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Abstract

Background: Creating designer molecules using a combination of select domains from polyketide synthases and/
or nonribosomal peptide synthetases (NRPS) continues to be a synthetic goal. However, an incomplete
understanding of how protein-protein interactions and dynamics affect each of the domain functions stands as a
major obstacle in the field. Of particular interest is understanding the basis for a class of methyltransferase domains
(MT) that are found embedded within the adenylation domain (A) of fungal NRPS systems instead of in an end-to-
end architecture.

Results: The MT domain from bassianolide synthetase (BSLS) was removed and the truncated enzyme BSLS-ΔMT
was recombinantly expressed. The biosynthesis of bassianolide was abolished and N-desmethylbassianolide was
produced in low yields. Co-expression of BSLS-ΔMT with standalone MT did not recover bassianolide biosynthesis.
In order to address the functional implications of the protein insertion, we characterized the N-methyltransferase
activity of the MT domain as both the isolated domain (MTBSLS) and as part of the full NRPS megaenzyme.
Surprisingly, the MTBSLS construct demonstrated a relaxed substrate specificity and preferentially methylated an
amino acid (L-Phe-SNAC) that is rarely incorporated into the final product. By testing the preference of a series of
MT constructs (BSLS, MTBSLS, cMT, XLcMT, and aMT) to L-Phe-SNAC and L-Leu-SNAC, we further showed that
restricting and/or fixing the termini of the MTBSLS by crosslinking or embedding the MT within an A domain
narrowed the substrate specificity of the methyltransferase toward L-Leu-SNAC, the preferred substrate for the BSLS
megaenzyme.

Conclusions: The embedding of MT into the A2 domain of BSLS is not required for the product assembly, but is
critical for the overall yields of the final products. The substrate specificity of MT is significantly affected by the
protein context within which it is present. While A domains are known to be responsible for selecting and
activating the biosynthetic precursors for NRPS systems, our results suggest that embedding the MT acts as a
secondary gatekeeper for the assembly line. This work thus provides new insights into the embedded MT domain
in NRPSs, which will facilitate further engineering of this type of biosynthetic machinery to create structural diversity
in natural products.

Keywords: Nonribosomal peptide synthetase, Methyltransferase domain, Substrate specificity, Domain removal,
Heterologous expression, In vitro reaction

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: joanie.hevel@usu.edu; jixun.zhan@usu.edu
2Department of Chemistry and Biochemistry, Utah State University, 0300 Old
Main Hill, Logan, UT 84322-0300, USA
1Department of Biological Engineering, Utah State University, 4105 Old Main
Hill, Logan, UT 84322-4105, USA
Full list of author information is available at the end of the article

Xu et al. Journal of Biological Engineering           (2019) 13:65 
https://doi.org/10.1186/s13036-019-0195-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s13036-019-0195-y&domain=pdf
http://orcid.org/0000-0003-0200-9183
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:joanie.hevel@usu.edu
mailto:jixun.zhan@usu.edu


Introduction
Modular enzymes are widely involved in the biosynthesis
of many biologically important molecules including both
primary (fatty acids) and secondary metabolites (natural
products). Natural product megasynthetases, which in-
clude polyketide synthases (PKSs), nonribosomal synthe-
tases (NRPSs), and hybrid forms, typically combine a
series of catalytic domains – often as a single polypep-
tide – to assemble simple molecules into a variety of
structurally and functionally diverse molecules [1].
NRPSs contain three essential core domains for chain
elongation, including adenylation (A), thiolation (T or
PCP) and condensation (C) domains, which are com-
bined end-on-end to form independent modules. The
precursor molecule for each module is selected by an A
domain, and activated for transfer to a T domain. Thus,
A domains are thought to function as the primary gate
keepers for precursor selection. C domains condense
two units of activated precursors to form the corre-
sponding amide or ether bonds for downstream chain
elongation. Additional tailoring domains may also be
present, such as epimerization (E), thioesterase (TE),
and methyltransferase (MT) domains, each of which
contributes to the chemical diversity and bioactivity of
natural products [2]. Coordinated communication be-
tween each of these catalytic domains is essential, but
the molecular mechanisms underlying this process are
poorly understood.
A unique feature of MT-containing NRPSs is that the

MT domains are embedded within the A domains rather
than being located adjacent to independent domains [3].
The rationale for this placement in NRPSs is unknown
but suggests that the MT may undergo significant

motions during natural product synthesis. A recent
structure of an embedded NRPS MT supports this hy-
pothesis [4]. Furthermore, the general observation that
protein domain insertions are often associated with a
gain-in-function of switch-like behavior [5, 6] makes for
the intriguing possibility that the MT takes on a much
larger role in natural product synthesis than simple me-
thyl transfer. Embedding the MT into the A domain
may act as scaffolding or may modulate substrate speci-
ficity, activity and interdomain communication.
One such embedded MT exists in BSLS, the fungal

NRPS that synthesizes the cyclic octadepsipeptide bas-
sianolide. The modular BSLS enzyme (C1-A1-T1-C2-
A2-MT (embedded in A2)-T2a-T2b-C3, Fig. 1) can be
found in several fungi such as Beauveria bassiana [7]. B.
bassiana also produces a cyclic hexadepsipeptide, beau-
vericin, and the corresponding beauvericin synthetase
(BEAS) has the same domain organization (Fig. 1a) [8].
Bassianolide and beauvericin have shown anticancer ac-
tivities and are synthesized from amino acid and hy-
droxyl acid precursors [9, 10]. We have previously
investigated the three C domains and the twin T2 do-
mains in these NRPSs, and revealed that this type of
NRPS uses an “alternative incorporation” approach to
extend the depsipeptide chain and C3 plays a role of de-
cision maker in the chain length control [11]. Interest-
ingly, BSLS is flexible with both the amino acid and
hydroxyl acid precursors; i.e., it produces bassianolide as
the major product (containing N-methyl-L-Leu), to-
gether with small amounts of beauvericin and its analogs
beauvericins A-C (containing N-methyl-L-Phe) (Fig. 1b).
By contrast, BEAS is strict with the amino acid precur-
sor and only has some flexibility with hydroxyl acid

Fig. 1 Domain organization of BSLS and BEAS and their corresponding products. a Domain architecture of BSLS. b Biosynthesis of bassianolide
and beauvericins by BSLS and/or BEAS
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units, D-2-hydroxyisovalerate (D-Hiv) and D-2-hydroxy-
3-methylvalerate (D-Hmv), to yield beauvericins (Fig. 1b).
This finding suggests that the MT, as well as other cata-
lytic domains in BSLS, have relatively relaxed substrate
specificities. Therefore, BSLS was selected in this work to
understand the role of the embedded MTand how its sub-
strate specificity may be affected by the protein insertion.
Our results demonstrate that the presence of a MT do-
main in BSLS is not essential for the product assembly,
but is critical for the overall yields of the final products.
Moreover, embedding the MT in the BSLS NRPS is used
to tune the substrate specificity of the MT and thus func-
tions as a secondary substrate gate keeper. This work thus
provides new insights into the embedded MT domain in
NRPSs, which will facilitate further engineering of this
type of biosynthetic machinery to create structural diver-
sity in natural products.

Results
A functional MT domain is not essential for NRP assembly
To examine the structural necessity of the MT domain
within BSLS, we constructed BSLS-ΔMT through spli-
cing by overlap extension (SOE) PCR and tested whether
nonribosomal peptide (NRP) products can still be syn-
thesized without the N-MT domain. Both BSLS and
BEAS were functionally expressed in Saccharomyces cer-
evisiae BJ5464-NpgA in our previous work to yield their
corresponding products [12]. Therefore, this strain was
used to express BSLS-ΔMT for product analysis. LC-MS
analysis revealed that the engineered enzyme BSLS-
ΔMT yielded no bassianolide, but a more polar product
(Fig. 2a). ESI-MS of this new product showed several ion
peaks, including [M +H]+ at m/z 853.4, [M +NH4]

+ at
m/z 870.5, [M +Na]+ at m/z 875.4, and [M + K]+ at m/z
891.4 (Additional file 1: Figure S1), indicating that this
product has a molecular weight of 852. This is 56 mass
unis (equivalent to four CH2 groups) less than bassiano-
lide, suggesting that this compound is N-desmethylbas-
sianolide (Fig. 2a).
Due to the low yield of this nonmethylated product,

we did not purify it for NMR analysis. Considering the
yield of beauvericin and its analogs (beauvericins A-C)
produced by BEAS in yeast is much higher than bassia-
nolide, we rationalized that it might be easier to generate
sufficient amounts of demethylated derivative of beau-
vericin. We also wanted to distinguish if the low product
yields were a result of the absence of the MT domain or
the absence of MT activity. To this end, we used a differ-
ent approach to examine the MT domain in BEAS.
Based on the alignment of BEAS with other reported
MTs, it was found that the MT domain of BEAS con-
tains a G2129TGTG2133 motif, which is consistent with
the consensus GxGxG sequence that is a part of the
S-adenosyl methionine (AdoMet) binding site [13].

Therefore, we mutated the middle G residue at pos-
ition 2131 to interrupt the binding of AdoMet. We
constructed BEAS-G2131A (pDY170) in a yeast ex-
pression vector and expressed it in S. cerevisiae
BJ5464-NpgA. As shown in Fig. 2b, three new prod-
ucts, but not beauvericins, were formed by this mu-
tant. Their molecular weights were determined to be
741, 755 and 768, respectively, based on the ESI-MS
spectra (Additional file 1: Figure S1), corresponding
to the demethylated derivatives of beauvericin, beau-
vericin A and beauvericin B. The major product at
7.1 min was isolated for NMR analysis, which con-
firmed that this product is N-desmethylbheauvericin
(Additional file 1: Figures S2-S4) and that G2131 is a
critical AdoMet binding site residue. We next con-
structed a yeast expression plasmid (pFC31) that only
harbors the MT domain of BSLS. Co-expression of
the isolated MTBSLS with BSLS-ΔMT to induce trans
methylation yielded only the demethylated product
(Additional file 1: Figure S5A). Similarly, co-expres-
sion of MTBEAS (pDY268) with BEAS-G2131A in the
yeast did not recover the biosynthesis of beauvericins
(Additional file 1: Figure S5B), suggesting that natural
embedding of a functional MT domain in A2 is re-
quired to form the methylated NRPs.

Heterologous expression and functional characterization
of the MT domain from BSLS
In order to determine whether embedding the MT do-
main into the A2 domain affects MT activity, we sought
to compare the methyltransferase activity of the isolated
MT domain (MTBSLS) to the methyltransferase activity
of the full megaenzyme (BSLS). The gene fragment en-
coding the MT domain in BSLS was cloned from the
genomic DNA of B. bassiana into a pET28a expression
vector. The MT domain was expressed in E. coli BL21-
CodonPlus (DE3)-RIL strain (hereafter referred to as
RIL) cells as a His6-tagged protein and was purified
using Ni-NTA resin. The methyltransferase activity of
the isolated MT domain (MTBSLS) was directly assessed
using the synthetic substrate mimic aminoacyl-N-acetyl-
cysteamine thioesters (aminoacyl-SNACs) to avoid the
need for the A or T domains [14]. Because bassianolide
contains N-methyl-L-Leu, L-Leu-T2a (or -T2b) is be-
lieved to be the natural substrates. Thus, we synthesized
L-Leu-SNAC as a mimicking substrate. HPLC analysis
showed that incubation of MTBSLS with AdoMet and L-
Leu-SNAC led to the formation of a new peak in the
chromatogram (Fig. 3a). ESI-MS spectrum (Fig. 3b) indi-
cated that this product has a molecular weight of 246,
which is 14 mass units more than the substrate and con-
sistent with N-methyl-L-Leu-SNAC. These results show
that the isolated MT domain from BSLS is active with
its cognate substrate. In our previous study [15], we
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found that BSLS can also synthesize beauvericin and its
analogs beauvericins A-C when it was expressed in S.
cerevisiae BJ5464-NpgA, suggesting that MTBSLS can
also methylate L-Phe-SNAC. Reaction of MTBSLS with
L-Phe-SNAC indeed gave rise to N-methyl-L-Phe-SNAC
(trace ii, Fig. 3a), which was confirmed by its ESI-MS
spectrum (Fig. 3c).

Substrate specificity of the isolated MT domain of BSLS
Given the apparent flexibility of MTBSLS to use both L-Phe-
SNAC and L-Leu-SNAC as substrates, we sought to deter-
mine how broad the substrate specificity of MTBSLS is.
Therefore, we synthesized two additional aminoacyl-SNACs,
L-Ile-SNAC and L-Val-SNAC, for in vitro assays of MTBSLS.

However, only a tiny portion of substrates were converted
into N-methylated products, which were detected by ESI-
MS analysis (Additional file 1: Figure S6A and B). In order
to determine whether MTBSLS displayed a preference for L-
Leu-SNAC or L-Phe-SNAC, we measured the rate of
methylation of these two substrates as a function of sub-
strate concentration. The methylation assay utilized radiola-
beled AdoMet (3H-AdoMet) as the methyl group donor in
order to quantify the levels of methyl groups transferred
(Fig. 4a). Interestingly, even though BSLS predominantly
synthesizes bassianolide that contains the N-methyl-L-Leu
moiety [12, 15], the isolated MTBSLS enzyme was observed
to possess a much higher rate of methylation with L-Phe-
SNAC (Vmax of 0.41 ± 0.040 μM/min) than with L-Leu-

Fig. 2 Biosynthesis of N-desmethylbassianolide (a) by BSLS-ΔMT (MT removed) and N-desmethylbeauvericins (b) by BEAS-G2131A
(MT inactivated)

Xu et al. Journal of Biological Engineering           (2019) 13:65 Page 4 of 14



SNAC (Vmax of 0.05 ± 0.01 μM/min) and a smaller Km

(0.46 ± 0.17 μM for Phe-SNAC and 2.8 ± 1.3 μM for Leu-
SNAC) (Fig. 4b).

The substrate specificity of MTBSLS is affected by protein
context
Intrigued by the observation that the BSLS system pro-
duces more NRP with N-methyl-L-Leu, but the isolated
MTBSLS prefers to methylate L-Phe-SNAC, we tested the
ability of the intact MT in BSLS to methylate both L-
Phe-SNAC and L-Leu-SNAC at a fixed substrate con-
centration. Compared to the isolated MTBSLS that meth-
ylated Phe-SNAC > 7-fold more than L-Leu-SNAC, the
embedded MT in BSLS methylated both amino acid de-
rivatives similarly (Fig. 5). In order to gain more struc-
tural insight regarding the potential structural
differences that might occur between embedded and iso-
lated MTBSLS, we used the recent crystal structure of an

embedded MT domain from the TioS NRPS cluster to
create a homology model for MTBSLS (Fig. 6a) [16–20].
The TioS structure includes both the MT (with the
product S-adenosylhomocysteine bound) and A domains
which allowed us to examine the predicted MT active
site and how the two domains are connected.
The MT in TioS(A4aM4A4b) N-methylates L-Val and

norcoronamic acid (NCA), and to a lesser extent L-Ile
[4]. On the other hand, MTBSLS preferentially N-methyl-
ates L-Phe and to a lesser extent L-Leu. Although all five
substrates in question are all hydrophobic, we found it
surprising that all the residues in MT4TioS that are pre-
dicted to interact with the side chain of the amino acid
substrate are identical between MT4TioS and MTBSLS

(Additional file 1: Fig. 6b, c and Additional file 1: Figure
S7). This suggests that characteristics other than side
chain identities help to govern substrate specificity of
the methyltransferase.
In evaluating the TioS(A4aM4A4b) structure, we noted

that the backbone of the N-terminal and C-terminal res-
idues of the MT domain reside within ~ 6 Å of each
other, and that the positioning of the termini may be
governed by the connection to the A domain. Given that
the N-terminus of the MT resides at the end of the helix
that acts as the bottom of the methyltransferase active
site, we rationalized that altering the distance, conform-
ation, or flexibility between the termini (e.g., in the iso-
lated MTBSLS) may affect methyltransferase activity.
In order to test the theory that increased flexibility or

conformation in the N- and C-termini of the isolated
MTBSLS affected substrate preference, we designed and
purified a construct of MTBSLS that contained an add-
itional cysteine residue at both ends (cMT). We then
crosslinked the two cysteine residues using bis-maleimi-
doethane (BMOE) to create XLcMT (Fig. 7). The BMOE
crosslinker has an 8 Å linker, which we hypothesized
would fix the two termini at approximately the same dis-
tance apart as if the MT was embedded in the A do-
main. Both cMT and XLcMT were assayed for
methyltransferase activity in the presence of either L-
Phe-SNAC or L-Leu-SNAC. Crosslinking the N- and C-
termini decreased the preference of the methyltransfer-
ase for L-Phe over L-Leu (Fig. 5). These data suggest
that structural flexibility of the N- and/or C-terminus of
MTBSLS plays a role (either by allowing for a different
stable conformation of the termini compared to the em-
bedded MT or by providing flexibility at the termini) in
the ability of the isolated MT to preferentially methylate
L-Phe over L-Leu.
Although XLcMTBSLS displayed less preference for

L-Phe-SNAC than MTBSLS, the ratio of Phe:Leu meth-
ylated is still higher than that observed for the em-
bedded MT. This could arise from a less than
optimal cross-linking distance and incomplete desired

Fig. 3 In vitro reactions of MTBSLS with aminoacyl-SNACs. a
Methylation of L-Leu-SNAC and L-Phe-SNAC by MTBSLS in the
presence of AdoMet. (i) L-Leu-SNAC + MTBSLS; (ii) L-Phe-SNAC +
MTBSLS. b ESI-MS (+) spectrum of N-methyl-L-Leu-SNAC. c ESI-MS (+)
spectrum of N-methyl-L-Phe-SNAC
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crosslinking (~ 85–90%, Fig. 7). We therefore explored
how adding a portion of the A domain might influ-
ence the ability of the isolated MT domain to differ-
entially methylate L-Phe-SNAC. A construct
containing just the small portion of the A domain
was designed and purified (aMTBSLS) (Figs. 5a and
Additional file 1: Figure S8). When assayed in the
presence of either L-Phe-SNAC or L-Leu-SNAC, the
aMTBSLS construct displayed little preference for L-
Phe-SNAC, demonstrating levels of methylation that
were similar to the full length BSLS (Fig. 5).

Discussion
NRPs represent a large family of structurally and func-
tionally diverse natural products. Some of these mole-
cules have shown health-benefiting biological activities
and are used as pharmaceuticals, such as the well-known
antibiotics penicillin and vancomycin. NRPs are synthe-
sized by modular NRPSs which consist of a series of

catalytic domains. The domain structure and specificity
of individual domains contribute to the chemical diver-
sity in NRPs. Many different NRPSs, from bacteria or
fungi, have been extensively investigated to understand
the biosynthetic mechanisms. Based on the mechanistic
studies, the enzymes can be engineered to create novel
products through genetic approaches, such as domain
swapping and active site modification [21]. Some re-
ported NRPSs were found to contain a MT domain that
is embedded in an A domain. In this work, we investi-
gated BSLS, an iterative fungal NRPS to understand how
embedding of the MT domain in an A domain affects
the biosynthetic process and how the substrate specifi-
city of MT is influenced by this unique structural
feature.
To probe the role of the MT domain of BSLS in bassia-

nolide biosynthesis, we removed this domain from BSLS.
The resulting enzyme BSLS-ΔMT only yielded the non-
methylated product N-desmethylbassianolide (Fig. 2a).

Fig. 4 In vitro methylation activity and substrate specificity of MTBSLS. a Methylation was tracked using a 3H-labeled methyl group (highlighted in
blue) from the co-substrate AdoMet. “R” represents amino acid side chain. b Concentration-dependent methylation rate of L-Phe-SNAC (blue
trace) and L-Leu-SNAC (orange trace) by isolated MTBSLS
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Similar results were obtained when we inactivated the MT
domain in BEAS (Fig. 2b), another fungal NRPS that
shares the same domain architecture. Thus, these results
revealed that embedding the MT domain is not essential
for the assembly of the NRP structures, nor is it necessary
for catalysis by other catalytic domains in these modular
NRPSs. A previous study on the N-MT activities of the
cyclosporine synthetase using N-methyltransferase inhibi-
tors revealed that a maximum of two desmethyl positions
can be tolerated by the enzyme. Further analyses revealed
that N-methylation of specific amide bond positions in the
cyclosporin backbone is required for the downstream do-
main [22]. This is different from what we observed for
BSLS, in which the assembly process can still proceed
even if all the three amide bonds are nonmethylated.
However, it was found that the yields of demethylated de-
rivatives were much lower than those of bassianolide and
beauvericins, suggesting that a methylated derivative of
the amino acid precursor is preferred by the C2 and C3

domains for elongation of the depsipeptide chain and final
cyclization.
We have previously dissected fungal NRPSs at differ-

ent positions and found that BSLS and BEAS are quite
flexible and co-expression of dissected fragments in the
yeast can recover the biosynthesis of bassianolide and
beauvericins [11, 15]. Similarly, we also found that the
biosynthetic capability of fungal nonreducing PKSs can
be restored when the truncated enzymes lacking the
product template (PT) domain were co-expressed with
the standalone PT in the yeast [23]. However, when we
co-expressed BSLS-MT or BEAS-G2131A with standa-
lone MT, no methylated products were detected. There-
fore, it can be concluded that natural embedding of a
functional MT domain in the A2 domain is required for
the synthesis of methylated NRPs.
The MT domain of BSLS was functionally charac-

terized by incubating it with aminoacyl-SNACs in the
presence of AdoMet (Fig. 3a), which yielded the

Fig. 5 Substrate specificity of MTBSLS constructs. a Various MTBSLS constructs that were evaluated. b Comparison of the preference of different
MTBSLS constructs to L-Phe-SNAC and L-Leu-SNAC. The ratio of methylated products formed from 5mM L-Phe-SNAC or 5 mM L-Leu-SNAC over a
10-min reaction time are plotted. The data for cMT and XLcMT represent two separate preparations of crosslinked protein, assayed in duplicate
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Fig. 6 Comparison of the MT domains of TioS and modeled BSLS. a A homology model for MTBSLS generated with the Swiss-Model server using
the MT-A structure from TioS(A4aM4A4b) (pdb ID 5wmm). Sequence identity between the core of MT4TioS and MTBSLS is 32%. For context purposes,
the A domain of TioS is shown in light gray. The generated model of MTBSLS is shown in blue. The active site was identified by aligning the TioS
structure (which contained S-adenosylhomocysteine, shown in green) with the MTBSLS model. The N- and C-termini of MTBSLS are shown in
orange and magenta spheres, respectively. b The active site residues of the MT domain in TioS(A4aM4A4b) (pdb ID 5wmm) that are proposed to
interact with the valine side chain (magenta) of the enzyme-bound substrate (G525, W526, M540, W543, S632, Q635, D664, R666, and L738,
shown in blue). The N-methylated product of the reaction (methyl group in green) was modeled into the active site [4]. c Residues in
TioS(A4aM4A4b) that interact with the substrate amino acid are conserved (yellow) in MTBSLS
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corresponding N-methylated products. Aminoacyl-
SNACs were used to mimic the natural T-tethered
substrates. A series of MT constructs, including BSLS,
MTBSLS, cMT, XLcMT, and aMT, were tested to com-
pare the substrate specificity. The results show that
the substrate specificity of MTBSLS is modified by in-
sertion into the A2 domain of BSLS. Among the five
constructs, MTBSLS showed a much higher methyla-
tion rate with L-Phe-SNAC than with L-Leu-SNAC.
cMT showed a lower ratio of methylation of L-Phe-
SNAC/L-Leu-SNAC, followed by XLcMT. This sug-
gests that restricting both termini of the isolated MT
increases the preference of this domain toward L-
Leu-SNAC. aMT possessed a substrate specificity
similar to the megaenzyme BSLS, likely due to its
structural similarity to the megaenzyme (Additional
file 1: Figure S8), further supporting that natural em-
bedding of MT in the A2 domain is critical to narrow
down the substrate specificity of the MT domain.
Our data suggest that altered substrate specificity is
mechanistically achieved by fixing the N- and/or C-
terminus of the MTBSLS. The somewhat relaxed sub-
strate specificity of the isolated MTBSLS suggests that
this MT may be engineered to provide methylation of
a variety of amino acids in designer NRPS systems.
Embedding the MT could be used to afford selective
methylation to the desired amino acid.
Our results also suggest a rationale for why the MT

domain in this NRPS is embedded in the A domain in-
stead of positioned as an end-on-end modifying unit or
as a separate polypeptide. BSLS synthesizes both

bassianolide (Leu-containing) and beauvericins (Phe-
containing) in ~ 5:1 ratio when expressed recombinantly
in yeast [15]. This indicates that the A domain of BSLS
is promiscuous and can activate both L-Leu and L-Phe.
However, the MT domain showed a preference for L-
Phe-SNAC over L-Leu-SNAC (Fig. 5B) and thus appears
to be more promiscuous than the A domain. Embedding
the MT tunes the activity of the MT domain against L-
Phe, perhaps acting as a secondary gatekeeper. In natur-
ally occurring NRPS systems, it may suggest that MT
genes could be swapped/usurped from non-optimal
NRPS clusters. Additionally, although the methyl group
is not a necessary recognition element for the synthesis
of bassianolide/beauvericin (deletion of the MT domain
gave rise to a desmethyl product), the fact that we saw
no evidence of transmethylation suggests that embed-
ding the MT helps to ensure capture and methylation of
the amino acid en route to formation of the NRP
product.

Conclusions
In conclusion, we investigated the role of the MT do-
main in NRP biosynthesis and how its substrate specifi-
city is affected by protein insertion. The MT domain of
BSLS methylates the T-tethered amino acid precursors
selected and activated by the A domain. The embedding
of a functional MT domain in the A domain is not re-
quired for the biosynthesis of the NRP products, but is
very critical for the overall efficiency of the assembly
line. The substrate specificity of MT is significantly af-
fected by the protein context within which it is present.
While A domains are known to be responsible for select-
ing and activating the biosynthetic precursors for NRPS
systems, our results suggest that embedding the MT acts
as a secondary gatekeeper for the assembly line. This
work thus provides new insights into the embedded MT
domain in NRPSs, which will facilitate further engineer-
ing of this type of biosynthetic machinery to create
structural diversity in natural products.

Methods
General methods and materials
Products were analyzed on an Agilent 1200 high per-
formance liquid chromatography (HPLC) instrument.
Mass spectra of the compounds were collected by the
HPLC coupled with an Agilent 6130 Single Quad mass
spectrometer. 1H NMR data spectra were acquired on a
JEOL instrument (300MHz). High fidelity DNA poly-
merase, T4 DNA ligase, restriction enzymes and protein
ladder were purchased from New England Biolabs.
Other chemicals were purchased from Fisher Scientific.
B. bassiana ATCC 7159 was obtained from American
Type Culture Collection (ATCC). S. cerevisiae BJ5464-
NpgA (MAT ura3–52 his3–200 leu2–1 trp1 pep4::HIS3

Fig. 7 Crosslinking of cMTBSLS. Pre-reduced and desalted proteins
(20 μM cMTBSLS or MTBSLS as a control) were incubated with 20 μM
bis-maleimidoethane or buffer. Free thiol content in the proteins
was assessed by quenching samples with 5-fluorosceinyl-maleimide
(5F) prior to SDS-PAGE. Gels were imaged for fluorescence and then
stained with Coomassie and imaged for total protein. The bands
labeled with an asterisk represent crosslinked cMT (XLcMT)

Xu et al. Journal of Biological Engineering           (2019) 13:65 Page 9 of 14



prb1 1.6R can1 GAL) was used as a host for heterol-
ogous expression, which was a gift from Dr. Nancy Da
Silva at the University of California, Irvine. E. coli XL1-
Blue and RIL were purchased from Stratagene for rou-
tine cloning and protein expression, respectively.

Synthesis of NAC
2.28 g cysteamine hydrochloride (20.0 mmol, 1.0 eq.),
1.12 g KOH (20.0 mmol, 1.0 eq.) and 5.04 g NaHCO3

(60.0 mmol, 3.0 eq.) were dissolved in 100 mL of water.
To the solution was dropwise added 1.9 mL of acetic an-
hydride (20.0 mmol, 1.0 eq.). The mixture was stirred at
room temperature for 10 min. After adjusting the pH
value to 7.3 by concentrated HCl, the resulting mixture
was extracted with ethyl acetate (100 mL × 3). The com-
bined organic extract was dried by anhydrous MgSO4,
filtered and concentrated in vacuo to give N-acetylcys-
teamine (NAC). 1H NMR (300MHz, CDCl3): δ 5.92
(1H, br s), 3.42 (2H, q, J = 8.2 Hz), 2.67 (2H, m), 1.97
(3H, s), 1.35 (1H, t, J = 8.2 Hz).

Synthesis of aminoacyl-SNACs
Each tert-butyloxycarbonyl (Boc)-L-amino acid (1 mmol,
1.0 eq.), N,N′-dicyclohexylcarbodiimide (1 mmol, 1.0 eq.)
and hydroxybenzotriazole (1 mmol, 1.0 eq.) were dis-
solved in 15 mL of trifluoroacetic acid (TFA), followed
by adding 106 μL of NAC (1mmol, 1.0 eq.). After stir-
ring the resulting solution for 45 min at room
temperature, 69.1 mg K2CO3 (0.5 mmol, 0.5 eq.) was
added and the reaction mixture stirred for 3 h at room
temperature. After filtered, the solvent was removed in
vacuo. The residue dissolved in ethyl acetate and washed
once with one volume of 10% aqueous NaHCO3. The
organic layer was dried by anhydrous MgSO4, filtered
and concentrated in vacuo. The crude product was sub-
jected to silica gel column chromatography, eluted with
4% (v/v) MeOH-CHCl3, to afford Boc-aminoacyl-
SNACs. The Boc group was removed by dissolving the
Boc-aminoacyl-SNAC in 50% TFA/CH2Cl2 and stirring
at room temperature for 1 h. After evaporation of the
solvents, the residue was taken up in a minimal volume
of CH2Cl2 and precipitated with ether. The resulting
solid was washed twice with ether and dried to afford
the aminoacyl-SNACs. These synthetic SNAC derivatives
were dissolved in deuterated dimethyl sulfoxide (DMSO-
d6) and their 1H NMR spectra were collected. The
chemical shift (δ) values are given in parts per million
(ppm). The coupling constants (J values) are presented
in hertz (Hz).
Boc-L-Leu-SNAC: 1H NMR (300MHz, DMSO-d6): δ

7.97 (1H, br t, J = 5.5 Hz), 7.55 (1H, d, J = 7.9 Hz), 4.01
(1H, m), 3.10 (2H, m), 2.83 (2H, m), 1.75 (3H, s), 1.69
(1H, m), 1.59 (1H, m), 1.44 (1H, m), 1.37 (9H, s), 0.83
(3H, d, J = 6.5 Hz), 0.79 (3H, d, J = 6.5 Hz).

L-Leu-SNAC: 1H NMR (300MHz, DMSO-d6): δ 8.58
(2H, br s), 8.11 (1H, br t, J = 5.5 Hz), 4.11 (1H, t, J = 6.9
Hz), 3.20 (2H, q, J = 6.5 Hz), 3.02 (2H, m), 1.77 (3H, s),
1.75 (1H, m), 1.61 (2H, t, J = 7.0 Hz), 0.88 (6H, d, J = 6.5
Hz); ESI-MS: [M +H]+ m/z 233.1.
Boc-L-Ile-SNAC: 1H NMR (300MHz, DMSO-d6): δ 7.98

(1H, m), 7.50 (1H, d, J = 8.3Hz), 3.90 (1H, dd, J = 7.9, 6.8
Hz), 3.12 (2H, m), 2.83 (2H, m), 1.75 (3H, s), 1.71 (1H, m),
1.52 (1H, m), 1.37 (9H, s), 1.18 (1H, m), 0.80 (3H, d, J = 6.8
Hz), 0.77 (3H, t, J = 7.0Hz).
L-Ile-SNAC: 1H NMR (300MHz, DMSO-d6): δ 8.42

(2H, br s), 8.06 (1H, br t, J = 5.5 Hz), 4.16 (1H, d, J = 4.1
Hz), 3.20 (2H, m), 3.02 (2H, m), 1.87 (1H, m), 1.76 (3H,
s), 1.43 (1H, m), 1.22 (1H, m), 0.91 (3H, d, J = 6.9 Hz),
0.86 (3H, t, J = 7.4 Hz); ESI-MS: [M +H]+ m/z 233.1.
Boc-L-Val-SNAC: 1H NMR (300MHz, DMSO-d6): δ 7.98

(1H, m), 7.49 (1H, d, J = 8.2Hz), 3.87 (1H, dd, J = 8.3, 6.5
Hz), 3.12 (2H, m), 2.83 (2H, m), 2.04 (1H, m), 1.75 (3H, s),
1.38 (9H, s), 0.83 (6H, d, J = 6.9Hz).
L-Val-SNAC: 1H NMR (300MHz, DMSO-d6): δ 8.43

(2H, br s), 8.07 (1H, br t, J = 5.1 Hz), 4.12 (1H, d, J = 4.8
Hz), 3.20 (2H, m), 3.02 (2H, m), 2.16 (1H, m), 1.76 (3H,
s), 0.96 (3H, d, J = 6.9 Hz), 0.92 (3H, d, J = 7.2 Hz). ESI-
MS: [M +H]+ m/z 219.1.
Boc-L-Phe-SNAC: 1H NMR (300MHz, DMSO-d6): δ 8.02

(1H, m), 7.62 (1H, d, J= 8.2Hz), 7.22 (5H, m), 4.21 (1H, m),
3.13 (2H, m), 3.03 (1H, dd, J= 14.2, 4.3Hz), 2.84 (2H, m),
2.76 (1H, dd, J= 14.2, 10.6Hz), 1.76 (3H, s), 1.29 (9H, s).
L-Phe-SNAC: 1H NMR (300MHz, DMSO-d6): δ 8.52

(2H, m), 8.01 (1H, t, J = 5.2 Hz), 7.25 (5H, m), 4.47 (1H,
t, J = 6.9 Hz), 3.10 (4H, m), 2.95 (2H, m), 1.77 (3H, s).
ESI-MS: [M +H]+ m/z 267.2.

Construction of expression plasmids
The cloning vector pJET1.2 (ThermoFisher Scientific)
was used for general cloning. pET28a (Novagen) was
used for protein expression in E. coli. The E. coli/S.
cerevisiae shuttle vectors YEpADH2p-URA3 and
YEpADH2p-TRP1 were used for expression or co-ex-
pression experiments in S. cerevisiae BJ5464-NpgA.
To construct BSLS-ΔMT in a yeast expression vector,

we used pDY42 [12] as the starting plasmid. Our cloning
strategy was to work on the fragment from the Bsu36I
site (5518) to the C-terminal end (9441). Two pairs of
primers, BSLS-Bsu36I5518-F/BSLS-without-MT-R and
BSLS-without-MT-F/2nd-BSLS-B-R-PmlI (Table 1),
were used to perform SOE PCR to amplify a fragment
without the MT domain, which was ligated to pJET1.2
to yield pDY254 (Table 2). After the plasmid was verified
by sequencing, this fragment was excised by Bsu36I and
PmlI and used to replace the original fragment from the
5518 to the end of bsls in pDY42 between the same sites,
yielding pDY265 (Table 2).
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The YEpADH2p-URA3 derived beas-harboring plas-
mid pDY37 [12] was used as the template for PCR with
a pair of primers, BEAS-S2131A-F and BEAS-S2131A-R
(Table 1). The mutated nucleotide was included in
BEAS-S2131A-F. The PCR product was treated with
DpnI at 37 °C for 24 h to digest the template. T4 DNA
ligase was then added to ligate the PCR product, which
was then introduced into E. coli XL-Blue through chem-
ical transformation. Correct clones were selected by
ampicillin resistance and confirmed by digestion check
and sequencing. The correct BEAS-G2131A plasmid
was named pDY170 (Table 2).

The gene encoding the MT domain of BSLS was
amplified via PCR from the genomic DNA of B.
bassiana using primers MTBSLS-F-NheI and MTBSLS-
R-EcoRI (Table 1). The PCR product was ligated into
pJET1.2 and introduced into E. coli XL1-Blue to af-
ford pZJ135 (Table 2). pZJ135 was digested with NheI
and EcoRI, and the fragment was ligated into pET28a
between the corresponding restriction sites to yield
pJCZ22 (Table 2). The same MT domain was ampli-
fied with MTBSLS-F-NdeI and MTBSLS-R-PmeI and li-
gated into pJET1.2 to yield pFC30 (Table 2). The
gene fragment was then excised using NdeI and PmeI

Table 1 Primers used in this study

Primer Sequence Restriction sites

BEAS-S2131A-F 5′-CCTGGAGATTGGAACCGCTACAGGTATGATCTTGTT-3′ None

BEAS-S2131A-R 5′-ACATGCCCCGGTACATGACCGTCGCGTAGAGTAT-3′ None

BSLS-Bsu36I5518-F 5′-AACCTCAGGATGCTGTCGATGCG-3′ Bsu36I

BSLS-without-MT-R 5′-CACCGCCACACGTCGCTTTTCCGCAACCACAAATCCG-3′ None

BSLS-without-MT-F 5′-CGGATTTGTGGTTGCGGAAAAGCGACGTGTGGCGGTG-3′ None

2nd-BSLS-B-R-PmlI 5′-AACACGTGTAAAGACGCATTCAAAGCCT-3′ PmlI

MTBSLS-F-NheI 5′-AAGCTAGCCACGACGACACTGCCGAACA-3′ NheI

MTBSLS-R-EcoRI 5′-AAGAATTCTCACTGAAGTCGCTGGAGAGGTT-3′ EcoRI

MTBSLS-F-NdeI 5′-AACATATGCACGACGACACTGCCGAACA-3′ NdeI

MTBSLS-R-PmeI 5′-AAGTTTAAACTCACTGAAGTCGCTGGAGAGGTT-3′ PmeI

MTBEAS-F-NdeI 5′-AACATATGGCTGACGATGCCGTTGAGCA-3′ NdeI

MTBEAS-R-PmeI 5′-AAGTTTAAACCTGCAGCCGCTGCAGCGGCC-3′ PmeI

aMTBSLS-F-SpeI 5′-AAACTAGTCAATTCAAGATTCGAAGTAACCGCATC-3′ SpeI

aMTBSLS-R-EcoRI 5′-AAAGAATTCTCACGCCACAATGTGGGAAG-3′ EcoRI

cMTBSLS-F-NheI 5′- AAAGCTAGCTGCGTTGCGGAACACG-3′ NheI

cMTBSLS-R-EcoRI 5′-TTTGAATTCTCAGCACTGGAGAGGTTGATTGGTGAG-3′ EcoRI

Table 2 Plasmids used in this study

Plasmid Description Restriction sites Source

pDY37 beas in YEpADH2p-URA3 NheI and PmlI [12]

pDY42 bsls in YEpADH2p-URA3 NdeI and PmlI [12]

pDY170 beas-G2131A in YEpADH2p-URA3 NheI and PmlI This work

pDY254 bsls(5818–9438)-Δmt in pJET1.2 Bsu36I and PmlI This work

pDY265 bsls-Δmt in YEpADH2p-URA3 Bsu36I and PmlI This work

pDY267 MTBEAS in pJET1.2 NdeI and PmeI This work

pDY268 MTBEAS in YEpADH2p-TRP1 NdeI and PmeI This work

pFC30 MTBSLS in pJET1.2 NdeI and PmeI This work

pFC31 MTBSLS in YEpADH2p-TRP1 NdeI and PmeI This work

pZJ135 MTBSLS in pJET1.2 NheI and EcoRI This work

pJCZ22 MTBSLS in pET28a NheI and EcoRI This work

paMTBSLS aMTBSLS in pET28a (a small portion of the A2 domain+MT of BSLS) NheI and EcoRI This work

pcMTBSLS cMTBSLS in pET28a (MT of BSLS containing an additional cysteine
residue at both the N- and C-termini of the MT domain)

NheI and EcoRI This work
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and ligated into YEpADH2p-TRP1 between the same
sites to yield pFC31 (Table 2). Similarly, the MT do-
main of BEAS was amplified with MTBEAS-F-NdeI
and MTBEAS-R-PmeI and ligated into pJET1.2 to af-
ford pDY267 (Table 2). The MTBEAS gene fragment
was excised from pDY267 using NdeI and PmeI and
ligated into YEpADH2p-TRP1 between the same sites
to yield pDY268 (Table 2).
The gene for the aMTBSLS construct, which also con-

tains the small fragment of the A2 domain, was ampli-
fied using primers aMTBSLS-F-SpeI and aMTBSLS-R-
EcoRI (Table 1). The digested PCR product was ligated
into NheI/EcoRI digested pET28a to yield paMTBSLS
(Table 2). The gene for the cMTBSLS construct, which
contains an additional cysteine residue at both the N-
and C-termini, was amplified using primers cMTBSLS-F-
NheI and cMTBSLS-R-EcoRI. The digested PCR product
was ligated into pET28a between the NheI and EcoRI
sites to yield pcMTBSLS (Table 2). All plasmids were
verified by DNA sequencing.

Expression and purification of MT constructs
The 348 kDa BSLS was expressed in S. cerevisiae
BJ5464-NpgA/pDY42 (Table 2) and purified using Ni-
NTA chromatography as described in our previous work
[11]. To purify MTBSLS, pJCZ22 was introduced into E.
coli RIL. The resulting strain was grown at 37 °C in
Luria-Bertani (LB) medium supplemented with 35 μg
mL− 1 kanamycin and 25 μg mL− 1 chloramphenical to an
OD600 of 0.4–0.6, and induced by 200 μM isopropyl-1-
thio-β-D-galactoside (IPTG) for 16 h at 28 °C. The cells
were harvested by centrifugation at 3,500 rpm for 10
min, re-suspended in 30 mL of cold lysis buffer [20 mM
Tris-HCl (pH 7.9), 0.5M NaCl, pH 7.9] and sonicated on
ice. Cellular debris was removed by centrifugation at 20,
000 rpm for 30 min at 4 °C. Ni-NTA agarose resin (Qia-
gen) was added to the supernatant (4 mL L− 1 of culture)
and the mixture was shaken at 4 °C for 4 h to ensure the
His6-tagged protein was well absorbed. The protein resin
mixture was loaded into a gravity flow column and pro-
tein was purified with an increasing concentration of
imidazole in buffer A [50 mM Tris-HCl, pH 7.9, 2 mM
ethylenediaminetetraacetic acid (EDTA), 1 mM dithio-
threitol (DTT) and 0.2 mM phenylmethylsulfonyl fluor-
ide (PMSF)]. The purified MTBSLS was concentrated and
washed with 50mM Tris-HCl buffer (pH 7.9) by Centri-
prep filter devices (Amicon Inc.).
The cMTBSLS and aMTBSLS proteins were expressed in

E. coli RIL cells with 200 μM IPTG for 24 h at 16 °C.
Cells were resuspended in the lysis buffer, lysed by son-
ication, and centrifuged as noted above. Clarified lysate
was incubated with Goldbio Nickel resin (0.5 mL resin/g
of cells) for 4 h while shaking at 4 °C. The nickel resin
was batch-washed and the desired proteins eluted with a

stepped imidazole gradient. An additional anion ex-
change step (MonoQ) was required to purify the
aMTBSLS construct. Protein purity was evaluated by so-
dium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE). Selected fractions were pooled and con-
centrated in a 30 K MWCO Millipore spin concentrator
that was also used to exchange the buffer (50 mM Tris-
HCl, 150 mM NaCl, 2 mM β-mercaptoethanol, 5% gly-
cerol, pH 7.5). Proteins were frozen in liquid nitrogen
and stored at − 80 °C.

Production of N-desmethylated NRPs using engineered
yeast strains
pDY265 and pDY170 were respectively transferred into
S. cerevisiae BJ5464-NpgA. The strains were grown in
SC-URA medium as described in our previous work
[12]. The products were extracted with ethyl acetate
and analyzed by LC-MS using a Zorbax SB-C18 re-
versed-phase column (5 μm, 150 mm × 4.6 mm) at 210
nm, washed with a gradient of methanol-water (80 to
100% over 20 min) at a flow rate of 1 mLmin− 1. The
demethylated derivative of beauvericin was isolated by
HPLC from 1 L of culture of S. cerevisiae BJ5464-
NpgA/pDY170 for NMR analysis (Additional file 1:
Figures S2-S4).
For co-expression of an isolated MT domain with

BSLS-ΔMT or BEAS-G2121A, pFC31 and pDY265, or
pDY268 and pDY170, were co-transferred into S.
cerevisiae BJ5464-NpgA. The strains were grown in
SC-URA-TRP medium, and the products were ex-
tracted and analyzed as described above.

LC-MS identification of methylated products of aminoacyl
SNACs
A typical methylation assay mixture (100 μL) consisted
of 6.4 μM MTBSLS, 0.8 mM aminoacyl-SNAC, and 2.4
mM AdoMet in 100 mM Tris-HCl buffer (pH 7.5). The
reaction mixtures were incubated at 25 °C for 30 min
and then quenched with MeOH (50 μL). Substrate con-
trols included all the components except MTBSLS. The
mixtures were briefly vortexed and centrifuged at 15,
000 rpm for 5 min to remove the precipitated protein be-
fore the samples were injected into LC-MS for analysis.
The supernatants were analyzed on an Agilent Single
Quad LC-MS by using a Zorbax SB-C18 reversed-phase
column (5 μm, 150 mm × 4.6 mm) at 235 nm, eluted with
a solvent gradient of increasing acetonitrile (10–15%) in
H2O containing 0.1% trifluoroacetic acid with a flow rate
of 1 mLmin− 1.

Quantification of the activity of the MT domains
Methyltransferase activity was quantified using a radio-
metric approach. Methylation reactions were conducted
in 50mM Na2HPO4, [pH 7.5], 100 μM AdoMet (99 μM
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unlabeled AdoMet and 1 μM S-[methyl-3H]-AdoMet
(PerkinElmer Life Sciences; stock solution of 5–10mM
(~ 75 Ci/mmol) in 10 mM H2SO4/EtOH (9,1, v/v)) and
1.5 μM enzyme in a total volume of 25 μL. The reactions
were initiated with amino acyl-SNAC substrates at vary-
ing concentrations as indicated in the figures and incu-
bated at 25 °C. Aliquots (10 μL) at various times were
removed from the reaction and placed in 20 μL of 1M
Tris-HCl buffer (pH 9.8) and immediately diluted by the
addition of 200 μL of H2O. The N-methylated product
was extracted using 400 μL of ethyl acetate. Half the or-
ganic layer was added to 4.8 mL of scintillation cocktail
and the radioactivity present quantified using scintilla-
tion counting.

Crosslinking of methyltransferases
Proteins undergoing crosslinking were first pre-reduced
with 1 mM DTT for 20min and rapidly desalted using
Zebaspin columns (Pierce). Crosslinking was accom-
plished by incubating 20 μM protein (cMTBSLS, or
MTBSLS as a control) with 20 μM bis-maleimidoethane
(BMOE) on ice for 1 h. For gel analyses, samples were
either treated with 5-fluorosceinyl-maleimide (5F) in
SDS sample buffer lacking β-mercaptoethanol for 10
min, followed by a DTT quench step, or were treated
with SDS sample buffer containing β-mercaptoethanol
for 10 min, followed by a DTT quench step. SDS-gels
were first imaged for fluorescence resulting from the co-
valent addition of 5F to free thiols and then stained with
Coommassie. The per cent of desired crosslinking (noted
by the asterisk in Fig. 7) was estimated at 85–90% by
taking the intensity of the desired band (measured by
densitometry) divided by the total intensity of all bands
in the lane. For crosslinking prior to activity measure-
ments, cMTBSLS was pre-reduced and incubated in the
presence and absence (control) of the BMOE crosslinker
as described above. After 1 h the reactions were
quenched with 2 mM DTT and desalted using Zebaspin
columns.

Additional file

Additional file 1: Figure S1. ESI-MS (+) spectra of the demethylated
nonribosomal peptides. (A) N-Desmethylbassianolide. (B) N-
Desmethylbeauvericin. (C) N-Desmethylbeauvericin A. (D) N-
Desmethylbeauvericin B. Figure S2. 1H NMR spectrum of N-
desmethylbeauvericin. Figure S3. 13C NMR spectrum of N-desmethylbeauvericin.
Figure S4. Selected 1H-1H COSY and HMBC corrections for N-
desmethylbeauvericin. Figure S5. HPLC analysis (210 nm) of products from the
co-expression of isolated MT domain with MT-removed BSLS/MT-inactivated
BEAS in S. cerevisiae. (A) Co-expression of MT(BSLS) with BSLS-ΔMT. (B) Co-
expression of MT(BEAS) with BEAS-G2131A. Figure S6. ESI-MS(+) spectrum of the
N-methylated products of L-Ile-SNAC (A) and L-Val-SNAC. Figure S7. Location of
residues in MTBSLS that are proposed to interact with the amino acid substrate.
The active site residues (red) of the MT domain in TioS(A4aM4A4b) (pdb ID
5wmm) (gray) that are proposed to interact with the valine side chain (magenta)
of the enzyme-bound substrate (G525, W526, M540, W543, S632, Q635, D664,

R666, and L738) were mapped onto the homology model of MTBSLS (blue, with
limon amino acid side chains). AdoHcy is shown in green and the tethered
substrate for TioS(A4aM4A4b) is shown in dark gray. Figure S8. Architecture of the
aMT construct. Adenylation domains consist of one polypeptide containing a
large subunit (light gray) and a small subunit (dark gray). The active site exists
between the two subunits. The “aMT” construct used in these studies contains
the entire MT domain and the small subunit of the adenylation domain.
Figure 6a was used in the preparation of this figure. (DOCX 1951 kb)
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