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Abstract

Jamming state transition has been used in literature to describe migrating-to-resting cell state transition during
collective cell migration without proper rheological confirmation. Yield stress often has been used as an indicator of
a jamming state. Yield stress points to the liquid-to-solid state transition, but not a priori to jamming state
transition. Various solid states such as elastic solid and viscoelastic solids can be considered in the context of their
ability to relax. The relaxation time for (1) an elastic solid tends to zero, (2) Kelvin-Voigt viscoelastic solid is finite,
and (3) jamming state tends to infinity.
In order to clarify the meaning of jamming state from the rheological standpoint we formulated the constitutive
model of this state based on following conditions (1) migration of the system constituents is much damped such
that the diffusion coefficient tends to zero, (2) relaxation time tends to infinity, (3) storage and loss moduli satisfy
the condition G′(ω)/G"(ω) = const > 1. Jamming state represents the non-linear viscoelastic solid state. The main
characteristic of this state is that the system cannot relax.
Jamming state transition of multicellular systems caused by collective cell migration is discussed on a model system
such as cell aggregate rounding after uni-axial compression between parallel plates based on the data from the
literature. Cell aggregate rounding occurs via successive relaxation cycles. Every cycle corresponds to a different
scenario of cell migration. Three scenarios were established depending on the magnitude of mechanical and
biochemical perturbations (1) ordered scenario with reduced perturbations corresponds to the case that most of
the cells migrate, (2) disordered scenario corresponds to the case that some cell groups migrate while the others
(at the same time) stay in resting state (corresponds to medium perturbations), and (3) highly suppressed cell
migration under large perturbations corresponds to the viscoelastic solid under jamming state. If cells reach the
jamming state in one cycle, they are able to overcome this undesirable state and start migrating again in the next
cycle by achieving the first or second scenarios again.

Keywords: Long-time cell rearrangement, Viscoelasticity of multicellular surfaces, Tissue surface tension, Jamming
state transition, Collective cell migration

Background
Main features of cell rearrangement during collective
cell migration related to the viscoelasticity of multicellu-
lar surfaces are important for the deeper understanding
of various biological processes such as wound healing,
tumorigenesis, and morphogenesis [1–6]. Various multi-
cellular surfaces have been considered under in vivo and
in vitro conditions. Mikami et al. [3] discussed collective
cell migration of the multicellular surfaces in the form of
stratified epithelial cells toward the wounds. A number of

sheets and their sizes depend on the size, shape and depth
of injury. Pajic-Lijakovic and Milivojevic [7–9] considered
the rearrangement of the multicellular surface region dur-
ing cell aggregate rounding after uniaxial compression
between parallel plates. Guevorkian et al. [10] considered
the rearrangement of the aggregate surface part under
micropipette aspiration. Long-time viscoelasticity of
multicellular surfaces depends on: (1) the configuration of
migrating cells and the rate of its change, (2) the volume
fraction of migrating cells, (3) the viscoelasticity of migrat-
ing cell groups, and (4) the viscoelasticity of surrounding
resting cells [7, 8]. Configuration changes occur via local
migrating-to-resting cell state transitions and vice versa.
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These transitions have been considered as jamming state
transitions [11–16]. Garcia et al. [11] indicated parameters
that influence cell jamming (1) cellular packing density
which depends on cell type and growth conditions, (2) cell
−cell adhesion energy, (3) magnitude of cellular forces and
persistence time for these forces, and (4) cell shape. They
pointed out that cell monolayers behave as amorphous
solids under reduced cell velocities. Sharp phase transi-
tions didn’t observe, rather a dynamic change in the dom-
inant internal forces that control the motion.
Jamming state transition is a rheological term which

represents transition from liquid-like state to solid-like
state [17–20]. Jamming state, similarly as glass state
corresponds to a much damped movement of the system
constituents. This damped state could be induced by an
increase of packing density (the jamming state transi-
tion) or by a decrease of temperature (the glass state
transition). Many physical systems such as granular
systems, polymer hydrogels and various types of multi-
phase systems show similar behavior. Unjamming-to-
jamming state transition and jamming state itself for
viscoelastic systems have been characterized rheologi-
cally [17–20]. Tighe [17] and Braumgarten and Tighe
[19] reported that systems have to pass through a transi-
tion regime before reaching the jamming state. The
main characteristic of the transition regime is (1) storage
modulus is equal to loss modulus, i.e. G′(ω) =G"(ω) and
(2) scaling exponent for storage and loss moduli vs.
angular velocity is equal to 1/2 . Storage modulus quan-
tifies storage energy, while the loss modulus quantifies
energy dissipation. Honter and Weeks [18] characterized
rheologically the jamming/glass state of colloidal systems
such that (1) storage modulus is higher than loss modu-
lus, i.e. G′(ω)/G"(ω) > 1, (2) diffusion coefficient of the
system constituents tends to zero, i.e. D→ 0, and (3) the
system relaxation time tends to infinity, i.e. τR→∞.
Consequently, a system under jamming state cannot
relax. The aim of this consideration is to formulate a
constitutive model for describing the jamming state and
to discuss various viscoelastic states from the standpoint
of rheology. This is a prerequisite of deeper understand-
ing of the jamming state transition in multicellular
systems caused by collective cell migration.
Mongera et al. [21] recently used yield stress as the

main indicator of the jamming state transition during
collective cell migration. Yield stress could be an indica-
tor of reaching the solid state. However, there are many
various solid states such as elastic solid or linear and
non-linear viscoelastic solids while the jamming state is
just one of them. Various solid states are characterized
by various constitutive models and corresponding relax-
ation times. Linear viscoelastic solid can be described by
various constitutive models such as Kelvin-Voigt model,
Zener model, Burgers model and multi-parameter

models. Kelvin-Voigt model is the simplest linear model
which describes constitutive behavior of viscoelastic
solid. Corresponding relaxation time is finite τR > 0. The
relaxation time for the elastic solid is τR = 0. However,
jamming state satisfies the condition that the relaxation
time tends to infinity τR→∞ as reported by Honter and
Weeks [16].
For further consideration, it is necessary to discuss

migrating-to-resting cell state transition in the con-
text of liquid-to-solid state transition. Some authors
have described migrating cells as a viscoelastic liquid
[13, 15, 22, 23]. Lee and Wolgemuth [23] considered
collective cell migration within 2D cell monolayers
and proposed Maxwell model suitable for viscoelastic
liquid, but without rheological confirmation. Flenner
et al. [22] treated cell aggregate rounding caused by collect-
ive cell migration as a viscoelastic liquid. Flenner et al. [22]
and Oswald et al. [15] introduced two inter-connected
claims (1) cell aggregate rounding is driven by surface
tension and (2) the surface tension represents the charac-
teristic of the liquid. We agree that aggregate rounding is
driven by tissue surface tension. However, surface tension
is not necessarily the characteristic of the liquid. Amorph-
ous viscoelastic solids such as polymer hydrogels and foams
also have surface tension [24]. Pajic-Lijakovic and Milivoje-
vic [25] pointed that cell aggregate rounding after uni-axial
compression leads to (1) shape relaxation from ellipsoidal
to spherical, (2) surface decrease from initial to the equilib-
rium value, and (3) surface strain relaxation. Strain relax-
ation ability is the characteristic of viscoelastic solid rather
than viscoelastic liquid. Doxzen et al. [26] reported that
migrating cell groups behave as rigid bodies. All cells within
the migrating group move, maintaining cell-cell adhesions.
Internal mechanical effects within the groups have been
described by plithotaxis [1]. Plithotaxis represents collective
cell guidance by cooperative intracellular forces which
ensure the integrity of the groups. Migrating-to-resting cell
state transition induces a change in the state of viscoelasti-
city. However, it hasn’t been confirmed rheologically that
this “resting” state is a priori the jamming state. Few types
of 2D and 3D multicellular systems have been discussed in
the literature in the context of jamming state transition
such as (1) cell monolayers during expansion [13, 14, 16],
(2) cell aggregate rounding after uni-axial compression be-
tween parallel plates [15], and (3) cell sorting into different
homogeneous domains with one cell type becoming
engulfed by the other [15]. Bi et al. [13] considered cell
monolayers and developed the vertex model to describe
mechanical energy of a single cell under simplified condi-
tions such as homogeneous, isotropic confluent tissue
monolayers at constant density as the sum of three types of
contributions (1) cell bulk elasticity, (2) cell contractility,
and (3) interfacial energy. However, multicellular systems
are inhomogeneous and anisotropic even in 2D. Notbohm
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et al. [27] and Nnetu et al. [28] experimentally obtained that
cell monolayers represent highly perturbed non-
homogeneous structures.
The main goal of this consideration is to describe

migrating-to-resting cell state transition from the
standpoint of rheology and discuss the possibility of
(1) determining the jamming state in multicellular
systems and (2) cells to overcome this suppressed
state and start moving again. The rheological consid-
eration of long-time cell rearrangement was given on
simplified multicellular systems such as 3D cell aggre-
gates rounding after uni-axial compression under in
vitro conditions based on experimental data proposed
in the literature.

Theoretical background
Jamming state transition has been related to the
liquid-to-solid state transition in the literature. The
jamming state is the rheological term and needs add-
itional characterization. Many amorphous viscoelastic
systems such as granular systems, polymer hydrogels
and various types of multi-phase systems show jam-
ming/glass state transition. Jamming state transition
is caused by a packing density increase while glass
state transition is caused by a temperature decrease.
We will discuss the main characteristics of the jam-
ming/glass state transition from the rheological
standpoint.

Various viscoelastic states
We consider and compare various types of viscoelastic be-
havior in the context of (1) liquid-to-solid state transition
and vice versa and (2) relaxation ability in order to clarify
jamming/glass state from the rheological standpoint.
Considered types of viscoelasticity are (1) viscoelastic liquid
described by Maxwell model, (2) viscoelastic solid described
by Kelvin-Voigt model, (3) transition regime as the pre-
requisite for jamming/glass state transition [17, 19], and (4)
jamming/glass state [16].

The Maxwell model equation is the simplest linear
model suitable for describing viscoelastic liquid behavior.
It is expressed as:

σ tð Þ þ τR1σ
: tð Þ ¼ ηε: tð Þ ð1Þ

where σ(t) is the stress, ε(t) is the strain, ε:ðtÞ ¼ dεðtÞ
dt is

strain rate, τR1 is the stress relaxation time, and is
the viscosity. Strain change under constant stress con-
dition σ0 for the initial condition ε(0) = 0 is equal to ε

ðtÞ ¼ σ0
η t. Strain increases during the time period Δt from

ε(0) = 0 to ε(Δt) without the ability to relax. If the system
undergoes free relaxation at t = Δt such that σ = 0 and
ε(Δt) = ε0, the strain stays constant for t > Δt and equal to
ε(t) = ε0. Consequently, a strain cannot relax under con-

stant stress condition due to sample fluidity. It is the main
characteristic of a viscoelastic liquid. Stress relaxation
under constant strain rate ˙ε0 could be expressed starting

from the initial condition σ(t = 0) = 0 as σðtÞ ¼ σRð1−e−
t

τR1Þ
(where σR is the residual stress equal to σR ¼ η ε:0).
Equation 1 could be transformed from the time

domain into the frequency domain using the Fourier
integral transform. Transforming equation is
expressed in form F[σ(t)] = G∗(ω)F[ε(t)] (where F[∙] is
the Fourier transform, ω is the angular velocity, and
G∗(ω) is the complex modulus). The complex modu-
lus is equal to:

G� ωð Þ ¼ G
0
ωð Þ þ i G} ωð Þ ð2Þ

where G′(ω) is the storage modulus, G " (ω) is the loss
modulus, and i ¼ ffiffiffiffiffiffi

−1
p

is the imaginary unit. The storage
modulus G′(ω) quantifies elastic behavior while the loss
modulus G " (ω) quantifies viscous behavior of the exam-
ined system. Storage and loss moduli could be expressed
from eqs. 1 and 2:

G
0
ωð Þ ¼ ητR1ω

2

1þ τ2R1ω
2
G} ωð Þ ¼ ηω

1þ τ2R1ω
2

ð3Þ

Storage and loss moduli satisfy the following condi-
tions (1) G′(ω)/G"(ω) < 1 at low angular velocities (li-
quid-like behavior), (2) G′(ω)/G"(ω) > 1 at high angular
velocities (solid-like behavior), (3) G′(ω)~ω2 and G"(ω)~ω
at low angular velocities and (4) G′(ω)~const and
G"(ω)~ω−1 at high angular velocities. Stress relaxation
time could be obtained on two ways (1) by comparing
experimental data of stress vs. time with model predic-
tion obtained by eq. 2 or (2) by comparing experimental
data of storage and loss moduli vs. angular velocity with
model prediction obtained by eq. 3. Storage and loss
moduli vs. angular velocity (for the Maxwell model) are
shown in Fig. 1a.
Stress relaxation time could be calculated from the

condition: G′(ω∗) =G"(ω∗) (where ω� ¼ 2π
τR1
).

Various viscoelastic solid states are considered such as
Kelvin-Voigt solid, transition state [17, 19] and jamming
state [18] in the context of system ability to relax. The
Kelvin-Voigt model equation is the simplest linear
model suitable for describing viscoelastic solid behavior.
It is expressed as:

σ tð Þ ¼ Gsε tð Þ þ ηε: tð Þ ð4Þ
where Gs is the elastic modulus. The strain relaxation
under constant stress condition σ0 (i.e. creep experi-
ments) could be expressed starting from the initial
condition ε(t = 0) = 0 as: εðtÞ ¼ σ0

Gs
ð1−e− t

τR2Þ (where ε(t)
is the strain and τR2 is the strain relaxation time
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equal to τR2 ¼ η
Gs
). Strain increases from ε(t = 0) = 0 to

ε(Δt). If the system undergoes free relaxation at t = Δt
such that σ = 0 and ε(Δt) = ε0, the strain relaxation is
expressed as εðtÞ ¼ ε0e−t=τR2 . The Kelvin-Voigt model
pointed out that stress cannot relax under constant

strain conditions. The ability of a strain to relax is
the main characteristic of viscoelastic solid. Complex
modulus G∗(ω) could be formulated after Fourier
transform of eq. 4. Corresponding storage and loss
moduli could be expressed as:

Fig. 1 Storage and loss moduli vs. angular velocity for: a The Maxwell model calculated by eq. 3 for the model parameters: the
relaxation time for stress τR1 = 3 min and the viscosity η = 7.3x103Pa min; (This relaxation time corresponds to the order of magnitude
of stress relaxation time for cell aggregate uniaxial compression between parallel plates while the viscosity corresponds to the value
obtained for epithelial cell aggregate obtained by Marmottant et al. [29].) b The Kelvin-Voigt model calculated by eq. 5 for the model
parameters: the elastic modulus Gs = 1 kPa and the viscosity η = 7.3x103Pa min. (The value of the elastic modulus is in the range of
the experimental values obtained for soft tissue [30])
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G
0
ωð Þ ¼ Gs G

} ωð Þ ¼ ηω ð5Þ
Storage and loss moduli satisfy the following conditions

(1) G′(ω)/G"(ω) > 1 at low angular velocities (solid-like be-
havior), (2) G′(ω)/G"(ω) < 1 at high angular velocities
(liquid-like behavior), (3) G′(ω)~Gs and G"(ω)~ω at low and
high angular velocities. Single strain relaxation time could
be obtained on two ways: (1) by comparing experimental
data of strain vs. time with model prediction obtained by
eq. 4 or (2) by comparing experimental data of storage and
loss moduli vs. angular velocity with model prediction
obtained by eq. 5. Storage and loss moduli vs. angular
velocity, for the Kelvin-Voigt model, are shown in Fig. 1b.
Relaxation time for strain could be calculated from the con-
dition: G′(ω∗) =G"(ω∗) (where ω� ¼ 2π

τR2
).

As was shown, viscoelastic liquid and viscoelastic solid
account for both elastic and viscous behaviors. If G′(ω)/
G"(ω) > 1, the elastic (solid-like) behavior is dominant,
while if G′(ω)/G"(ω) < 1 the viscous (liquid-like) behavior
is dominant. Maxwell and Kelvin-Voigt models point
out to the presence of the single and finite relaxation
times. In the case of the Maxwell model, it is the stress re-
laxation time. However, in the case of the Kelvin-Voigt
model, it is the strain relaxation time. Despite the fact that
both models account for the transition from a liquid-like
to solid-like behavior and vice versa (Fig. 1a,b) none of
them is able to describe the jamming state transition.
Tighe [17] and Braumgarten and Tighe [19] consid-

ered jamming state transition for the systems of dense
packing soft, viscous, non-Brownian spheres. They dis-
tinguished three viscoelastic solid regimes: (1) the Kel-
vin-Voigt regime, (2) the transition regime, and (3) the
jamming regime. System structural change within the
transition regime is significantly damped which induces
the anomalous nature of energy dissipation. The main
indicator of this regime is the condition G′(ω) =G"(ω)
[17]. The corresponding constitutive model for the tran-
sition regime could be expressed as:

σ tð Þ ¼ ηαD
α ε tð Þð Þ ð6Þ

where ηα is the effective modulus, DαεðtÞ ¼ dαεðtÞ
dtα is

the fractional derivative, and α is the order of frac-
tional derivative (i.e. the damping coefficient of a
system structural changes). Caputo’s definition of the
fractional derivative of a function ε(t) was used and
it is given as [31]:

Dαε tð Þ ¼ 1
Г 1−αð Þ

d
dt

Z t

0

ε t
0� �

t−t0ð Þα dt
0 ð7Þ

where Г (1− α) is a gamma function. If the parameter is
α = 0, we obtain D0ε(t) = ε(t). When α→ 1, the correspond-
ing fractional derivative is equal to D1εðtÞ ¼ dεðtÞ

dt . If the
parameter α is equal to α = 0, the model eq. 6 represents

reversible, elastic rheological behavior. However, if the par-
ameter α is equal to α→ 1, the model eq. 6 represents irre-
versible, viscous rheological behavior. Strain change under
constant stress condition σ0 (i.e. creep experiments) can be
expressed from eq. 6 as εðtÞ ¼ σ0

ηα
tα

Гðαþ1Þ. This result points

out that strain cannot relax under constant stress condi-
tion. Strain increase depends on the model parameter α.
We transformed eq. 6 from the time domain into the
frequency domain using the Fourier integral transform.
Fourier transform of the fractional derivative of the com-
ponent of strain ε(t) is equal to F[Dα(ε(t))] = (iω)αF[ε(t)].
The storage and loss moduli could be expressed as:

G
0
ωð Þ ¼ ηαω

α cos
πα
2

� �
G} ωð Þ ¼ ηαω

α sin
πα
2

� �
ð8Þ

Eq. 8 points out that the following condition for the
transition regime G′(ω) =G"(ω) is satisfied for the damp-
ing coefficient equal to α = 1/2. This regime is established
in the range of angular velocities ω ∈ [ ω1,ω2]. Systems
cannot relax in this regime. Migration of the system con-
stituents is strongly reduced within this regime.
Honter and Weeks [18] characterized rheologically

the jamming/glass state of colloidal systems such that
(1) the diffusion coefficient of the system constituents
D →0, (2) the system relaxation time is τR→∞, and
(3) the viscoelastic solid condition should be satisfied,
i.e. G′(ω)/G"(ω) > 1. The infinity of the relaxation time
indicates the condition that storage and loss moduli
are parallel, i.e. G′(ω)/G"(ω) = const > 1. This result
points that model eq. 6 could be applied for describ-
ing the jamming/glass state such that the damping
coefficient should be less than ½ and equal to 0 < α <
1/2. However, if the damping parameter is α = 0, the
relaxation time also becomes equal to zero, i.e. τR = 0,
while a dissipative phenomenon disappears, i.e.
G " (ω) = 0. In this case, the rheological behavior is
reversible, elastic. This result points out that relax-
ation time represents the key parameter for determin-
ing the jamming state. Strain change under constant
stress condition σ0 for the initial condition ε(0) = 0 is
equal to εðtÞ ¼ σ0

ηα
tα

Гðαþ1Þ (where Г(α + 1) is a gamma

function). Strain increases during the time period Δt
from ε(0) = 0 to ε(Δt) without the ability to relax. If
the system undergoes free relaxation at t = Δt such
that σ = 0 and ε(Δt) = ε0, the strain stays constant for
t > Δt and equal to ε(t) = ε0. Consequently, a strain
cannot relax under constant stress condition similarly
as for viscoelastic liquid described by eq. 1.

Viscoelastic regimes
All described types of viscoelastic behavior such as: (1)
the Maxwell viscoelastic liquid regime, (2) the Kelvin-
Voigt viscoelastic solid regime, (3) the transition regime,
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and (4) the jamming regime can be presented together
schematically in the form of storage and loss moduli vs.
angular velocity (Fig. 2).
Liu et al. [20] obtained a similar result by considering

the rheological response of coacervate-based systems.
Braumgarten and Tighe [19] considered jamming state
transition for the systems of dense packing soft, viscous,
non-Brownian spheres. They distinguished (1) the Kel-
vin-Voigt viscoelastic solid regime, (2) the transition
regime, and (3) the jamming regime. Pajic-Lijakovic et
al. [32] considered viscoelasticity of the monolayer made
by dense packed Ca-alginate beads (average diameter is
2mm). A rheological response of this monolayer under
low oscillator strain condition corresponds to jamming
state. One experimental set in the context of storage and
loss moduli vs. angular velocity is shown in Fig. 3.
Storage and loss moduli satisfy the condition that

G′(ω)/G"(ω) = const > 1, while the corresponding damp-
ing coefficient is equal to α = 0.08 and the effective
modulus is ηα = (3.4 ± 0.1)x103 Pasα. Constitutive model
eq. 8 is suitable for describing this rheological behavior.
We would like to consider the viscoelasticity of multicel-
lular systems caused by collective cell migration in the
context of the jamming state transition.

Results
The consideration of the long-time viscoelasticity of
multicellular systems caused by collective cell migration

is a difficult task due to the fact that only a few examples
have been elaborated properly in the literature from the
rheological standpoint. One of them is cell aggregate
uni-axial compression between parallel plates. Stress re-
laxation under constant aggregate shape condition, cell
aggregate shape relaxation under constant stress condi-
tion or free relaxation after stress action has been con-
sidered by Mombash et al. [33] and Marmottant et al.
[29]. We introduced the following features of cell
rearrangement in the context of multicellular system
ability to relax:

(1) Marmottant et al. [29] considered stress relaxation
under the constant aggregate shape. They proposed
a single relaxation time for stress equal to a few
minutes. Stress relaxes exponentially from ~27 Pa
to the residual stress value equal to ~17 Pa during
25min. The phenomenon of stress relaxation
could be related to the adaptation of adhesion
contacts [2].

(2) Marmottant et al. [29] also considered the
aggregates free relaxation (its rounding) after
uni-axial compression during 1 h. They reported
that the aggregate shape first relaxes quickly (the
relaxation time corresponds to a few minutes) and
then more slowly (the relaxation time corresponds
to tens of minutes). Consequently, the shape
relaxation is accomplished via two mechanisms

Fig. 2 Schematic presentation of storage and loss moduli vs. angular velocity for: (1) the terminal regime (the Maxwell model, eq. 3), (2) the
plateau regime (the Kelvin-Voigt model, eq. 5), (3) the transition regime (eq. 8 for the damping coefficient equal to α = 1/2), and (4) the jamming/
glass regime (eq. 8 for the damping coefficient in the range of 0 < α < 1/2)
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related to (1) structural changes of adhesion
complexes (which leads to the cell packing density
relaxation) obtained at minute scale and (2)
collective cell migration obtained at hour
time scale [29, 34].

(3) Mombash et al. [33] pointed to one average
relaxation time (obtained at hour scale) for the
aggregate shape relaxation by collective cell
migration (its rounding). Pajic-Lijakovic et al. [25]
pointed out that aggregate shape and surface
relaxation represent a characteristic of viscoelastic
solid rather than viscoelastic liquid.

(4) Two constitutive models suitable for viscoelastic
solid can relate stress and the aggregate shape
parameter εd(t) =AR(t) − 1 [33] (where AR(t) is the
aggregate aspect ratio). One is Zener model while
the other is the Four-parameter model. Zener
model introduces one relaxation time for stress and
the other for the aggregate shape parameter which
corresponds to experimental results by Mombash et
al. [33]. Four-parameter model introduces one
relaxation time for stress and two relaxation times
for the aggregate shape parameter which
corresponds to the experimental results from
Marmottant et al. [29]. Zener model is expressed as:

σ tð Þ þ τR1
dσ tð Þ
dt

¼ Gsεd tð Þ þ η
dεd tð Þ
dt

ð9Þ

where τR1 is the relaxation time for stress while the

relaxation time for the aggregate shape parameter is
equal to τR2 ¼ η

Gs
. Stress relaxation under constant aggre-

gate shape εd0, for the initial condition σ(t = 0) = 0, is

equal to σðtÞ ¼ σRð1−e−
t

τR1Þ (where σR is the residual
stress equal to σR =Gsεd0). Aggregate shape relaxation
under constant stress σ0, for the initial condition εd(t =

0) = 0, is equal to εdðtÞ ¼ σ0
Gs
ð1−e− t

τR2Þ . The Four-

parameter model is expressed as: σðtÞ þ τR1
dσðtÞ
dt ¼ Gsεdð

tÞ þ η dεdðtÞ
dt þ ηtR

d2εdðtÞ
dt2 (where tR is the characteristic

time for the shape parameter change). Stress relaxation
under constant shape parameter εd0 is similar as for the
Zener model. The aggregate shape relaxation under con-
stant stress condition σ0 (i.e. creep experiments) can be
expressed starting from the initial conditions εd(t = 0) = 0

and dεdðt¼0Þ
dt ¼ ε:d0 as: εdðtÞ ¼ C1e

− t
τ�
R1 þ C2e

− t
τ�
R2 þ σ0

Gs

(where C1 ¼
ε:d0− σ0

Gs
1

τ�
R1

1
τ�
R2
− 1
τ�
R1

, C2 ¼
ε:d0− σ0

Gs
1

τ�
R2

1
τ�
R2
− 1
τ�
R1

are constants, while

τ�R1 ¼
2 η
Gs
tR

η
Gs
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð η
Gs
Þ2−4 η

Gs
tR

p , and τ�R2 ¼
2 η
Gs
tR

η
Gs
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð η
Gs
Þ2−4 η

Gs
tR

p are the

short and long relaxation times for the aggregate shape
parameter.

(1) Pajic-Lijakovic and Milivojevic [25] considered
experimental data by Mombash et al. [33]. They
pointed out that the aggregate shape free relaxation
occurs via successive relaxation cycles. The
relaxation rates kj (where kj is the relaxation rate for
the j-th cycle) are not random but gather around
two or three values indicating various scenarios of

Fig. 3 Storage and loss moduli vs. angular velocity for a monolayer of Ca-alginate beads under jamming state calculated by eq. 8 for the model
parameters: the damping coefficient equal to α = 0.08 and the effective modulus equal to ηα = (3.4 ± 0.1)x103 Pasα, obtained by Pajic-Lijakovic et
al. [32]
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cell migration. Three scenarios of cell migration
were discussed as (1) km- the most of cells migrate,
(2) kr km - the most of cells stay in the resting
state and in some cases kr ≈ 0, and (3) kr < kt < km-
some cell groups migrate while the others, at the
same time, stay in resting state. Aggregate shape
relaxation in the form of the aggregate aspect ratio
vs. time for the experimental data by Mombash et
al. [33] is shown in normal and log-normal forms
(Fig. 4).

The normal form is suitable to present initial and re-
laxed (equilibrium) state of the aggregate. The log-

normal form is suitable to present successive relaxation
cycles during aggregate rounding.
Change of the relaxation rate from cycle to cycle is in-

duced by uncorrelated motility. Uncorrelated motility
represents the consequence of time delay in cell re-
sponse to a various mechanical and biochemical stimu-
lus caused by gene expression [36]. This time delaying
might be relevant for cell coupling because what cells
acquire at the present time is the information of sur-
rounding cells some time ago. These perturbations can
induce that (1) cells in the same population respond to
different signals and/or (2) cells behave differently in re-
sponse to the same signals [37, 38]. These phenomena

Fig. 4 Aggregate aspect ratio vs. time in normal and log-normal forms were calculated from the experimental data for 3D chicken cell aggregate
rounding after uniaxial compression obtained by Schotz et al. [35] for 3D zebrafish ectodermal aggregate and elaborated by Pajic-Lijakovic and
Milivojevic [25]
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can lead to the collision of velocity fronts [13, 14, 25, 27]
and also to changes in the configuration of migrating
cells from cycle to cycle [25]. Nnetu et al. [28] consid-
ered the collision of velocity fronts in 2D in the context
of jamming state.

Cell aggregate compression: volumetric and surface
viscoelasticity
External uni-axial stress σe ¼ F

S (where F is the force act
on the plate and S is the surface contact area between
the plate and the aggregate) induces the generation of
internal stress σ within the aggregate such that σe = σ =
const. We consider aggregate shape change under
constant stress condition and free relaxation after com-
pression in the context of the jamming state proposed
by eq. 6 in order to recognize the appearance of this
state in experiments. Aggregate internal stress σ repre-
sents a product of surface viscoelasticity and volumetric
viscoelasticity and could be expressed by Young-Laplace
law. We modified the Young-Laplace law proposed by
Marmottant et al. [29] in order to account for observed
successive relaxation cycles. Consequently, the internal
stress for the j-th cycle represents the consequence of
surface and volumetric effects and can be expressed as:

σ ¼ Δpj þ τ j ð10Þ

where τj is the volumetric contribution to stress, Δpj is
the hydrostatic pressure during the j-th relaxation cycle
that is equilibrated with the corresponding value of the
tissue surface tension γj such that Δpj = γjHj, Hj (the
Young-Laplace law) is the corresponding aggregate
curvature. Volumetric viscoelasticity is quantified by the
stress τj while the surface viscoelasticity quantified by
dynamic surface tension γj. Mombash et al. [33] and
Pajic-Lijakovic and Milivojevic [25] pointed out to the
time change of tissue surface tension during aggregate
rounding after uni-axial compression. Cell aggregate
rounding is discussed in the context of jamming state
transition based on the proposed model by Pajic-
Lijakovic and Milivojevic [25].

Discussion
Three scenarios of cell migration established during ag-
gregate rounding have been discussed based on experi-
mental data by Mombash et al. [33]. The free relaxation
satisfies the condition σ = 0. For this condition, the tissue
surface tension and viscoelastic contribution to stress,
expressed by eq. 10, could be related as ΔγjHj = Δτj

(where Δγ(t) = γ(t) − γ0 is the tissue surface tension dif-
ference and γ0 is the equilibrium value of the surface
tension). This important result points out to inter-
relation between the volumetric viscoelasticity and the
surface viscoelasticity.

Scenarios of cell migration
Cell rearrangement was treated as T1 process in the
form of the Eyring model proposed by Marmottant et al.
[29]. Energy barrier ΔET1 influences the cell state transi-
tion from migrating to resting m→ r and vice versa r→
m expressed as [25]:

dΔγr tð Þ
dt

¼ −λr→mΔγr tð Þ þ λm→rΔγm tð Þ ð11Þ

where Δγr(t) is the dynamic surface tension contribution
from resting cells equal to Δγr(t) = γr(t) − γ0 and Δγm(t)
is the dynamic surface tension contribution from migrat-
ing cell groups equal to Δγm(t) = γm(t) − γ0. Total dy-
namic surface tension represents the sum of
contributions from migrating and from resting cells, i.e.
Δγ(t) = Δγm(t) + Δγr(t). The specific rate for r→m tran-

sition λr→m is expressed as λr→m ¼ λe
−
ΔET1−ΔEeff

kBTeff , λ is the

characteristic frequency, kB is the Boltzmann constant,

Teff is the effective temperature. Concept of effective

temperature has been applied for considering rearrange-

ment of various thermodynamical systems (near to equi-

librium and far from equilibrium) from glasses and
sheared fluids to granular systems [39]. Pajic-Lijakovic
and Milivojevic [9] applied this concept to cell long-time
rearrangement of dense cellular systems. The effective
temperature, in this case, represents a product of cell
migration and is expressed based on a generalization of
Einstein’s relation [39] as kBTeff ¼ D

μ0 , (where D is the

diffusivity of migrating cells and μ′ is the mobility of vel-
ocity fronts). The energetic barrier for cell long-time re-
arrangement ΔET1 represents a strain energy threshold.
For the strain energy W = σδεdΔV larger than the energy
barrier ΔET1 collective cell migration occurs (where σ is
the internal stress, ΔV is the volumetric change of the
aggregate surface region). This cell rearrangement repre-
sents a result of cell tendency to decrease strain energy.
The specific rate for m→ r transition λm→ r is expressed

as λm→r ¼ λe
−
ΔET1þΔEeff

kBTeff . The effective driving energy is
equal to ΔEeff = γ0ΔA − ΔEp (where ΔA is the aggregate
surface change during the aggregate rounding, ΔEp is the
energy perturbations caused by uncorrelated motility).
The energy perturbations ΔEp accounts for cumulative
effects of mechanical and biochemical perturbations
which lead to a collision of velocity fronts and stagnant
zones formation. Stagnant zones represent a local in-

crease of cells in the resting state. The ratio λr→m
λm→r

is equal

to λr→m
λm→r

¼ e
−
2ΔEeff
kBTeff . Three causes were established depend-

ing on the energy perturbation ΔEp:
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(1) γ0ΔA≫ΔEp which corresponds to λr→m ¼ λm→r

e
−
2γ0ΔA
kBTeff ;

(2) γ0ΔA~ΔEp which corresponds to λr→m~λm→ r, and
(3) γ0ΔA≪ΔEp which corresponds to λr→m≪ λm→ r.

Consequently, biochemical and mechanical energy per-
turbations represent the key parameter for establishing
various scenarios of migrating cells. We supposed that
contribution of resting cells to the dynamic surface ten-
sion is reversible while the contribution of migrating cells
is dissipative and proved this statement by comparing ex-
perimental data obtained by Mombash et al. [33] with the
model prediction. The contribution of resting cells could
be expressed as [25]:

Δγr tð Þ ¼ Eappεd tð Þ ð12Þ

where Eapp is the apparent surface elasticity modulus.
The contribution of migrating cells could be expressed
as

Δγm tð Þ ¼ ηapp
dεd tð Þ
dt

ð13Þ

where ηapp is the apparent surface viscosity. Changes in
the deformation parameter with time could be expressed
by introducing eqs. 12 and 13 into eq. 11 as:

dεd tð Þ
dt

þ kεd tð Þ ¼ 0 ð14Þ

where k ¼ λr→m Eapp

Eapp−λm→rηapp
is the aggregate shape relaxation

rate. The relaxation rate is equal to:

(1) km ¼ λm→r e
−
2γ0ΔA
kBTeff Eapp

Eapp−λm→rηapp
for the case 1,

(2) kt ¼ km e
−
2γ0ΔA
kBTeff for the case 2, and

(3) kr→ 0 for the case 3 as schematically presented in
Fig. 4.

The aggregate surface energy γ0ΔA relative to a spe-
cific energy of collectively migrated cells kBTeff can be
estimated from the experimentally determined ratio of
the relaxation rates km

kt
. Pajic-Lijakovic and Milivojevic

[25] calculated the ratio km
kt

from the experimental data

by Mombach et al. [33] and Schotz et al. [35]. Mombash
et al. [33] examined the aggregate rounding for 3D
chicken embryonic neural retina aggregates with various
radius: R = 87 μm, and R = 65 μm. The corresponding

energetic ratio γ0ΔA
kBTeff

is equal to γ0ΔA
kBTeff

¼ 0:36� 0:04 .

Schotz et al. [35] examined the aggregate rounding for
3D zebrafish ectodermal aggregates. The corresponding

energetic ratio γ0ΔA
kBTeff

is equal to γ0ΔA
kBTeff

¼ 0:33� 0:02.

Case 1 corresponds to an ordered trend of cell migra-
tion characterized by a minimum of energy perturba-
tions. The relaxation time for the aggregate shape is
finite and equal τR ¼ k−1m which indicates viscoelastic
solid.
Case 2 corresponds to a disordered trend of cell mi-

gration characterized by a medium value of the energy
perturbations. The relaxation time for the aggregate
shape is finite and equal τR ¼ k−1t which also indicates
viscoelastic solid.
Case 3 corresponds to significantly suppressed cell mi-

gration caused by large energy perturbations. The relax-
ation time is τR ¼ k−1r →∞ while the aggregate shape
parameter is εd(t) ≈ const. If case 3 corresponds to visco-
elastic solid these conditions point out to the jamming
state described by eq. 6. Viscoelastic liquid described by
the Maxwell model (eq. 1) also satisfies the conditions
that for σ = 0, the surface strain (or the shape deform-
ation parameter) is constant, i.e. εd(t) ≈ const, but it is
not the jamming state.
Based on experimental data by Mombash et al. [33]

jamming state frequently occurred during the aggregate
rounding. Cells are able to overcome this undesirable
state and start moving again in the next cycle. A similar
trend has been observed in 2D dynamics. Nnetu et al.
[28] considered the state of the boundary layer formed
after a collision of velocity fronts. They pointed out that
collision turns cells within the boundary in a jamming
state. After collision stress locally increases without the
ability to relax. This stress induces the generation of a
compressive strain which can lead to an increase of cell
packing density. This increase is much damped for the
jamming state in comparison with other solid states. As
time increases, marginal cells start moving and this
movement unjams the boundary.
Experimental data for the aggregate shape relaxation

after uni-axial compression shows a relaxation trend in
the form of successive relaxation cycles. Model eq. 14
should be expressed for every cycle for t ∈ [0, Δtj] as
dεdðtÞ j

dt þ k jεdðtÞ j ¼ 0 (where kj is the relaxation rate for
the j-th cycle which can be equal to km, kt, or kr and Δtj

is the time period for j-th cycle). The total time period
for the aggregate rounding is equal to ΔtT ¼ Pn

j¼1 Δt
j .

Experimental data by Mombash et al. [33] pointed that a
total number of relaxation cycles varies from 7 to 15 de-
pending on cell types and experimental conditions.
Model eq. for j-th cycle is solved starting from the initial
condition at t = 0 the aggregate shape parameter is equal

to εdðt ¼ 0Þ j ¼ ε jd0. Accordingly, the aggregate shape re-
laxation for the j-th cycle could be expressed as:

εd tð Þ j ¼ ε jd0 e
−k jt ð15Þ
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where εd(t)
j is the aggregate deformation parameter dur-

ing the j-th relaxation cycle, ε jd0 is the initial value of the
deformation parameter, and kj is the relaxation rate for
the j-th cycle. Model eq. 15 satisfies the functional trend
of the experimental data by Mombash et al. [33]. Mech-
anical and biochemical perturbations ΔEp, as key factors
which can induce jamming state transition during aggre-
gate rounding, depends on cell type, a magnitude of
applied stress and loading time.

Conclusion
The main goal of this theoretical consideration is to (1)
describe jamming state from the rheological point of
view and (2) consider long-time cell rearrangement
caused by collective cell migration based on formulated
jamming state transition. Jamming state represents par-
ticular non-linear viscoelastic solid state characterized by
the following conditions: (1) the migration of the system
constituents is significantly damped such as the diffusion
coefficient tends to zero, i.e. D→ 0, (2) the relaxation
time tends to infinity, i.e. τR→∞, (3) systems structural
changes induce the anomalous nature of energy dissipa-
tion that can be modelled by introducing the fractional
derivatives, (4) the order of fractional derivative (the
damping coefficient) should be equal to 0 < α < 1/2, and
(5) storage modulus is higher than loss modulus, and
satisfies the condition G′(ω)/G"(ω) = const > 1. Conse-
quently, a system trapped in a jamming state cannot
relax. The main parameter for the jamming state should
be a relaxation time. Single finite values of the relaxation
time are obtained for viscoelastic liquid described by the
Maxwell model and viscoelastic solid described by the
Kelvin-Voigt model. For elastic solid, the relaxation time
tends to zero. However, for the jamming state, the relax-
ation time tends to infinity.
We considered cell long-time rearrangement via collective

cell migration during aggregate rounding after uni-axial
compression in the context of jamming state transition.
Aggregate shape relaxes exponentially during successive
relaxation cycles. Change of the relaxation rate from cycle
to cycle is induced by uncorrelated motility. Uncorrelated
motility represents the consequence of mechanical and
biochemical perturbations ΔEp. These perturbations can
induce the collision of velocity fronts which lead to
change in the configuration of migrating cells from
cycle to cycle. Three scenarios of cell migration were
considered: (1) most of the cells migrate (ΔEp is
minimal), (2) some cell groups migrate while the
others (at the same time) stay in resting state (ΔEp is
medium), and (3) most of the cells are in resting state
(ΔEp is maximal). The third scenario corresponds to
viscolelastic solid under the jamming state. If the cells
reach the jamming state in one cycle by uncorrelated
motility, cells are able to overcome this undesirable

state and start migrating again in the next cycle by
achieving the first or second scenarios. This spontaneous
un-jamming is a unique characteristic of living systems
and is induced by the cumulative effects of biochemical
processes such as cell signaling and gene expression.
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