 25 samples. Therefore, we compared
relative telomere length between euploid SAs and IAs
and observed a highly significant difference in RTL (0.64
± 0.12 and 1.17 ± 0.14 respectively, P = 0.006). These re-
sults indicate that the shortening of telomeres seems to
play a role in the early human intrauterine interruption of
further growth and development (Fig. 3).
In addition, aware of the possibility of contamination

of embryonic material with maternal cells, we compared
the groups only with male karyotypes (Table 5, Fig. 5,
Fig. 6). A total of 48 male embryos were examined: 14 -
IA, 15 - euploid SA, 19 - aneuploid SA. Apparently, a
significant difference is maintained when comparing the
XY-euploid IA to XY-euploid SA embryos (P = 0.0012)
and even increased (P = 0.00002) when comparing IA to
aneuploid SA, further strengthening our hypothesis.

Discussion
Based on our and data obtained by others [35–46], it can
be stated that telomere length is characterized by interin-
dividual variability both in prenatal and in the postnatal

human development. To date, very few studies focus on
telomere length in the early stages of human prenatal de-
velopment. Therefore, our study provides a unique ex-
ample of studying RTL in early (5–12 w.o.g.) prenatal
development and evaluate it according to anamnesis (SA
and IA) and in association with aneuploid (autosomal tri-
somy, monosomy X and triploidy) and euploid karyotype.
Our results show, with a high degree of reliability (P =

0.000001), that spontaneously lost pregnancies are char-
acterized by short telomeres in comparison to induced
abortions. Therefore, we report a strong correlation be-
tween telomere length and the viability of embryos. In
particular chronic stress in pregnant women is associ-
ated with short telomeres in posterity [41, 43, 44]. In
addition, a lower maternal folate concentration in early
pregnancy is associated with shorter telomeres in the
newborn [45]. Genomic instability is commonly found in
newborns with short telomeres, which increases the risk
of cancer and age-related diseases [46]. Our data shows
significantly shorter RTL in spontaneously eliminated
embryos with aneuploid (with trisomy of chromosome
21 or 16, triploidy and monosomy X) karyotype, regard-
less of the type of aneuploidy. Similar results were
shown [30, 31] for aneuploid oocytes and embryos at the
cleavage stage, although the telomere length was aligned
at the blastocyst stage. The results of studies of telomere
length in newborns with trisomy 21 (Down syndrome)
are conflicting - from the claim of shortening [47] or
lack of a likely difference in telomere length [48] to a

Fig. 3 Relative telomere length in artificial and spontaneous abortions
with or without aneuploidy. 1 – spontaneous abortions with aneuploidy;
2 – euploid spontaneous abortions; 3 – euploid artificial abortions

Table 4 Relative telomere length ratios in spontaneous
abortions with different form of aneuploidy

Monosomy X Trisomy 21 Trisomy 16 Triploidy

Mean
(max-min)

n Mean
(max-min)

n Mean
(max-min)

n Mean
(max-min)

n

0.36
(0.08–1.66)

12 0.26
(0.11–0.35)

10 0.28
(0.07–0.49)

13 0.27
(0.11–0.37)

13

n- number of samples

Fig. 4 Relative telomere length in spontaneous abortions with
different aneuploidies. 1 – monosomy X; 2 – trisomy 21; 3 – trisomy
16; 4 - triploidy

Table 5 Relative telomere length ratios in chorionic villus
samples with Y-chromosome

Spontaneous abortions
with euploid karyotype

Spontaneous abortions
with aneuploid karyotype

Artificial abortions

Mean (max-min) n Mean (max-min) n Mean (max-min) n

0.37(0.30–1.13) 15 0.24(0.07–0.49) 19 1.86(0.14–2.94) 14

n- number of samples
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probable elongation of telomeres in newborns with tri-
somy 21 versus newborns without chromosomal anom-
alies [49]. Similarly, ambiguous results are obtained in
adults with monosomy X (Turner syndrome) [50], which
indicate rather that there is no difference in the length
of telomeres in Turner syndrome cells compared to indi-
viduals without chromosomal abnormalities.

Conclusion
Spontaneously lost pregnancies are characterized by short-
ened telomeres, especially in embryos with aneuploidies..
We hypothesize that the shortening of telomeres is involved
in the complex elimination machinery leading to early em-
bryo death.
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