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Abstract

Traditional therapeutics and vaccines represent the bedrock of modern medicine, where isolated biochemical
molecules or designed proteins have led to success in treating and preventing diseases. However, several adaptive
pathogens, such as multidrug-resistant (MDR) superbugs, and rapidly evolving diseases, such as cancer, can evade
such molecules very effectively. This poses an important problem since the rapid emergence of multidrug-
resistance among microbes is one of the most pressing public health crises of our time—one that could claim
more than 10 million lives and 100 trillion dollars annually by 2050. Several non-traditional antibiotics are now
being developed that can survive in the face of adaptive drug resistance. One such versatile strategy is redox
perturbation using quantum dot (QD) therapeutics. While redox molecules are nominally used by cells for
intracellular signaling and other functions, specific generation of such species exogenously, using an
electromagnetic stimulus (light, sound, magnetic field), can specifically kill the cells most vulnerable to such species.
For example, recently QD therapeutics have shown tremendous promise by specifically generating superoxide
intracellularly (using light as a trigger) to selectively eliminate a wide range of MDR pathogens. While the efficacy of
such QD therapeutics was shown using in vitro studies, several apparent contradictions exist regarding QD safety
and potential for clinical applications. In this review, we outline the design rules for creating specific QD therapies
for redox perturbation; summarize the parameters for choosing appropriate materials, size, and capping ligands to
ensure their facile clearance; and highlight a potential path forward towards developing this new class of radical
QD therapeutics.
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Introduction
Reduction and oxidation reactions form the core of most
significant processes in biology, where the majority of bio-
logical interactions, signaling, and basic cellular biology
involves either a gain or loss of electrons or ionic species/
radicals [1]. Most prominently, many redox species are
regulatory and believed to be used for molecular signaling
and as activators of stress response [2–6]. Others, how-
ever, can cause indiscriminate oxidative damage and dys-
function [7–12]. Chemical reactions such as Fenton
chemistry [13], enzymatic conversions, and disproportion-
ation [14], can convert these species into others–such as
the conversion of superoxide into hydrogen peroxide,

hydroxyl radicals, and peroxynitrite ions [13, 15, 16].
Therefore, careful choice of desired biological targets,
mechanistic insights into redox species and their outcome
inside a cell, and precise control over their intracellular
generation can provide a vital tool for precision or specific
killing of cellular species vulnerable to a chosen redox per-
turbation, that can be triggered by stimuli to act as a
therapeutic.

Designing for a “radical” approach
While many traditional antibiotics have suffered failure
against adaptive resistance, a versatile approach to ad-
dress this dynamic problem is emerging. Where trad-
itional small-molecule antimicrobials struggled with
transport into gram-negative pathogen cell walls,
nanoparticle-based therapeutics have shown remarkable
stability, ease of delivery, and facile transport through
cell walls due to their small size [17–21]. Once inside
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the cell, the nanoparticle or QD therapy can make use of
the presence of oxygen, water, and if required, an exter-
nal trigger. Therefore a wide range of reactive oxygen
species (ROS, e.g. superoxide O2

●-, hydroxyl OH●, sing-
let oxygen 1O2, and hydrogen peroxide H2O2) and react-
ive nitrogen species (RNS, e.g. nitric oxide NO●,
peroxynitrite ONOO−) can be formed intracellularly
using redox chemistry. Since these species are respon-
sible for a broad range of physiology and pathology in
living organisms [22, 23], they have been investigated for
such potential applications as cancer therapies and novel
antimicrobials. Therefore, specific intracellular gener-
ation of these species can drastically affect the specificity
of ROS/RNS therapy using the proposed redox
perturbation.
Recently, our group assessed these different ROS and

RNS species as potential therapeutics [24]. Using these
species intracellularly, we determined their respective
minimum inhibitory concentration (MIC) values. We
found a bactericidal effect for several species at high
threshold concentrations (singlet oxygen: 1mM; peroxide:
10mM; hydroxyl radical > 10mM; nitric oxide > 1mM,
Fig. 1) [24, 25], where these redox species would be toxic
even for host mammalian cells [26–28]. However,

superoxide was found to be a potent bactericidal at low
nanomolar doses—killing a range of multidrug-resistant
(MDR) pathogens without affecting the viability or growth
of host mammalian cells in in vitro measurements [19, 20,
24, 29]. This difference in nanotherapeutic toxicity be-
tween host and the targeted pathogen is important for de-
signing the safest possible treatment. Biological
specificity enables a treatment to effectively clear in-
fections while preserving the host cells. Although the
superoxide anion has a high thermodynamic capacity
to be a strong oxidant, its lack of reactivity with cel-
lular components at physiological pH (largely due to
electrostatic repulsion with negatively charged biomo-
lecules)--except for the inactivation of biosynthetic
enzymes containing labile iron-sulfur clusters--is key
to its selectivity [25, 30]. Further, the role of iron se-
questration in host colonization makes pathogenic
bacteria particularly vulnerable to superoxide com-
pared to hosts [31, 32]. Therefore, while several ROS
species like hydroxyl radicals are indiscriminate oxi-
dants and can readily oxidize proteins, lipids, and nu-
cleic acids [8, 33], prior studies and our experiments
indicate specificity in the of superoxide anions [19,
20, 24, 29, 34, 35]. Given the specificity of

Fig. 1 Identifying pathogen vulnerability using redox perturbation with different ROS. Compared to singlet oxygen and hydroxyl radicals,
superoxide and peroxide have much longer diffusion lengths and half-lives in the cellular environment (red circles, not to scale) [24, 82]. Singlet
oxygen and hydroxyl radicals are also more nonselective – they react rapidly with an abundance of endogenous biomolecules. Superoxide is
more selective, partly due to its negative charge, and it reacts with very particular consequential cellular targets such as iron-sulfur clusters [25].
The endogenous bacterial defense against superoxide is less abundant than the defense against nonselective ROS. This leads to a drastically
lower observed toxicity threshold when compared to other species [24]. Unlike other ROS, superoxide offers a large window of dosage that yields
toxicity in pathogens and nontoxicity in hosts [19, 24]
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superoxide’s mechanism of action, the low MIC value
for pathogens and higher tolerance in host mamma-
lian cells, its long lifetime and large diffusion length
make it an ideal candidate for selective redox therapy.

Selective redox activation using quantum states
QDs, or semiconductor nanocrystals, have size-, shape-,
and composition-tunable quantum states for reduction
and oxidation reactions. These states can be triggered by
external electromagnetic radiation like light, and have
demonstrated a promising role in non-traditional redox
therapy [17–20, 24, 29]. Precise control over their
photogenerated electron and hole states provides a
unique ability to tailor their photochemistry in the cellu-
lar environment, thereby providing control over intracel-
lular redox species. As the first step towards designing
an effective QD therapeutic, we assessed a range of dif-
ferent materials, along with their corresponding (bulk)
reduction and oxidation states (Fig. 2a). To select for
specific intracellular generation of superoxide, the reduc-
tion potential should exceed − 0.33 V on normal hydro-
gen electrode (NHE) scale. Simultaneously, to avoid the
formation of other non-specific ROS species that can
cause indiscriminate cell damage, the oxidation potential
should be less than 1.8 V NHE. Using this metric as a se-
lection criterion for selective redox antimicrobial ther-
apy, and classifying the materials on the basis of their

nominal (bulk) bandgap values, we obtained a list of ‘fa-
vorable’ materials for the proposed QD nanotherapy.
Keeping in mind the extinction of light as it enters the
skin considering the most common constituents as
water, hemoglobin, melanin, etc. [20, 36, 37], there is a
window of nominal biological transparency (~ 800–1300
nm wavelength), which narrows the material and band-
gap considerations further (Fig. 2b-d). Materials which
absorb violet and UV light are less suitable for QD
nanotherapy—such short wavelengths of light will be
quickly scattered or absorbed near the surface of animal
tissue. This lack of penetration would make it extremely
challenging to use wide-bandgap materials to treat sys-
temic infections. Red and near-infrared absorbing QDs
would be far less susceptible to this issue. Therefore,
near-infrared materials like cadmium telluride (CdTe)
[19, 20, 24, 29], copper indium sulfide (CIS2) [19], in-
dium phosphide (InP), and gallium arsenide (GaAs)
could serve as good candidates for selective antimicro-
bial, material stability, cytotoxicity, and surfaces [17, 18].
Using dopants and bandgap engineering, it is also pos-
sible to improve the suitability of some other materials.
For instance, carbon QDs and silicon QDs have many
reported biological applications in bio-imaging, cancer
therapy, as well as some reports describing ROS-medi-
ated therapy [38–41]. Depending on particle size and
dopants,the optical properties of these materials can be

Fig. 2 Criteria for material selection for QD therapeutic against MDR superbugs. a) Conduction band (red) and valence band (blue) positions for
select semiconductors in bulk, according to references cited in reviews herein [83, 84]. Band edge positions shown in relation to thresholds for
superoxide (green) and hydroxyl radical (red) generation. Many of these materials only absorb ultraviolet light or are unable to generate superoxide. b)
By applying rational constraints to this list of materials, we can narrow this (non-exhaustive) list of candidates. c) These candidates could potentially
generate therapeutic superoxide using visible or NIR light, which penetrates deeper through tissue than UV (d), reproduced with permission from the
American Chemical Society37
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specifically tailored to decrease the energy of light re-
quired for photoactivation [42]. The same approach can
also be extended to metal oxide materials.
Due to several contradictory reports of ROS gener-

ation and potential “therapeutic” action of two
FDA-approved materials, zinc oxide (ZnO) and titanium
dioxide (TiO2) QDs and nanoparticles [43–49], we eval-
uated their redox properties and demonstrated bandgap
and redox state engineering approach proposed in this
review. First, unmodified or undoped ZnO and TiO2

nanoparticles were tested using electron paramagnetic
resonance (EPR) spectroscopy technique. In order to
evaluate the short-lived radical species formed from
redox chemistry, we used a spin-trapping method to
form more stable adducts. Both ZnO and TiO2 nanopar-
ticles showed only hydroxyl radical formation upon exci-
tation with ultraviolet light above their bandgap
(Fig. 3a,b). This would be problematic for potential
nanotherapy because both ultraviolet light and hydroxyl
radicals are indiscriminately toxic to all cells. Careful
electrochemical measurements revealed that, while the
ZnO reduction potential is too low for superoxide for-
mation, its oxidation potential is very high—leading to
hydroxyl generation upon light activation (Fig. 3c,e).
Therefore, even if ZnO nanoparticles were doped with a
cation (to reduce the nominal reduction potential) or
anion (to reduce the oxidation potential), the visible light
absorbing nanoparticles still could not form superoxide
(Fig. 3e,g). This was further confirmed via electrochem-
ical measurements by removing oxygen, where direct
hole-injection into water leads to the formation of hy-
droxyl radical (Fig. 3c). Evaluation of TiO2 nanoparticles
showed more promising results, however. While the
oxidation potential of undoped TiO2 was too high, the
reduction potential was suitably matched for superoxide
formation (Fig. 3d, f ). Therefore, anion-doped TiO2

nanoparticles, in principle, should form therapeutic
superoxide. However, the presence of oxygen vacan-
cies and resulting Ti3+ ions nominally present on this
oxide material surface [50–52] catalyzes rapid Fenton
chemistry to dismutate superoxide, converting it into
toxic hydroxyl radicals [53]. To prevent such un-
wanted dismutation, we coated the surface of TiO2

nanoparticles with a zinc sulfide (ZnS) shell, and saw
significant superoxide formation (in visible light)
using anion-doped (N-doped) TiO2 core/ZnS shell
nanoparticles (Fig. 3f, h).

Choosing the right material(s) for QD therapeutic
While the choice of an appropriate redox-active material
is important for selective therapeutic action, as shown
above, the QD surface plays a key role in cellular photo-
chemistry and biocompatibility. Many materials have ap-
propriate redox properties to enable QD therapy, but

present issues of colloidal stability or inherent cytotoxicity.
A good solution to enable using such materials could be
to use that material as a redox-active core, covered by a
thin shell of biocompatible material [29]. Further, material
cytotoxicity is often tied to a nanoparticle’s physical size,
hydrodynamic radius, and surface charge (zeta potential).
These factors can directly affect a nanoparticle’s affinity
for surrounding biomolecules and tissue. For example,
worsened zeta potential can hinder colloidal stability and
potentially result in particle aggregation. This could lead
to selective accumulation of QDs in some organs like kid-
ney, spleen, and liver [17, 18], where the host cells have
small pore sizes, but are quickly cleared through the rest
of the organs and blood circulation. Nominally, QDs with
a hydrodynamic diameter below ~ 10 nm can be cleared
from the body in in vivo animal tests. After accumulating
in organs, due to lack of typical metabolism as seen in
small molecules, one hypothesis suggests the potential for
surface material leaching to occur, causing the QDs to
“shrink” in size and clear away. This release of metal ele-
ments could present unpredictable and undesired host
toxicity issues. Therefore, the choice of biocompatible ma-
terial, at least on the QD surface, can be critical for suc-
cessful application, reducing potential toxicity concerns
for host cells. Evidence in support of this hypothesis from
literature can be seen in Table 1 [85–104], where different
core materials (like CdSe and CdTe) when coated with
other more benign/biocompatible materials, display a sig-
nificant reduction in toxicity. We reviewed a number of
such studies in literature with a wide range of sizes, hydro-
dynamic radius, and in vitro and in vivo studies. As a re-
sult, we found that even large QDs with significant
retention made of/coated with less toxic elements, dis-
played much lower cytotoxicity. Further, materials that do
not create any toxic ROS, such as hydroxyl or singlet oxy-
gen, also displayed low cytotoxicity to the host cells. These
materials could be used either as stable single-material
QDs, or as coating/shell for QDs with a different core ma-
terial better suited for redox perturbation.

QD ligands, size, and clearance
Comparing data from identical QDs/nanoparticles with
different ligands, charge, and hence resulting different
hydrodynamic radius, we observed significant differences
in their retention and cytotoxicity (Table 2) [18–20],
[105–109]. Notably, even across materials with different
toxicity, e.g. CdSe, CdTe, and Au, surface ligands clearly
influence retention and cytotoxicity. At identical QD/
nanoparticle core sizes, positively charged ligands (cyste-
amine) show indiscriminate adhesion to different nega-
tively charged biomolecules, creating a protein “corona”
that increases its hydrodynamic radius significantly. This
effectively increases QD retention and resulting cytotox-
icity [17, 18, 29, 54, 55]. Switching to negatively-charged
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ligands (mercaptopropionic acid) at same/similar core
size meanwhile reduces indiscriminate biomolecule at-
tachment and lowers/eliminates toxicity. This ligand still
results in higher hydrodynamic radius and higher

retention, with low/moderate toxicity. However, a simi-
larly sized zwitterionic-ligand (cysteamine) results in low
hydrodynamic radius and toxicity. These findings can be
explained by the lack of formation of a protein corona

Fig. 3 Bandgap and redox state engineering for therapeutic radicals. a-b) EPR spectra for UV illuminated ZnO and TiO2 nanoparticles, respectively,
showing DMPO-OH peaks corresponding to the spin-trapped adduct of hydroxyl radicals. c-d) cyclic voltammograms for ZnO and TiO2, respectively, in
deoxygenated water. Without a source of oxygen, TiO2 generates no radical signal but ZnO shows a peak corresponding to hydroxyl
radicals – indicating superoxide-generating ability from TiO2 but not ZnO. e-f) reduction and oxidation state positions for ZnO and TiO2,
respectively, as well as the effects of doping. Anionic doping shifts the VB and cationic doping shifts the reduction potential. g-h) EPR
spectra for engineered ZnO and TiO2, respectively. Anionic and cationic doping of ZnO, as well as anionic doping of TiO2, yield hydroxyl
production with visible light. Cationic doping of TiO2 shows no radical signal – indicating reliance on the reduction potential for superoxide generation.
EPR spectra for N-TiO2/ZnS shows clear DMPO-OOH peaks corresponding to the superoxide radical adduct

Levy et al. Journal of Biological Engineering           (2019) 13:48 Page 5 of 12



and higher rates of renal clearance in in vivo animal
studies. This points to a clear strategy of controlling the
QD core/shell size, along with ligand and charge, so that
the total hydrodynamic diameter remains below 10–15
nm. Taken together, this 3-layer design approach con-
sists of: 1) QD made with core material with tuned
reduction-oxidation potentials for selective generation of
superoxide for as antimicrobial for MDR superbugs; 2)
non-toxic and biocompatible shell core or shell material,
resulting in high chemical stability and low material
leaching and cytotoxicity; and 3) ligand design

(zwitterionic) to maintain a low-hydrodynamic radius,
high rates of clearance, and low toxicity, can be
employed for a suitable therapeutic bottom-up design
strategy for redox QD therapies.

Future outlook/approaches
Addressing host toxicity
There are three major potential sources of toxicity for
the host mammalian cells that the current and future
non-traditional QD therapeutics need to address: 1)
Acute material toxicity leading to loss of host cell

Table 1 Review of in vitro and in vivo toxicity reported for relevant core/shell QDs [85–104]
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viability or growth; 2) Oxidative stress; and 3) DNA
damage and carcinogenesis. To address these concerns,
the QD therapeutics first need to address acute

cytotoxicity concerns in in vitro screenings, and only ad-
vance candidates that show clear differences in MIC
values for the host and pathogen cells. This can be

Table 2 Review of common charged ligands and reported effects on biodistribution and toxicity [18–20], [105–109]
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established by designing the mechanism of action after
careful consideration of potential vulnerabilities in the
pathogen’s cellular environment and metabolism. This,
therefore, leads to a more directed and dynamic
approach to counter the adaptive resistance in these
MDR pathogens. Similarly, the use of specific ROS like
superoxide–which can be selectively toxic to
iron-sequestering pathogens–creates a clear window for
differences in MIC values between host and pathogens.
This therapeutic window of concentration has been suc-
cessfully identified and utilized as a therapeutic in in
vitro studies to target MDR pathogens, while preserving
host viability and growth. Further experiments are
needed to determine the transcriptomic response to
superoxide therapy. More specifically, this is necessary
to understand how oxidative stress from the proposed
treatment affects the host. So far, the experimental evi-
dence in literature points to non-perturbative stress re-
sponse of the host to specific ROS like superoxide, and
to a mechanism of action limited primarily to enzyme
deactivation and indiscriminate DNA/RNA damage or
genotoxicity.
To further alleviate these concerns, our lab is develop-

ing two nanoparticle therapeutic adjuvant and “counter-
measures”, made from FDA approved materials, to be
supplied with the QD therapeutic: a) larger-sized

adjuvant nanoparticles (< 20–50 nm) which can evoke a
stronger immune response, aiding the QD nanothera-
peutic [56, 57], by acting as “Nano-Immunotherapy”
(Fig. 4a); and b) ~ 20–50 nm nanoparticles coated with
[Fe-S] cluster [58] complexes as countermeasures, for
size-selective uptake in host cells (Fig. 4b), to reduce the
superoxide concentrations and ROS stress in the host
and protect them against any potential toxic mechanism
(Fig. 4a).

Nano-Immunotherapeutics
are a class of new immunomodulatory materials, where
their physicochemical properties: size, shape, surface
charge, molecular weight, roughness, and hydrophobi-
city, are used to mimic normal cellular components and
evade or suppress immune response (immune-evasive or
immune-suppressing), or designed to inflame the host
immune response for potential therapeutic effect
(immune-activating materials) [56, 57]. For instnace,
smaller nanoparticles have higher uptake and trafficking,
allowing them to reach the lymph nodes—evoking
higher levels of surface maturation markers and inflam-
matory cytokine secretion [59–61]. Further, asymmet-
rical shapes, such as nanorods, show similar trends in
their immune response: Nanorods with similar radius
but smaller length show higher uptake [61]. But longer

Fig. 4 Addressing QD toxicity and future directions. a) Schematic and summary of three proposed types of non-traditional therapeutic, adjuvant,
and countermeasure nanoparticles. QD therapeutics (top) using superoxide generation; Nano-immunotherapy (middle) using 20–50 nm benign
nanorods to trigger an immune response; and a countermeasure (bottom) using large or small benign nanoparticles coordinated with Fe-S to
serve as a host-specific nano-antioxidant. b) Depiction of host-specific protection using the larger nanoparticles coated with [Fe-S] clusters as
countermeasures against the superoxide ROS stress from QD therapeutic. c) Depiction of probiotic-specific protection using transcriptomic/
proteomic targeting with countermeasure nanoparticles
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nanorods induced a higher inflammatory response
(IL-1α and TNF- α) because of frustrated phagocytic in-
teractions with cells, due to their larger size [62]. In-
creasing the hydrophobicity of the nanomaterials surface
identifies them as foreign, and potentially dangerous ma-
terials, by the immune system. This increases the
gene-expression of pro-inflammatory cytokines [63]. Coat-
ing the QD or other nanomaterial surfaces with hydro-
philic molecules reduces the surface protein adsorption
and decreases interaction with immune cells, thereby re-
ducing immunomodulatory response. Studies on the effect
of the surface charge have shown confounding effects with
other dominant physiochemical properties. Gold nanorods
with positive surface charge (amine-terminated ligands)
exhibit expression of anti-inflammatory surface antigens
and negatively-charged (carboxylic acid-terminated li-
gands) surfaces induced expression of pro-inflammatory
genes [64]. However, other studies have concluded that
negatively-charged amino acid residues can sometimes
prevent uptake of long fibrillized peptide materials by
antigen-presenting cells, and hence prevent presentation
of epitope peptides–thereby inhibiting immune function
[65]. Overall, zwitterionic ligands or surface charges pre-
vent accumulation/adsorption of biomolecules like pro-
teins (biofouling), thereby evading foreign-body response
[56, 57, 66]. These elements of immunomodulation were
used in our QD design (small size, spherical shape, small
hydrophilic ligands, and zwitterionic surface charge). By
reducing the potential of non-specific inflammation of the
host immune system, the potential side effects of the QD
therapeutic nanoparticles could be avoided.
Other aspects of immune modulation using physio-

chemical properties of nanoparticles depend on their
molecular weight and surface roughness. The effect of
surface topography at the nanoscale, along with surface
chemistry was used to understand the innate immune
response. While surface acidity has a larger role in
immunomodulation, surface roughness directly is corre-
lated with enhanced matrix metalloproteinase-9 produc-
tion by primary neutrophils, and a decrease in the
pro-inflammatory cytokine secretion from primary mac-
rophages [67]. This immunomodulation via surface
roughness could be attributed to a reduction in inflam-
mation and increased healing on encountering rough
surfaces.
Based on the design rules summarized here, the adjuvant

Nano-Immunotherapeutic will: 1) be larger-size nanoparti-
cles than QD therapeutics (< 20–50 nm), but small enough
that they easily transport to reach lymph nodes [68, 69] and
initiates/upregulates the innate immune response of the
body [59], to aid the QD therapeutic and fight pathogens;
2) be shaped as short nanorods, rather than spherical nano-
particles, for preferential uptake and stronger immunomo-
dulation [64]; 3) have induced surface roughness and

hydrophobicity [63, 70, 71]; and 4) have a designed surface
charge to tune the inflammatory response (Fig. 4a) [64, 72,
73]. These nano-immunotherapeutic nanoparticles could,
reversibly, also be used to downregulate the immune
response and inflammation, in case the QD nanotherapeu-
tic has any adverse/side-effects due to retention of
over-activity. Further, the size-selected uptake of nanoparti-
cles acting as counter-measures for the host cells would be
designed to counter any ROS stress, deactivation of super-
oxide in the host, and reduce any potential for genotoxicity
from the QD therapeutic, using a coating of [Fe-S] clusters
on these nanoparticles (Fig. 4a,b) [58]. Such coatings can be
easily created using a hydrophobic-hydrophilic surface
interaction, and will be used with a small subset of FDA ap-
proved materials, like ZnO, TiO2, or silica nanoparticles.

Improving selective uptake in different cell-types (host
and pathogen)
One future approach to improving QD therapeutics is
targeting selective uptake between host and pathogen
(Fig. 4b), as well as between different pathogens (e.g.
pathogenic vs. probiotics, Fig. 4c). Size can be an im-
portant factor in tuning uptake between host and patho-
gens [74, 75]. By selecting for the appropriate size, a QD
therapy can selectively generate therapeutic superoxide
and induce pathogen-killing, while protecting the host
cells using nano-countermeasures. For selectivity be-
tween different types of bacteria, such as pathogenic
strains and gut microbiota, target specificity must be
considered. Reaching such targets would require the
identification of the genomic, transcriptomic, or prote-
omic factors that separate the distinct strains. QD thera-
peutics can be easily coated with peptides or DNA/RNA
molecules with appropriate target sequences (Fig. 4c)
[76–81]. Using this methodology, similar sized
pathogen-targeted QDs can be selectively uptaken by the
pathogens as a QD therapeutic, while similarly sized
countermeasures can be selectively transported into the
probiotic bacteria, further protecting them from adverse
effects of the QD therapeutic. This approach can boost
the efficacy of QD therapeutics while reducing potential
side-effects. Importantly, the window of QD therapeutic
flux between host and pathogens can be further ex-
panded to provide more immediate and effective relief
to patients.

Conclusions
In conclusion, this review summarizes the potential, exist-
ing, state-of-the-art, and future outlook for an emerging
class of radical QD therapeutics. Here, we specifically
sought to show several aspects of QD design, geared to-
wards treating MDR superbug infections. By tailoring the
stimuli-triggered photochemistry, inherent materials, and
chosen mechanism of action, a bottom-up rational design
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strategy was outlined for the QD therapeutic. This ap-
proach begins with a mechanism of redox action that tar-
gets a specific vulnerability in the pathogen compared to
the host cells. Achieving such biological specificity is im-
portant to preserve the healthy host cells and offer the saf-
est possible treatment. Selecting a redox mechanism is
then followed by careful material selection and 3-layered
design to optimize safety and efficacy. The proposed ap-
proach will be bolstered by further work to develop a
nanoparticle adjuvant, such as nano-immunotherapeutics,
and nano-countermeasures for host and probiotic cells.
While the work presented here shows a design approach
to radical therapy for countering adaptive resistance in
bacteria, the same approach can be easily extended to a
range of different diseases (e.g. cancer), as well as to preci-
sion medicine. For precise treatment of diseases at the
scale of molecular biology, healthy and diseased cells can
be distinguished from each other, and QD interactions
can be tailored to exploit those differences. Using this
emerging Quantum Biology approach being developed in
our group and by other researchers, a new rational design
strategy can be achieved for therapies that are dynamic or
adaptive, and can be quickly tailored at the atomic and
molecular level. The semiconductor QDs discussed here
can be leveraged to rationally design effective treatments,
using the governing principles described in this review.
Progress in this area could stimulate the development of a
new class of smart therapies, reduce the time required for
regulatory approval by using small tweaks in atomic and
molecular arrangement of an approved QD therapeutic,
and enable researchers to deploy their inventions to ad-
dress a rapidly emerging class of adaptive or dynamic
diseases.
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