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Abstract

Background: Whole exome sequencing (WES) has been widely accepted as a robust and cost-effective approach
for clinical genetic testing of small sequence variants. Detection of copy number variants (CNV) within WES data
have become possible through the development of various algorithms and software programs that utilize read-
depth as the main information. The aim of this study was to evaluate three commonly used, WES read-depth based
CNV detection programs using high-resolution chromosomal microarray analysis (CMA) as a standard.

Methods: Paired CMA and WES data were acquired for 45 samples. A total of 219 CNVs (size ranged from 2.3 kb -
35 mb) identified on three CMA platforms (Affymetrix, Agilent and lllumina) were used as standards. CNVs were
called from WES data using XHMM, CoNIFER, and CNVnator with modified settings.

Results: All three software packages detected an elevated proportion of small variants (< 20 kb) compared to CMA.
XHMM and CoNIFER had poor detection sensitivity (22.2 and 14.6%), which correlated with the number of
capturing probes involved. CNVnator detected most variants and had better sensitivity (87.7%), however, suffered
from an overwhelming detection of small CNVs below 20 kb, which required further confirmation. Size estimation
of variants was exaggerated by CNVnator and understated by XHMM and CoNIFER.

Conclusion: Low concordances of CNV, detected by three different read-depth based programs, indicate the
immature status of WES-based CNV detection. Low sensitivity and uncertain specificity of WES-based CNV detection
in comparison with CMA based CNV detection suggests that CMA will continue to play an important role in
detecting clinical grade CNV in the NGS era, which is largely based on WES.
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Background

Copy number variants are important human genomic
variants known to be responsible for Mendelian disor-
ders as well as for common genetic conditions such as
autism, intellectual disability, and schizophrenia [1-3].
Chromosomal microarray analysis (CMA) has demon-
strated its technical validity and has remained the
method of choice for the detection of genome-wide copy
number variants (CNVs) in clinical settings. It has also
demonstrated its clinical validity for both pre- and
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postnatal diagnostic testing [4, 5]. CMA is currently
regarded as the gold standard for detection of CNVs that
range from several kilobases to several megabases in size
[6, 7.

The advent of next-generation sequencing (NGS) tech-
nology has dramatically improved our capability for
examining small-scale sequence variants; it has also pro-
vided new options for the evaluation of large scale struc-
tural variants such as CNVs [8]. Whole-exome
sequencing (WES) has been accepted as the most com-
prehensive test currently implemented in the clinical set-
ting for small sequence variants [9, 10]. Much effort has
been focused to generate CNV information from WES
data [11]; however, low sensitivity and high false positive
rates have been reported in previous studies using
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cancer cell lines [12], publicly available exome data [13],
or comparing with whole genome sequencing data based
CNV calling [14-16]. Thus, its technical validity has yet
to be thoroughly evaluated.

Here, we evaluated three representative and popular
read-depth based CNV detection programs: the eXome-
Hidden Markov Model (XHMM), the Copy Number In-
ference From Exome Reads (CoNIFER), and CNVnator
using clinical grade WES data. XHMM and CoNIFER
detect rare CNVs based on a batched-comparison
principle, while CNVnator detects CNVs based on a
mean-shift approach within single samples. CNVs de-
tected from the CMA platform were used as reference
standard.

Methods

Samples and ethics statement

A total of 45 clinical diagnostic samples were enrolled
from the Shanghai Children’s Medical Centre and the
Maternal and Child Health Hospital of the Guangxi
Zhuang autonomous region with the approval of re-
spective institutional ethics review committees. Genomic
DNA was extracted using the QIAamp Blood DNA Mini
kit® (Qiagen GMBH, Hilden, Germany).

WES and WES-based CNV detection

Exome targets were captured using the Agilent SureSe-
lect Human All Exon V4 or V5 kit (Agilent Technolo-
gies, Santa Clara, CA). Raw sequencing data (FASTQ
format) were generated via the Illumina HiSeq 2000
platform (Illumina, Inc., San Diego, CA). The Burrows
Wheeler Alignment tool (BWA) v0.2.10 [17] was
employed for sequencing data alignment to the Human
Reference Genome (NCBI build 37, hg 19). All data were
assessed using FastQC (version 0.11.2) (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) for
quality.

CNVs were generated using the following three CNV
detection programs: (1) XHMM v1.0 [18], (2) CoNIFER
v0.2.2 [19], and (3) CNVnator v0.2.7 [20]. XHMM in-
cludes several analytic steps and involves a number of
parameters. In our study, we set all parameters to default
(minTargetSize: 10; maxTargetSize: 10,000; minMean-
TargetRD: 10; maxMeanTargetRD: 500; minMeanSam-
pleRD: 25; maxMeanSampleRD: 20; maxSdSampleRD:
150) for filtering samples and targets, and prepared the
data for normalization via XHMM. The only param-
eter that could be adjusted on Conifer was SVD,
which was set to 1. For CNVnator, we set the bin
size to 50-60 according to the average coverage
depth of our sequencing data (45-70 X). XHMM and
CoNIFER used a pooled sample calling approach as
input, and CNVnator called CNVs sample by sample
after individually generating a baseline.
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CMA and CMA-based CNV detection

CMA were performed using three different array plat-
forms including the SurePrint G3 customized array (Agi-
lent Technologies, Santa Clara, CA), CytoScan HD
(Affymetrix, Santa Clara, CA), and Infinium iSelect HD
and HTS Custom Genotyping BeadChips (Illumina, San
Diego, CA). Prior validated settings for each platform
were consistently utilized for CNV detection and filtering.
CNVs in the size range of 2 kb — 400 kb were detected via
CMA and were further confirmed by manual inspection.

Results

Quality control of WES data

Fourteen samples were prepared using the Agilent Sure-
Select Human All Exon V4 kit and the remaining sam-
ples were prepared using the V5 kit. The mean read
depth of all samples ranged around 50 X and the average
read quality was well above the standard of 20 X. Details
of sequence data are available in the supplemental data
(Additional file 1: Table S1).

Size distribution of CNV detected via CMA and WES

A total of 219 CNVs were detected via CMA from all
samples. Forty-eight CN'Vs were located in regions that
had no exome capture probes; consequently, they were
removed from being used as true CNVs when comparing
data between CMA and NGS. The remaining 171 CNVs
were in regions involving at least one exon. The CNVs
were examined and compared for size distribution, de-
tection sensitivity, boundaries, and overlap among three
programs and between two platforms.

1. CNV size

We arbitrarily constructed six size bins as shown in
Fig. 1. The largest portion (37.9%) of CNV detected by
CMA ranged within 100-500 kb whereas CNV detected
by NGS data were of much smaller size; 35.3, 44.5 and
79.5% of CNVs were detected by XHMM, CoNIFER,
and CNVnator, respectively and belong to the 0-20 kb
bin. CNVnator in particular detected many smaller
CNVs (42.2% below 10 kb, 27.3% below 5 kb).

2. Detection sensitivity

We defined the detection of any particular CNV when
there was a 50% overlap with a CNV detected via CMA.
Using this definition for the presence/absence of CNV,
25, 38, and 150 CNVs were found to be detected by
CoNIFER, XHMM, and CNVnator respectively; thus,
the detection sensitivities of three programs were 14.6,
22.2 and 87.7%, respectively. CONIFER and XHMM have
an even poorer detection sensitivity for smaller CNVs in-
volving fewer capturing probes, whereas CNVnator had
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Fig. 1 Number and size distribution of CNVs detected by CMA, XHMM, CoNIFER, and CNVnator
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a rather consistent detection sensitivity for all size CNVs
(> 3 kb) (Fig. 2).

3. Precision of CNV detection

Among the 171 variants detected by CMA, 152 variants
were detected by at least one WES program. Forty-six vari-
ants were detected by XHMM and CoNIFER, which are
shown in Fig. 3(A). We plotted the size ratio of those de-
tected from three programs, using CMA as reference.
XHMM and CoNIFER detected more accurate size of vari-
ants, while CNVnator reported a significantly larger CNV
size (Fig. 3(B)).

4. Characteristics of CNV missed by exome data
(Fig. 3 (C))

A large number of CNVs (125) were missed by CoNI-
FER and XHMM combined detection and were further in-
vestigated. The WES read coverage and capture probes
distribution were insufficient for both CoNIFER and
XHMM detection of 42 CNVs. XHMM and CoNIFER
automatically filtered capturing probes located in the re-
gion within recurrent CNV detected in the same batch;
thus, 43 variants were missed and had to be confirmed
with involving probes. Details of all 171 variants are avail-
able in the supplemental data (Additional file 2: Table S2).

5. Poor concordance among three programs (Fig. 3

D))

Although CoNIFER and XHMM used a similar batched
input approach, poor CNV detection concordance was
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Fig. 3 Evaluation of three CNV detection programs (XHMM, CoNIFER, and CNVnator) using clinical grade paired WES and CMA datasets. (a) 46

Variants detected by at least two different algorithms are listed ordered by size. (b) Size detected by three different programs in comparison with
size detected by CMA. (c) Analysis of CNVs undetected by XHMM and CoNIFER. (d) Venn diagram describing the overlap in CNVs that have been
confirmed by CMA and at the same time detected by three tools. An overlapping CNV was defined as at least one exon that shared at least 50%

still identified in our study. CNVnator discovered most
variants and covered most variants that could be detected
through WES data. Only 17 CNVs were detected by all
three programs.

6. Detection of clinical relevant variants

All variants were evaluated with our in-house standard
for clinical relevant variants and eight CNVs were cate-
gorized as pathogenic or likely pathogenic variants ran-
ging from 306 kb — 35 mb. Six of these variants were
detected by WES programs. A 306 kb variant on
chromosome 3 remained undetected due to particularly
low capture probe coverage within the variant region.
Another 11 mb variant on chromosome 2 remained un-
detected despite sufficient capture probes and depth
coverage (Additional file 3: Table S3).

Discussion

Copy number variants (CNVs) are a very important tar-
get in the clinical diagnosis of genetic diseases. CMA
has been proven as the most stable and accurate plat-
form for CNV detection and has been implemented as a

clinical test for more than a decade. NGS now provided
a new approach for detecting CNV, which can poten-
tially replace CMA. Before implementing NGS-based
CNV detection, extensive validation is required to evalu-
ate the validity of the new method.

Numerous WES based CNV detection programs have
been developed, including the 15 read-depth based CNV
detection tools currently available [21]. We selected
three representative and well-known methods for this
study. XHMM is the most commonly accepted software,
which employs the classical hidden Markov model
(HMM) for CNV identification and achieves a sensitivity
of 8-14% via XHMM, reported against CNV detection
based on WGS data [13]. The XHMM framework starts
with aligned BAM files to calculate the depth of cover-
age; then, utilizing normalized read depths via principal
component analysis (PCA). Finally, XHMM uses the
normalized data to train and run a Hidden Markov
Model (HMM) for CNV detection. CoNIFER was the
first developed tool to deal with rare CNVs from mul-
tiple samples and has been chosen as representative soft-
ware, which can be used as reference in evaluating other
new softwares [22]. CoNIFER calculates the RPKM
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(reads per kilobase per million mapped reads) values for
each sample, and utilizes the singular value decompos-
ition (SVD) method (originating from linear algebra) to
reduce data dimensions for detecting obvious CNV sig-
nals. Evaluation against the array CGH platform in
breast cancer samples characterized CoNIFER as leading
to high false positives, low sensitivity, and obvious dupli-
cation bias [11]. Another study showed that CoNIFER
achieves higher precision, but at a cost of reduced sensi-
tivity below 5% [13]. XHMM and CoNIFER have been
evaluated in parallel in patients with nonsyndromic
hearing loss showing poor concordance on size of de-
tected CNV [23]. However, both tools are noted for ad-
vantages of identification of rare CNV from a population
of WES samples [24]. CNVnator was previously used in
whole genome data for CNVs identification based on
read depth, and was accessed to achieve better reso-
lution of CNV borders than the other WGS data-based
tools [25]. The main methodology for CNVnator is a
mean-shift. The software first divides the whole genome
into equal sized, non-overlapping bins, and treats the
mapped reads of each bin as a read depth signal. To esti-
mate copy number change in each genome segment, it
then calculates the P-value for a one-sample t-test, test-
ing whether the mean RD signal of a segment would be
close to the genome average. In a comprehensive com-
parison study, CNVnator was accessed to be outstanding
in break point position and copy number estimation;
however, disconcordance of variants was also discovered
among all tools evaluated in the study [26].

In our study, large differences were observed in num-
ber and size distribution of CNVs detected from CMA
and three WES based tools. Microarray platforms have a
smaller capacity to detect small variants that are not
covered by a sufficient number of probes. Several studies
have tried to understand the roles of these small vari-
ants. The detection of small, non-recurrent pathogenic
or likely pathogenic CNVs could help to increase the
diagnostic yield of CMA clinical testing by ~3% [27, 28].
WES-based tools, such as XHMM and CoNIFER, are
capable of detecting small variants as long as a sufficient
number of capturing probes (> 10) are covered in the re-
gion and enable a sensitivity of 14.6 and 22.2%, respect-
ively, indicating the importance of probe number for
CNVs detection. The overwhelming number of variants
CNVnator detected from samples was due to the ex-
treme resolution of the algorithm [19]. This extreme
resolution is affected by sequencing depth and high
resolution could result in splitting large CN'Vs into small
pieces, which are more sensitive in detecting smaller
variants. Larger bin size setting in CNVnator could help
to merge consecutive small CNVs as integrated variants;
however, this parameter was limited by the average se-
quencing depth of our clinical WES data.
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125 CMA confirmed CNVs that were not detected by
XHMM and CoNIFER were further investigated for pos-
sible explanations. Low sequencing depth (< 10 X) and
limited capture probes (< 10) were detected in 42 vari-
ants and these regions were automatically excluded dur-
ing the normalization step of both tools. The detection
for these CNV may be improved if sequence depth in-
creased. The programs filter out capture probes located
in recurrent variants that detected the same batch dur-
ing data processing; thus, 43 polymorphism CNVs were
neglected during the detection, which was also con-
firmed by our in-house array database [http://databa-
se.gdg-fudan.org/DB_HTML/DataSub.html]. Thus, only
40 (23.4%) CNVs remained theoretically undetected.
Limitation of sample number and sequencing depth of
XHMM and CoNIFER could be a possible explanation
of these undetected variants. CONIFER requires at least
50 million mapped reads and a minimum of eight exome
samples to run at a time, while XHMM recommends
~50 exome samples with at least 60—-100 X coverage [18,
29]. Characteristics of samples in each batch also con-
tribute to the effectiveness of CNV detection in XHMM
and CoNIFER. Recurrent pathogenic or likely pathogenic
variants may be filtered out erroneously, if they existed
in multiple samples; therefore, including non-abnormal
reference samples as part of the batch could help to de-
tect these CNVs. Conservative predefined thresholds in
default settings of the CoNIFER might be a further rea-
son for missing variants. Read-depth based tools are
fairly limited to repeated regions of the reference gen-
ome [30]; thus, the sequence nature of specific locations
also hinders detection of variants. CNVnator was de-
signed for CNV discovery and genotyping from read-
depth analysis based on a mean-shift approach. The
number of nucleotides covered in each shift is called bin
size (50-60 in our study), which can be determined by
the average coverage of sequencing data (45-70 for our
samples). CNVnator had the highest sensitivity of 87.7%
since 150 of 171 CMA confirmed variants were detected
by CNVnator. A Venn diagram was used to show the
poor disconcordance among WES based tools, which
was attributed to unsatisfying sequencing depth and
inadequate number of batched samples. Therefore,
CNYV detection from WES based tools was affected by
the following factors (ranked in the order of import-
ance): probe number, reading depth, sample constitu-
ent in the batch, software parameters, and sequence
nature of variants.

Using CMA detected variants as standard, the three
tested WES based CNV detecting tools were not able to
detect the accurate size of variants from WES data.
XHMM and CoNIFER have lower sensitivity, but more
accurate size of CNVs compared to CNVnator. CNVna-
tor reached higher sensitivity at the cost of high false
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positive rates and exaggerated readout of the variant
size. Poor concordance of CNV detection was observed
in the study. Increasing the number of batch samples
and valid sequencing depth were the most realizable ap-
proaches to improve performance of these WES based
tools. At this stage, CMA still remains the first-choice
and gold standard for CNV detection for clinical diag-
nostic purpose. CNV detection tools using WES data
could be used as a screening tool.

Conclusion

Low concordances of CNV detection were observed via
three different read-depth based programs indicating
that WES-based CNV detection still remains immature
and unstable compared to CMA. Since WES based CNV
detection was evaluated to have low sensitivity and un-
certain specificity in comparison with CMA based CNV
detection, CMA will continue to play an important role
in detecting clinical grade CNV in the NGS era, which is
largely based on WES. CNV detection tools using WES
data could be considered as a complementary way with
only computational effort, but where further validation
has been suggested for the purpose of clinical diagnosis.
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