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Abstract

Angiogenesis is touted as a fundamental procedure in the regeneration and restoration of different tissues. The
induction of de novo blood vessels seems to be vital to yield a successful cell transplantation rate loaded on
various scaffolds. Scaffolds are natural or artificial substances that are considered as one of the means for delivering,
aligning, maintaining cell connection in a favor of angiogenesis. In addition to the potential role of distinct scaffold
type on vascularization, the application of some strategies such as genetic manipulation, and conjugation of pro-
angiogenic factors could intensify angiogenesis potential. In the current review, we focused on the status of
numerous scaffolds applicable in the field of vascular biology. Also, different strategies and priming approaches
useful for the induction of pro-angiogenic signaling pathways were highlighted.

Keywords: Scaffolds, Vascular regeneration, Cell source, Genetic and proteomic manipulation, Delivery methods

Introduction
With regard to the function of many types of cells in re-
storing tissue performance, regenerative medicine with
palliative treatments would be considered as an alterna-
tive medicine for the replacement or regeneration of
various tissues and organs. Regenerative medicine uses
different technologies and methodologies including; tis-
sue engineering techniques, cell transplantation ap-
proach, stem cell biology, biomechanics, prosthetics, and
nanotechnology [1]. By using appropriate physical sub-
strates and the induction of cellular signaling pathways,
these novel approaches provide the basic interaction and
essential integration of plated cells with underlying bio-
materials scaffolds and crosstalk with the neighboring
cells. Up to the present, diverse methodologies and ap-
proaches have been found in this era (Table 1). In the
construction of tissue-engineered grafts, it seems that

the promotion of vascularization and angiogenesis is a
fundamental step for efficient organ reconstitution and
replacement [2]. The progression and development of
blood vessels into the transplanted tissues are stimulated
following induction of pro-angiogenic signaling path-
ways. In line with this statement, controlling the angio-
genic switch and vessel development is essential for the
normal activity of transplanted cells and/or acquisition
of novel phenotypes. Angiogenesis status is determined
by the balance between pro- and anti-angiogenesis fac-
tors and cytokines [3]. It has been determined that the
in situ production of pro-angiogenic factors promotes
the vascular regeneration in response to tissue demands
[4]. Early-stage angiogenesis is promoted due to the se-
cretion of most important factors VEGF, bFGF, Ang-2
and other ligands by different cells located in the close
proximity to target sites and remote areas. Following the
angiogenic switch, the expression of receptor tyrosine ki-
nases such as VEGFR-2 and Tie-2 along with Tie-1 is
up-regulated on ECs surfaces thereby promotes intracel-
lular signaling pathways [5]. After the induction of ECs
by pro-angiogenic factors, the cell-to-cell connection is
weakened which followed by degradation of basal mem-
brane governed by the activation of MMP-2 and -9 [6].
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Activated ECs proliferate and migrate in response to
the concentration gradient of pro-angiogenic factors.
Two EC types are phenotypically detectable based on
the cell surface markers; tip cells, CD34, and CD31
positive cells, that are located at the sprout tips and
characterized by the existence of filopodial extensions
and stalk ECs, CD31 positive and CD34 negative cells,
constitute the lumen of nascent vessels [7]. To stabilize
the vessel structure, the attachment of Ang-1 to cog-
nate receptor Tie-2 increases the integration of ECs
with neighboring cells and surrounding peri-vascular
pericytes thereby promoting vascular maturation and
reducing migration activity of ECs. In addition to
angiogenesis initiated by sprouting mechanism, other
alternative remodeling mechanisms such as intussus-
ception and bridging were also described as inverted
angiogenesis in the context of vascular structure [8].
Intussusception is touted as trans-vascular tissue pillars
formed inside vessels lumen extensively seen in devel-
oping vessels to form multi-vascular branches. In bridg-
ing vascular remodeling, intraluminal endothelial bridges
are formed by invagination of the basal membrane while
incorporating polarized ECs with simultaneous cytoskel-
etal adaptation from both sides to each other thereby div-
iding the luminal space into multi-vascular units [9]. It is
well known that the ECM composition, stiffness could
affect ECs functional behavior, differentiation, and net-
work formation properties. Alteration of ECM consistency
and substrate composition caused to ECs lose tubulogen-
esis capacity and changes migration activity. Mechanical
stimuli can affect the expression of genes participating in
angiogenesis signaling pathways. After cell adaptation to
mechanical forces induced by surrounding environment,

the emergence of internal and external forces dictates lo-
cation and shape of organelles and biomolecules and their
interaction with cell cytoskeleton, resulting in the adapta-
tion of biochemical responses and angiogenesis modula-
tion [10]. Controllable angiogenesis induction will enable
us to increase the final extent of transplanted tissue to
host tissues. This review article familiarizes the readers
with the different scaffolding biomaterials that have been
used for the restoration of vascular structure in a different
milieu and novel approaches applicable to harness the an-
giogenic potential of biomaterials in different contexts.

Vasculogenesis and angiogenesis; terminology and
definitions
There are two fundamental primary mechanisms imple-
ment the formation of new blood vessels; vasculogenesis
and angiogenesis [11]. The formation of fetus heart and
primary vascular network from yolk sac is governed by
vasculogenesis while angiogenesis mainly participates in
vascular remodeling post-natal period [11]. In response
to cytokines gradient, EPCs recruit to target sites and
participate to restore luminal continuity [12]. The crit-
ical role of EPCs has been documented during fetal
growth and development [13]. Angioblasts are the pri-
mary source of ECs at the early-stage development of
fetus with a great capacity to differentiate into functional
ECs. These cells form clusters to generate tube-like
structures which are further supported by cells express-
ing α-actin namely α-SMCs [14–16]. Cells expressing
α-SMC maintains vascular integrity and the tight junc-
tion with ECs at the luminal surface by the synthesis of
collagen and ECM substrates such as elastin. These fi-
bers give an opportunity for vessels to preserve contract-
ility and increase mechanical resistance [17]. To induce
the generation of de novo blood vessels, proteases de-
grade the ECM at the site of angiogenesis [18, 19]. Dur-
ing the promotion of an active angiogenesis status,
vessel branching occurs in three distinct stages as fol-
lows; quiescence, activation, and resolution. In the stage
of quiescence, cell proliferation is inhibited when ECs
are in close contact with VE-cadherins from neighbor-
ing cells. The persistent interactions are intensified by
the activity of surrounding pericytes. Following the an-
giogenic switch, for example, the production of angio-
genesis factors such as VEGF, it facilitates pericytes
detachment from the basement membrane and there-
fore ECs have enough space to migrate to the target
sites. The accelerated degradation of basement mem-
brane paves the ground for extending ECs to migrate
[20]. Considering the important role of blood vessels in
the nourishment of various cells, it is believed that pro-
viding novel techniques to promote large-scale angio-
genesis with distinct growth factor are key factors for
successful engineering of large organs [21, 22].

Table 1 Progress in the field of regenerative medicine

Finding/Experiment Ref.

First cell transplantation: Bone marrow transplant (1968) [116]

Discovery of stem cells in human cord blood (1978) [117]

First engineered tissue transplantation: skin (1981) [118]

First in vitro stem cell line developed from mice (1981) [119]

First engineered vessel structure was synthesized (1986) [120]

Adult stem cells were used for vascular regeneration by
Asahara (1997)

[121]

Isolation of human embryonic stem cells (1998) [122]

First laboratory-grown organ: an artificial bladder implanted
in a patient suffering from myelomeningocele (1999)

[123]

Implantation of first engineered tubular organs
(urine conduits) (2004)

[124]

Discovery of stem cells derived from amniotic fluid and
placenta (2007)

[125]

First solid organ engineered by recycling donor liver (2009) [123]

3D-printed vascular networks direct therapeutic angiogenesis
in ischemic condition (2017)

[126]
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The application of cells for the induction of angiogenesis
The application of SCs for vascular regeneration and the
existence of pro-vasculogenic EPC subpopulation have
been extensively used in recent clinical trials [23]. These
cells have per se potential to modulate the function of
blood vessels in different trials. In support of this state-
ment, scientists have strived to exploit the pro-angiogenic
ability of EPCs for treating myocardial infarction, ischemic
changes, and peripheral vascular disease and wound heal-
ing as well [20, 24]. After initiation of ischemic changes,
there is an urgent need for the pro-angiogenic activity
of transplanted cells on engineered vascular constructs
while inhibiting angiostatic pathways [25]. The advent
of novel approaches must be able to afford the pitfalls
and drawbacks correlated with classical therapeutic
methods. For instance, the most prevalent clinical solu-
tion for heart attack is the replacement of injured ves-
sels with autologous vein and arteries to restore blood
supplementation [26]. Considering disease management
and pathological changes associated with age, bulks of
patients without normal vessels are candidates for the
vessels grafting. For example, the lack of inappropriate
angiogenesis rate contributes to non-completed cardiac
tissue restoration caused by ischemia and hypoxia.
Therefore, an essential clinical management is required to
efficiently perfuse blood to the ischemic sites through the
promotion of angiogenesis by engaging pro-angiogenic ef-
fectors. Noteworthy, the induction of vessels formation
from pre-existing vasculature bed and recruitment of
EPCs and CECs could be an appropriate strategy in favor
of vasculogenesis [27, 28]. Along with the control of
angiogenesis signaling pathway and the dynamics of
participant cells, fabrication of physiological micro-
environment via a plethora of semi-synthetic and syn-
thetic scaffolds similar to in vivo condition is inevitable.
In this regard, the application of various strategies for
the synthesis of vascular grafts via a suitable semi- and
natural substrates, appropriate cell phenotypes, factors,
and mechanical changes are inevitable [29]. Calling at-
tention, scaffolds fabricated from biomaterials with dif-
ferent composition formula and mechanical properties
have great potentials to regulate the development of
vascular tissue.

The application of various cell types for vascular tissue
engineering
There are two main issues in vascular regenerative
medicine therapy. The first one deals with the synthe-
sis of engineered vessels and the second one is in-
volved in the introduction of tissue constructs in
promoting the growth of novel vascular networks by
engaging pro-angiogenic factors. Each of these ap-
proaches seems to be effective to improve neovascu-
larization. Due to the available cellular source in the

context of angiogenesis, three main categories are rou-
tinely accepted; (a) somatic cells and (b) stem cells (ei-
ther embryonic or adult cell type) and (c) iPSCs. In
this regard, different cells from various tissues were
applied to restore angiogenesis and function of ECs
(Fig. 1). However, most common vascular cell types
are applied for vascular regeneration include ECs,
α-SMCs, pericytes, and EPCs with a strong angiogenic
potential. Both allogeneic and autologous cells from
mature vascular cells, including ECs and SMCs, were
transplanted to subjects. Other cell types such as
MSCs and iPSCs are increasingly used in numerous
experiments to induce angiogenesis. Due to the lack of
an immunogenic response or cell rejection upon im-
plantation, the application of host cells is most con-
venient and more suitable for vascular engineering
rather than the allogeneic counterpart. Compared to
the progenitor cells, mature vascular cells possess a
limited proliferation capacity, contributing to limited
restorative effects and a low rate of pro-angiogenic
outcomes [30–32]. As above-mentioned, the applica-
tion of both ECs and EPCs seems to be useful for the
induction of vessels formation. However, due to a high
rate proliferation capacity, EPCs could promote angio-
genesis efficiently compared to the mature counterpart.

Application of ESCs in the context of angiogenesis
ESCs could be isolated from blastocysts inner cell mass
having the ability to give rise to any cell type and to
produce endodermal-, mesodermal-, and ectodermal-
derived lineages and SCs [33]. Recent researches indi-
cated an inherent ability of ESCs in differentiating into
EC-, α-SMC- and cardiomyocyte-like cells as well [34].
During endothelial differentiation of ESCs, cell distribu-
tion of specific markers such as CD31 (PECAM), von
Willebrand factor is increased. For functional analysis,
different assays notably, acetylated-LDL uptake, in vitro
tubulogenesis on Matrigel® and various protein sub-
strates, staining with lectin and etc. have been intro-
duced yet [35]. Compared to SCs, ESCs show a higher
stemness feature and proliferative capacity [36]. None-
theless, clinical applications of ESCs have some ethical
issues related to the use of human embryos. Also, dif-
ferent immunological responses could be seen after the
introduction of these cells to the target tissues. As a
matter fact, it does necessitate prescribing immuno-
suppressive agents prior to administration of ESCs and
progenies [37]. The combined regime of ESC-ECs
sources has not been completely approved so far for
vascular regeneration and is under early-stage trials de-
velopment. Overall, it takes time to get allowable
credits and translate the application of ESC for subjects
with cardiovascular disease [38, 39].
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SCs
With particular success in the treatment of hematopoietic
malignancies, SCs have been administrated for therapeutic
use [40]. In the 1950s and 1960s, hematologists demon-
strated that transplantations of bone marrow HSCs could
generate a new immune system composed of many dis-
tinct functional cells. It is thought that these cells have
some limitation compared to other SCs. MSCs, fibroblast-
like cells, can be grown easily in in vitro condition in con-
trast to HSCs [31]. MSCs can be selectively differentiated
into osteocyte-, adipocyte-, and chondrocyte-like cells by
the modulation of various growth factors and cytokines in
distinct time points [41]. A number of limitations are,
however, seen in in vitro and in vivo milieu. For instance,
the number of SCs are so trivial and their trans-differenti-
ation capacity decreases by aging meanwhile the control
of cell-to-cell commitment is out of control [42]. For ex-
ample, a number of EPC subpopulation undergoes endo-
thelial differentiation [43]. As a matter of fact, new
approaches and strategies must be invented to dictate
angiogenesis potential of each cell type. Enhancing the
recruitment of progenitor cells to distinct sites, imple-
mentation of cell-to-cell crosstalk and promotion of
cells alignment with vascular grafts and conduits should
be determined on ongoing investigations [32].

iPSCs and their application
The emergence of iPSCs is considered an interesting
phenomenon in regenerative medicine, paving a splendid

avenue for the reconstitution of cardiac and vascular
systems [44]. iPSCs are the most appropriate cell source
with a great potency to giving rise to cardiomyocyte-
like cells, mural cells and ECs [45]. The generation of
iPSCs is achieved by the modulation of Yamanaka fac-
tors genes inside adult somatic cells, including Oct-4,
Sox-2, c-Myc, and Klf-4. Cells show pluripotency proper-
ties similar to ESCs after induction of above-mentioned
genes [38]. Numerous attempts have been done to in-
vestigate the vascular differentiation of iPSCs and appli-
cation to human vascular research. The more recently
researchers indicated that re-programming factors are
sufficient to orient adult cells differentiation into the
un-differentiated state. Basically, iPSCs are found to
trans-differentiate into three germ layers. The thera-
peutic potential of iPSCs is mighty as they are patient-
specific SCs hamper the immunological responses
which seen in cells originated from ESCs. A plethora of
experiments showed an inherent capacity of various cell
types in the induction of iPSCs. The donor’s skin, fat or
hair are easily accessible sources of cells [46]. Consider-
ing the lack of immunological responses, it seems that
iPSCs do not have some limitation related to ESCs but
the generation of iPSCs is laborious. In addition, iPSCs
posse much less potential compared to the ESCs.

SCs delivery systems used in vascular regeneration
Researchers have so far sought to investigate the best ap-
plicable methods for SCs delivery to attain the most

Fig. 1 Various cell sources used at the current for vascular regeneration or induction of Angiogenesis. Many cell sources are applicable to regenerate
various tissues by affecting angiogenesis and blood support
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therapeutic effects. The primary objective in this field is
to ensure an accurate homing of the transplanted cells
to ischemic areas and to prolong the survival and reten-
tion of cells post-administration. More than 90% of
cells are cleared from the transplantation sites during
24 h and this value is thought to reach 1% 4-week post-
transplantation [47]. Because of hazardous operations,
non-invasive methods are being considered as well. Novel
methods and delivery approaches with inherent advan-
tages and disadvantages having been approached for
the delivery of SCs [48] (Table 2).

The promotion of vascularization by scaffolds In sup-
port of angiogenesis, various scaffolding biomaterials
are widely applied in tissue engineering to promote
pro-angiogenic signaling pathways [46]. Scaffolds have
been used for increasing the rate of transplantation
outcomes and collaboration of extrinsic cells with host
niche in a three-dimensional mode [49, 50]. In the
case of angiogenesis, factors such as VEGF can be
bound to scaffolds surface with sustained release to
the surrounding tissue. Of multiple types of biomate-
rials, injectable scaffolds show a promising approach
to promote angiogenesis. Compared to conventional
surgical techniques, hydrogel scaffolds are less inva-
sive and can be easily shaped to fill cavities and the
areas of necrotic tissues [50]. Various materials with

natural and synthetic structures are used to promote
angiogenesis. Considering reproducibility and accessi-
bility, synthetic materials are likely for medical trans-
lation services. The fabrication of synthetic scaffolds
using different methodologies enables us to control
some properties of physicochemical properties such as
the elasticity and degradation rates [51]. Generally,
synthetic materials are fabricated reasonable degrad-
ability at the same rate of tissue healing and growth.
Natural scaffolds are commonly prepared from ECM
substitutes mainly collagens, HA and fibronectin. Sin-
gle purified substrates or the combined ECM proteins
could be used along with decellularized ECM harbor-
ing specific cell type. The conjugation of single puri-
fied peptides and combinations of single proteins with
decellularized ECM is done by using cell extract or tis-
sue samples [52]. Due to the existence of natural ana-
logs and distinct molecular arrangement, scaffolds
formulated with ECM components are sufficient to
provide anchoring-type attachment, cell growth, and
trans-differentiation into various lineages. In addition,
no harmful degradation products are produced which
in turn enhances scaffolds integration with the body.
On the other hand, control of the degradation rate,
strength, and elasticity are laborious and complicate
[53]. Some pitfalls of scaffolding and their applications
are outlined in Table 3 [54, 55].

Table 2 Different cell delivery methods for the regeneration of target organs

Approach Advantage Limitation Ref

Scaffolds • Carrying cells
• Delivery pro-angiogenic factors
• Providing 3D condition
• Having stability

• Timely degradation
• Toxicity
• Immune-modulatory effects

[127–130]

Stem cell priming or
pretreatment

• Improve differentiation rate
• Improve migration and homing
rate to target tissue

• Improve cell function

• Cellular senescence
• Critical consideration for
cell treatment

[131–136]

Exosomes • Bio-shuttle for pro- and anti-
angiogenic factors

• Lack of immune-privileged
capacity

• Promotes tumorgenesis
• Needs to isolate and
concentrated

[137–142]

Magnetic enhancement
techniques

• Facilitate the cell retention rate
• Control cells mobilization into
target sites

• Track transplanted cells in in vivo

• Provide micro-emboli for cells
with small size features

[143–145]

Ultrasound techniques • Enhance delivery of cells to
target sites

• Yields cytotoxicity by promoting
necrosis or apoptosis

• Tissue damage such as arrhythmias,
endothelium malfunction such as
capillary leakage

[146–148]

Enhanced homing technique • Enhance proliferating, migrating,
and alignment of EPCs to
target sites

ND* [146, 149]

Mannitol-enhanced delivery • Used for cell delivery through
the blood-brain barrier

• Being selective for distinct
cells and factors

[48, 150–152]

*Not fully determined
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During the last decades, demands for vascular trans-
plantation have been raised after the initiation of cardio-
vascular disease while rejection could be seen just after
the transplantation. Lack of proper donors and failure in
the process of surgical operations has led to increasing
researchers in the field of vessel engineering and the
production of the vascular grafts [56]. A scaffold can
play an important role in tissue engineering and restor-
ation. In recent decades, the use of biomaterials similar
to vessels structure has been considered extensively by
different authorities. Engineered vascular grafts require
multiple factors to facilitate compatibility with natural
veins and increase production functionality in vivo.
Some of these features are considered for the develop-
ment of vascular prosthesis. Characteristics such as
proper porosity, a low rate of thrombogenicity and im-
munogenicity with minimum harmful effects on blood
cells, enzymes, and plasma proteins should be notified
in the fabrication of tissue-engineered vascular struc-
tures [57, 58]. Additionally, biodegradation is one of the
specific requirements for tissue-engineered grafts and
determined by scaffold components and mechanical
properties [59]. Cell attachment to scaffold moieties is
essential for the activity of cells over a time thus sub-
stances in vessel grafts should have sufficient cell adhe-
sion properties. The existence of bioactive moieties in
scaffolds promotes the juxtacrine connection of ECs
with pericytes and cells expressing factor α-SMA [60].
Regarding the prevalence of cardiovascular disease and a
higher mortality rate among old patients, investigations
in heart and vessels transplantation techniques, design

and use of appropriate biomaterials with the ability to
preserve cell activity are highly needed.

Biomaterials
The term of the scaffold expresses a temporary structure
that causes tissue growth and formation in the biological
environment by providing a 3D environment. Creation
of small biological environment will result in cell growth,
differentiation and acquisition of specific phenotype.
Scaffold materials can be classified into both natural and
synthetic categories. The natural ECM substrates with
specific particle diameter are highly dynamic and have
complex interplay with cells. Scaffolds made of natural
materials contain specific ligands for cellular connectiv-
ity, cell migration, and various growth factors to achieve
a strong restoration rate. Based on the tissue compatibil-
ity and stiffness rate, various materials are commonly
used for the restoration of specific organs (Table 4). As a
result, the selection of materials depends on the target
tissue consistency and defect severity [61–63]. From a
certain point of view, scaffolds are biological materials
with clues for the promotion of cell growth and tissue
regeneration. In addition, enhancing the angiogenic po-
tential of host tissue allows a higher degree of control
on cell behavior after transplantation. Commensurate
with these comments, scaffolds have the potential to
harbor distinct growth factors, provide moieties for cell
attachment and develop the 3D condition for cell-to-cell
communication is highly recommended. These features
enable scaffolds to efficiently induce angiogenesis and
cell adaptation after transplantation into target sites.

Collagen
Features of collagen in scaffolds allow fabricating prod-
ucts with graded elastic stiffness. Despite these advan-
tages, collagen breakdown products in vivo may cause to
release of thrombogenic materials such as amino acids,
resulting in an increase of immunogenic reactions. How-
ever, the most common problems with using collagen
scaffolds are the high cost of earning a pure solution.
Collagen is the most abundant protein in ECM synthe-
sized by fibroblasts and bone osteoblasts [63, 64]. Due to
optimal stiffness property, collagen could be considered
as an appropriate substrate for the synthesis of engi-
neered vessel grafts. However, cautions must be taken
related to the release of degradation products into sys-
temic circulation.

Elastin
The shape and elasticity of blood vessels depend on the
amount of elastin substrate. Scaffolds with small porosi-
ties made of the combination of elastin and collagen are
suitable for fabricating small-diameter vessels. Com-
pared to collagen, the insoluble form of elastin has

Table 3 Desirable features for biomaterials

Characteristics Index

Biocompatibility Rejection, Inflammation, Immune
responses

3D template To attach cells and guide growth

High surface area Initial cell number for plating, Cell
and surface interaction, Cell growth
and proliferation, and cell ability to
access oxygen and nutrients

Degradable Match the rate of tissue regeneration
to maintain tissue functionality

Mechanical stretching Consistency against to biological forces

Enrichment with growth
factors cocktail

Support the cells in synthesizing tissue-
specific extracellular matrix components
and growth factors required for healthy
tissue growth

Stability To prevent cell cytotoxicity without
alteration in physical values

Serve as a barrier To elicit a barrier between luminal and
body cavity

Support the induction
of vascular structure

Muscle tissue regeneration in aligned
pattern to promote appropriate
innervation and vascularization
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higher strain recovery [65]. The proliferative potential of
ECs was found to enhance by the mixture of elastin and
collagen gels. Notably, scaffolds with elastin origin could
enhance cell activity, rearrangement, stability, and mo-
bility. In some experiments, it was demonstrated that
the combination of elastin with other polymers could
yield more solubilizing and transparent mixture com-
pared to elastin scaffolds [66]. It seems that elastin could
be applied for fabrication of small-diameter vascular
grafts and its combination with other substrates is useful
for the synthesis of large-diameter vascular units.

Fibrin
Fibrin can be isolated from patient blood and mix with
scaffolds for therapy aims [67, 68]. Fibrin is a type of
protein with a high density and potential for survival of
transplanted cells. The application of fibrin in scaffolds
is a traditional method for delivery of thrombogenic fac-
tors, bone marrow mononuclear cells and various cyto-
kines such as bFGF [69]. In spite of the benefits, fibrin
has some drawbacks, for example, the extra addition of
fibrin causes structural weakness [70]. It is hypothesized
that fibrin has a great potential to transfer growth fac-
tors and distinct cells to the target sites. Because of lytic
susceptibility and thrombogenic activity, the application
of fibrin has been limited in the structure of engineered
vessels grafts.

Alginate
The most frequently used polymer for encapsulation of
therapeutic agents is alginate. Alginate is the most
studied material for encapsulation of living cells from
different sources. Due to a unique feature and molecu-
lar structure, alginate has been extensively applied to

increase angiogenesis and endothelial differentiation
after combination with factors such as VEGF and bFGF.
Despite an unregulated hemangioma formation and
vascular leakage, small doses of alginate could bring
therapeutic outcome without any complications. For
example, alginate encapsulation of transplanted cells
containing heparinized group provides prolonged sus-
tained release of growth factors in infarct areas [71–
74]. However, alginate has an excessive negative charge,
limiting the cell attachment and alignment. The com-
bination of alginate with natural substrates could cir-
cumvent these pitfalls and limitations. In line with
these claims, the application of alginate-based scaffolds
must be considered after the completion of further
investigations.

Chitosan
Chitosan, a type of polysaccharide termed as chitin, is
extracted from exoskeleton in many species. Chitosan
could be combined with other polyanions because of
unique molecular properties. It was elucidated that the
combination of chitosan/alginate (alginate bead) with
poly-L-Lysine improves chitosan biodegradability and
biocompatibility by changes in pH and solubility. In this
regard, various structural modifications can also be
chemically done on chitosan in favor of tissue engineer-
ing [51, 75].

Scaffold-based miRNA therapy
A large number of experiments showed that miRNAs
can change the dynamic growth of SCs and somatic
cells. These features were further determined by moni-
toring the expression and inhibition of specific miRNAs
by complementary sequences [76, 77].

Table 4 Advantage and limitation of different biomaterials in tissue-engineered approaches

Scaffold Advantage Limitation Ref

Collagen • Highly distensible and pressure sensitive
• Having well-organized pattern
• Resistant to high strain and decrease the permeability
of the vascular structure

• Thrombogenic potential and activation of the
coagulation cascade

• Enhanced risk of immunogenicity
• The high cost of pure collagen

[153]

Elastin • Suitable for high porous structures with a small diameter
• Enhanced the proliferative capacity of ECs
• Enhanced cell dynamics and rearrangement of collagen
after tension

• Solubilizing difficulty
• Inefficient mixing with other polymeric materials

[65]

Matrigel • Comparability to extracellular matrix • Minimally invasive
• Degradation time

[154]

Fibrin Suitable for delivery of thrombin, fibrinogen and
coagulation factors

• Structural weakness
• Suitable for the fabrication of synthetic transplants
(PEG, PLGA)

[69]

Alginate Used commonly polymer for encapsulation Control of size [74]

Chitosan Easily form polyelectrolyte complexes with other polyanions Poor mechanical property [75, 155, 156]

Agarose Available as agarose, is gelatinous and has sol-gel transition
based on temperatures

A wide range of commercially available agarose [157]

HA low HAs enhances the proliferation and migration of ECs The high molecular HAs inhibits angiogenesis [158]
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miRNA replacement therapy
Differentiation is a process that causes to change the
level of miRNA in stem cells and various cell types. In
many surveys, this strategy is used for the orientation
large-scale differentiation of progenitor cells by modulat-
ing the level of distinct miRNAs. Modulations are per-
formed based on the application of miRNAs with two
approaches; (I) Delivery of target miRNA that has the
same sequence with double strand oligonucleotides,
mimicking the same structure with the ability to enter
miRISC complex and thereby intensify the content of
target genes. (II) Introduction of specific genetic mate-
rials (miRNAs) inhibits the function of target genes. This
model has a unique potential for sustained release of
miRNA, however, a disadvantage such as off-target ef-
fects should not be neglected [78, 79].

miRNA inhibition therapy
The aim of miRNA inhibition therapy is to stop or de-
crease certain miRNA expression. In this regard, some
methodologies are applied to destruct miRISC complex.
The most direct way for inhibition between miRISC
and miRNA is the application of AMO [80, 81]. How-
ever, this strategy may result in unwanted side effects
because a single miRNA can regulate different genes.
Therefore, miRNA masks are developed to minimize
the off-target effects and selectively block specific
mRNA pathway, contributing to the inhibition of spe-
cific protein [82].

miRNA in angiogenesis
miRNA is one of the most common factors for the in-
duction/inhibition of angiogenesis. For instance, the
overexpression of miRNA-503 in ECs leads to migra-
tion, proliferation, stimulation, and cell division via the
modulation of cyclin E. In another study, cardiac ECs
expressing miRNA-24 showed profound changes in the
transcription level of ATA2, P21 kinase PAK4, apoptosis,
and cell sprouting rate. It was showed that miRNA-24
could abort myocardial function and angiogenesis rate in
mouse cardiac cells. Despite the benefits of angiogenesis,
there is a close relationship between vascularity and tumor
expansion. For example, a cluster of miRNAs (miRNA-17,
−18a, −2a, −19b-1, and − 17-92) increase angiogenesis in
both of in vivo and in vitro conditions. Nevertheless,
miRNA application is enthusiastically welcomed for the
induction of angiogenesis rather than repression [83–86].
Commensurate with these comments, it is logical to as-
sume that two approaches, miRNA replacement, and in-
duction, could be applied in the field of tissue-engineered
vascular grafts and angiogenesis by modification of genetic
elements in the target cells.

miRNA delivery systems
Different miRNA delivery systems have been established
in the field of regenerative medicine (Fig. 2). Commonly
methods for miRNA delivery are direct injection and the
application of viral/non-viral vectors.

Systemic miRNA delivery systems
Viral vectors are another method for delivery of specific
genomic pool to a large number of cells. Due to the sus-
ceptibility to degradation by RNase, the main pitfall of
miRNA therapy pertains to short shelf-life period. Add-
itionally, miRNA concentration decreases with the pro-
gression of cell division. Therefore, they only exert a
transient silencing effect. The main barrier for clinical
translation of the viral vector is a safety problem that
was caused by immunogenicity and insertion mutagen-
esis. Different viral vectors have been approved yet, how-
ever, each of them can have own limitations and
advantages. In the biological field, most popular viral
vectors are adenoviral and AAV, lentiviral and retroviral
vectors. AAV is the most commonly used between other
viral vectors. This viral-vector is a non-enveloped virus
that needs adenovirus for completing own amplification.
This vector has single strand DNA with 4.7Kb and 12
primate serotypes (AAV1–12). On the other hand, AAV
with small size and non-pathogenicity for a human is an
appropriate selection for delivery of miRNAs. Retrovi-
ruses are commonly used for cellular reprogramming
and genetic manipulation [80, 86, 87].

Direct injection
Direct systemic injection is the simplest method for de-
livery of miRNAs but the main problem for this way is
short-term stability. In support of this notion, miRNAs
are very sensitive and can be rapidly cleared by kidneys.
They also attach to plasma proteins and/or degraded by
nucleases enzymes in serum. Nonetheless, it has proven
that the application of some miRNA inhibitors increases
miRNAs stability and function following intravenous
and subcutaneous injections. For instance, intravenous
injection of LNA-anti-miRNA showed the silencing of
miRNA-122 in the liver and the decrease of plasma
cholesterol. It has also been indicated that a single bolus
injection of LNA-anti-miRNA is active for several weeks
[88, 89]. In some circumstances, the direct injection of
miRNAs could provoke immune response elements and
thereby some strategies must be considered to limit un-
wanted immune reactions.

Exosomal delivery
Exosomes are nano-sized particles, ranging from 40 to
150 nm, present in body fluids. They encompass specific
biomolecules and specific genetic modulators that con-
trol numerous biological activities [90]. Considering the
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potent ability in reciprocal communication, exosomes
could maintain steady-state crosstalk between different
cells by using autocrine, paracrine and juxtacrine path-
ways. The active role of exosomes was previously
proved on blood vessels development and progression
[91]. Recent evidence suggests the existence of specific
miRNAs inside exosomes with the angiogenic potential
in the target cells by the induction of VEGF and differ-
ent signaling pathways [92, 93]. In contrast, exosomes
could harbor some miRNAs with anti-angiogenesis
properties [94] (Table 5). It was revealed that the conju-
gation of exosomes with tricalcium phosphate scaffolds
promoted osteogenic differentiation of bone marrow
MSCs through the activation of PI3K/Akt signaling axis
[95]. By increasing the concentration of transplanted
exosomes in tricalcium phosphate-based scaffolds, there
was a profound bone formation and angiogenesis rate
in the rat model of bone defects [96]. These features in-
dicated the potential of exosomes as bio-shuttles in
modulating the vascularization rate after being loaded
on distinct scaffolds.

Synthetic methods
Non-viral-based approaches for genetic material deliv-
ery have attracted the attention of a bulk of authorities
over the last decades. In the late 1990s, the term gene-
activated matrixes emerged and the first report

documented collagen-based scaffolds used to deliver
galactosidase-based pDNA for the acceleration of bone
formation. At the present time, numerous synthetic de-
livery systems are used with miRNAs as follows;
(a) lipid-based; (b) polyethyleneimine (PEI)-based; (c)

dendrimer-based; (d) poly (a-hydroxy acid) polymers (in
nano-particle or scaffold form); (e) fabrication of bio-
polymers as particles such as chitosan and protamine,
atelocollagen, and protein translocation domain-derived
peptides or scaffolds, (f ) inorganic nanoparticles (gold,
silica-based, or magnetic) and scaffolds. In the majority

Table 5 The existence of various miRNAs with pro- and anti-
angiogenesis capacity

miRNA Function Ref

miRNA-17-92 Promotes angiogenesis by modulation
of connective tissue growth factor,
thrombospondin-1, and integrin α5

[159]

miRNA-92a Has a dual pro- and anti-angiogenic role [160]

miRNA-21 Increases VEGF level and promotes
angiogenesis through a STAT3-
dependent mechanism

[161]

miRNA-494 Suppresses PTEN and activates Akt/eNOS
pathway

[162]

miR-135b in
exosomes from
hypoxic multiple
myeloma cells

Reduces the expression of FIH-1 and
increased activity of HIF-1α

[163]

miR-125a Promotes angiogenesis by inhibiting DLL-4 [92]

Fig. 2 miRNA delivery systems in the field of tissue engineering
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of methods, the synthesis is governed by self-assembling
of synthetic materials such as lipids (liposomes), unpro-
cessed polymers (dendrimers), or functionalized poly-
mers with active sites. Indeed, it is such self-assembled
nature that offers considerable superiorities over viral-
based methods with potential for controlling molecular
composition, targeted ligand-receptor attachment, toler-
ance of large (multiple plasmids) cargo sizes, disassem-
bly and release of payloads, simplified manufacturing,
modification, scale up, ease of analysis and quality con-
trol, and low immunogenicity rate [97]. These synthetic
systems possess similar efficacy to viral-based methods
in vitro. The use of synthetic systems in in vivo condi-
tion is increasing as well; however, challenges remain in
terms of efficacy via intravenous versus local injection,
sufficient delivery of miRNAs to the site of injury with-
out degradation or nonspecific binding, appropriate up-
take by the appropriate cell type within complex tissues,
and, thereafter, persistence of gene expression or inhib-
ition in favor of regeneration [98, 99]. Non-viral carriers
seem to be more effective compared to viral counter-
parts, however, the lack of specificity to target sites and
uncontrolled bio-distribution limit the use of non-viral
approaches.

Growth factor incorporation into scaffolds
Various growth factors could concurrently be combined
with scaffolds to facilitate regeneration rate. In general,
scaffolds-coated with growth factors could promote the
introduction of these molecules to target sites, expend-
ing the rate of recovery. Due to an inherent kinetics and
different features controlling the release of growth fac-
tors, the more fundamental experiments are needed to
address underlying mechanisms. Of note, the protein
structure and function must not be changed during the
procedure. VEGF is a peptide growth factor that recently
coated on the PLA-based scaffold for controlling angio-
genic signals [100]. The sustained release and active dy-
namic of VEGF were confirmed by several techniques in
vitro in HUVEC assay and in vivo condition such as
chick allantoic membrane. It was showed that VEGF has
a unique role for vascularization in PLA-based scaffolds.
Different growth factors can be loaded to the surface of
scaffolds via interaction with chemical groups of drug
and proteins. In support of this idea, such scaffolds are
synthesized to mimic in vivo microenvironment with the
ability of growth and differentiation for human SCs.
Prior to enrollment in tissue engineering procedures, the
function of transplants can be improved by using mul-
tiple growth factors with different formulas, offering a
wonderful way to control tissue regeneration. However,
the release of specific protein must be elucidated on dis-
tinct tissues to specific cells in the context of target tis-
sue [101]. In spite of an enhanced angiogenesis rate

induced by the mixture of scaffolds-growth factors, nor-
mal kinetics and appropriate sustained release of each
factor must be calculated in in vivo condition.

Effect of biomaterials on the intracellular angiogenesis
signaling pathway
It is believed that the changes in the physicochemical
and morphological properties of cells on different scaf-
folds could modulate the angiogenesis potential [102]
(Fig. 3). The mutual crosstalk between cells and sur-
rounding scaffolds via adhesive molecules such as lam-
inin, fibronectin, vitronectin, tenascin, and hydrophilic
proteoglycans can initiate specific signaling, termed as
external transduction [103]. On the other hand, the cell
could attach to surfaces by expressing integrins, im-
munoglobulin superfamily, cadherins, selectins, and
other adhesive molecules [104]. Using juxtacrine inter-
action of cell receptors with cognate motifs in scaffolds,
a plethora of intracellular biochemical reactions would
be ignited, resulting in the modulation of cells pheno-
type, motility and migration, dynamic cell growth and
genes expression profile. In addition to the maintenance
of cell-matrix interaction, it seems that the cell-to-cell
connection is improved as well [105].
The juxtaposition of each cell with scaffold chemical

groups is done through the activation of surface mech-
anoreceptors and thereby a reciprocal bridge is formed.
This attachment provokes contractile cytoskeletal agents
with the collaboration of focal adhesion complexes
[106]. The cytoskeletal adaptation was reported in ECs
cultured in a denaturated collagen matrix by re-arranging
actin filament and distribution of focal adhesion pro-
teins such as Src-dependent signaling pathway [107].
The scaffold enriched by beta-tricalcium phosphate

has been found to promoted angiogenesis in HUVECs
by engaging the PI3K/Akt/eNOS axis [108]. In addition
to the chemical composition of scaffolds, the 3D align-
ment and microstructure could stimulate and/or inhibit
the normal dynamic of cells. By adding fibrin to collagen-
based scaffolds, the basal metabolic activity of cells
showed to be altered which was evident by an enhanced
proliferation rate. The migration of enclosed cells was
increased by the induction of MMP-2 and -9 [109]. It
was shown that fibrin could attach to cell surface integ-
rin αvβ3 and improve the interaction of circulating leu-
kocytes with ECs via the modulation of VE-cadherin
[110]. The promotion of cell recruitment and orien-
tated differentiation could yield in better regeneration
capacity [111]. Matthew and colleagues previously stated
that the enrichment of collagen scaffold with HA had a
prominent effect on the cell recruitment and differenti-
ation into endothelial and osteoblast lineages [112].
Previously, the positive effect of HA was indicated on
the dynamic of angiogenesis mediated by CD44 and
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protein kinase C (δ). Fibrin was also found to activate
plasminogen activator-inhibitor-1, TGF-β receptor I
and Erk [113]. Experiments revealed that the intra-fi-
brillar silicified collagen forced monocytes to secret
SDF-1α, TGF-β1, VEGFA, and PDGF-BB which are a
key regulator in the initiation of angiogenesis [114].
Addition of ionized calcium with PLA and on bioactive
glass G5 promoted angiogenesis by stimulating factors
GATA2, TFII-I, and NF-кB. The expression of
VEGFR-2, as a tyrosine kinase-related receptors, was
also induced as well [115]. The use of suitable scaf-
folds with appropriate physicochemical stability and
combination with various factors and ECM compo-
nents could re-organize cells alignment in the favor of
vascularization and engineered vascular grafts.

Conclusions and future perspectives
In accordance with a great body of previous studies and
what is highlighted in the current review article, angio-
genesis is the main target and reliable mean to increase
the efficiency of tissue regeneration by cell transplant-
ation, gene therapy, and factor release. Based on target
tissues, inherent advantages and limitations of each de-
livery method must be considered. Choosing distinct cell
type, selection of scaffolds and carriers fabricated by dif-
ferent biomaterials, and orientation of cells to vascular
cells using growth factors and genetic manipulation

seem pivotal to accelerate the vascularization rate. It
seems that different scaffolds could influence the rate
of angiogenesis via regulating cell morphology and
alignment inside the matrices. Calculation of appropri-
ate initial cell number for transplantation, route of ad-
ministration (either local or systemic), contents and
growth factor formulation along with transient and/or
permanent genetic modification are also important. In
some cases, cell-free strategies could also eliminate the
need for simultaneous application of cells with growth
factors. As a matter of fact, application and invention
of novel strategies with the capability to preserve fac-
tors for long periods with a sustained release activity
must be at the center of attention. Exosomes, as cell
byproducts encompassing a large number of factors,
having a high stability could be introduced as angio-
genic bio-shuttles with various scaffolds without any
unpredictable complications. In addition to the com-
position and structure of scaffolds, the bioavailability,
biodegradability, and route of administration must be
detected related to distinct tissue type.
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