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Abstract 

Background:  Antimicrobial resistant bacteria are emerging biological contaminants of the environment. In aquatic 
ecosystems, they originate mainly from hospitals, livestock manure and private households sewage water, which 
could contain antimicrobial agents and resistant microorganisms. Aeromonas spp. occur ubiquitously in aquatic 
environments and they cause disease in fish. Motile aeromonads are also associated with human gastrointestinal and 
wound infections and fish can act as a transmission route of antimicrobial resistance (AMR) aeromonads to humans. 
The environmental ubiquity, the natural susceptibility to antimicrobials and the zoonotic potential of Aeromonas spp. 
make them optimal candidates for studying the AMR in aquatic ecosystems.

Results:  The AMR patterns of 95 motile aeromonads isolated from freshwater fish during 2013 and 2016 were 
analyzed. All samples from fish came from farms and natural water bodies located in northern Italy, which is an area 
characterized by high anthropic impact on the environment. The isolates were biochemically identified as Aeromonas 
hydrophila, Aeromonas sobria or Aeromonas caviae and AMR was determined by the standard disk diffusion method. 
All isolates were resistant to cloxacillin, spiramycin and tilmicosin. High AMR frequencies (> 95%) were detected for 
tylosin, penicillin and sulfadiazine. AMR to danofloxacin, enrofloxacin, flumequine, ceftiofur, aminosidine, colistin, 
doxycycline, gentamicin, marbocyl and florfenicol was observed at low levels (< 10%). No AMR to cefquinome was 
found. Logistic regression showed several differences in antimicrobial activity between complexes. According to the 
source of aeromonads, only few differences in AMR between isolates from farmed and wild fish were observed.

Conclusions:  Our data revealed an increasing trend of AMR to neomycin and apramycin among Aeromonas isolates 
during the study period, while resistance to erythromycin, tetracycline and thiamphenicol decreased. All isolates were 
multidrug resistance (MDR), but A. caviae showed the highest number of MDR per isolate. In most isolates, various 
degrees of MDR were detected to macrolides, quinolones, fluoroquinolones, polymyxins and cephalosporins (third 
and fourth generations), which are listed, by the World Health Organisation, to be among the highest priority and 
critically important antimicrobials in human medicine. Our findings underlined that freshwater fish can act as poten-
tial source of MDR motile aeromonads. Due to their zoonotic potential, this can pose serious threat to human health.
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Background
The environment is increasingly being recognized for 
the role it might play in the global spread of antimicro-
bial resistance (AMR). In particular, aquatic ecosystems 
may provide an ideal setting for the acquisition and 
spread of AMR because they are constantly exposed 
to anthropogenic changes such as sewage water from 
hospitals, private households and livestock manure. 
Among intensive type of livestock production, fish 
farms have a direct impact on the aquatic environment 
because antimicrobials in supplemented feed as thera-
peutic agents are added into the water. Drug residues 
typically remain in aquaculture environments and they 
may also be carried with effluents from production 
facilities into open waterways.

The genus Aeromonas comprises ubiquitous bacte-
ria that occur normally in aquatic environments [1]. 
Therefore, they are constantly exposed to the action of 
micropollutants, such as residual antimicrobial com-
pounds that may be present. Depending on their con-
centration, contaminating antimicrobials can exert a 
selective pressure and may thus favour the spread of 
AMR among aquatic bacterial populations [2].

Aeromonas spp. are best known as agents of fish dis-
eases, but motile species are now emerging as impor-
tant opportunistic human pathogens. They have been 
associated with several food-borne outbreaks and are 
progressively being isolated from patients with travel-
ler’s diarrhea [1]. The consumption of contaminated 
raw or cured fish and fish products is considered the 
main source of gastroenteritis. Most cases of the dis-
eases that are reported are related to aquaculture prod-
ucts or cold-stored ready-to-eat food [3]. Moreover, 
motile Aeromonas spp. can cause skin and soft tissue 
infections as a result of injuries when handling fish or 
working in aquaculture and also when keeping fish as 
pets, for example as aquarium owners [4].

Given their zoonotic potential, the global rise in 
AMR of motile Aeromonas isolates from different 
sources may pose a serious threat to public health [5–
9]. Despite the vast information on the AMR of motile 
aeromonads isolated from water, sediments and sea-
food [5–7, 10–12], few studies exist on the AMR pat-
terns of isolates from fish, which are naturally exposed 
to these environmental microorganisms.

In order to fill this gap, the present work was 
designed to study the presence and the degree of AMR 
in motile aeromonads recovered from farmed and 

wild freshwater fish in northern Italy and to determine 
whether there are differences in AMR profiles between 
isolates from farmed and wild fish. The AMR of Aero-
monas spp. over the 3-year period 2013–2016 was also 
evaluated. Finally, the presence of multidrug resistance 
(MDR), defined as the resistant to at least three classes 
of antimicrobials, was assessed.

Methods
Collection of bacterial strains
A total of 95 motile Aeromonas spp. isolates were 
included in this study. All isolates were recovered from 
internal tissues (liver, kidney, spleen, or brain) of 26 
farmed fish and 69 wild fish of different freshwater spe-
cies, submitted to the Laboratory of Diagnostic and 
Animal Health sector of the Istituto Zooprofilattico 
Sperimentale della Lombardia e dell’Emilia Romagna 
(IZSLER) in Brescia, Italy during the years 2013 and 
2016. All fish samples came from farms and natural water 
bodies located in the Po River Valley (northern Italy), a 
geographical area characterized by high anthropic impact 
on the environment due to agricultural, livestock and 
industrial activities.

Bacterial strains were isolated on Tryptone Soya Agar 
(Oxoid, Italy) and Blood Agar (Oxoid, Italy) after 48 h of 
incubation at 22 ± 2 °C in aerobic conditions.

Phenotypic identification
All Aeromonas isolates were identified at the genus level 
with a panel of tests according to Martin-Carnahan and 
Joseph [13]. Subsequently, Aeromonas isolates were bio-
chemically typed at complex level by using previously 
published criteria [14]. According the Abbott scheme 
(Voges–Proskauer test, esculin hydrolysis, L-arabinose 
fermentation and gas production from glucose), each iso-
late was assigned to one of three traditionally recognized 
complex of motile Aeromonas spp.: Aeromonas hydroph-
ila, Aeromonas sobria, and Aeromonas caviae.

The following reference strains were used in paral-
lel with test isolates as positive/negative controls for the 
interpretation of doubtful biochemical reactions: Escheri-
chia coli ATCC 25922, Pseudomonas aeruginosa ATCC 
27853, Staphylococcus aureus ATCC 25923, Streptococ-
cus agalactiae ATCC 27956, Klebsiella pneumonia ATCC 
13883, Citrobacter freundii ATCC 43864, Salmonella 
enterica subsp. salamae (IZSLER 2009), Salmonella typh-
imurium ATCC 14028, Proteus mirabilis ATCC 29906, 
Listeria monocytogenes ATCC 13932.

Keywords:  Aquatic zoonosis, Critically important antimicrobials, Freshwater fish, Motile aeromonads, Multidrug 
resistance
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Stock cultures were maintained at − 20  °C in Trypti-
case Soy Broth medium (Oxoid, Italy) supplemented with 
glycerol at 20% (vol/vol).

Antimicrobial resistance
Aeromonas isolates were tested for their susceptibil-
ity to a panel of 30 antimicrobials by the disk diffusion 
method on Mueller Hinton Agar (Oxoid, Italy) [15]. 
Antimicrobials frequently used in animal husbandry and 
human medicine were included in the study: aminosi-
dine (10  µg), amoxicillin (25  µg), amoxicillin/clavulanic 
acid (AMC, 30 µg), ampicillin (10 µg), apramycin (15 µg), 
cephaloridine (30  µg), cefquinome (10  µg), ceftiofur 
(30  µg), cloxacillin (1  µg), colistin (10  µg), danofloxacin 
(5  µg), doxycycline (30  µg), enrofloxacin (5  µg), eryth-
romycin (15 µg), florfenicol (30 µg), flumequine (30 µg), 
gentamicin (10  µg), kanamycin (30  µg), marbofloxacin 
(5 µg), nalidixic acid (30 µg), neomycin (30 µg), penicil-
lin (10 UI), spiramycin (100  µg), sulfadiazine (300  µg), 
tetracycline (30  µg), thiamphenicol (30  µg), tiamulin 
(30  µg), tilmicosin (15  µg), trimethoprim/sulfameth-
oxazole (SXT, 25 µg) and tylosin (30 µg). All disks were 
supplied by Oxoid (Italy). Susceptibility tests were per-
formed with the standard protocols (Clinical and Labo-
ratory Standards Institute, CLSI) [16] using unmodified 
Mueller–Hinton media incubated at 22 ± 2  °C for 24  h, 
as suggested by Smith [17] for non-fastidious Gram-neg-
ative bacteria. The incubation conditions recommended 
in the standard methods for AMR testing of bacteria 
isolated from humans and farmed animals published 
by European Committee on Antimicrobial Susceptibil-
ity Testing (EUCAST) and CLSI were 35  °C ± 2  °C for 
16–20  h. However, many bacteria isolated from aquatic 
animals, and capable of causing infections in those ani-
mals, grow poorly or do not grow under these conditions. 
As a consequence, the standard methods for AMR test-
ing of bacteria from aquatic sources recommend incuba-
tion at 28 °C ± 2 °C for 24–28 h or 22 ± 2 °C for 24–48 h, 
depending on the species being examined [18]. An incu-
bation temperature of 22 °C was chosen because this tem-
perature represents the standard isolation temperature of 
fish pathogens in our laboratory and was maintained in 
the AMR testing. It is worth to note that the disk diffu-
sion method is not the recommended method in order to 
determine AMR to colistin. A joint EUCAST and CLSI 
subcommittee issued recommendations confirming that 
broth microdilution is so far the only valid method and 
that disk diffusion does not work because of the poor dif-
fusion of the large colistin molecule [19]. On the basis of 
this strong limit, the results for colistin must be evalu-
ated with caution and certainly the sensitivity to colistin 
need to be investigated with more suitable methods in 
the future. For those antimicrobials where interpretative 

criteria are not available for Aeromonas spp., Enterobac-
teriaceae susceptibility criteria were applied [20]. E. coli 
ATCC 35218 and E. coli ATCC 25922 were included as 
control strains. Isolates that were resistant to at least one 
agent in three or more antimicrobial classes were consid-
ered MDR [21].

Statistical analysis
The prevalence of AMR of motile Aeromonas strains 
was calculated and the binomial exact method was used 
to compute 95% confidence intervals (95% CI). For each 
isolate the number of AMR was determined and used 
for further analysis. The association between AMR and 
Aeromonas complex (A. hydrophila, A. sobria, A. caviae), 
source of the isolates (farmed or wild fish), or sampling 
year (2013, 2016) was evaluated by a chi-square test 
(χ2) or Fisher exact test when appropriate. Correlations 
between AMR profiles of Aeromonas spp. to tested anti-
microbials were calculated by the Phi index. A logistic 
regression model was performed to calculate the prob-
ability for isolates to develop AMR due to the presence 
of each of the following variables: Aeromonas complex, 
strain source, year of sampling, and multidrug-resistant. 
For each test a P < 0.05 was considered statistically sig-
nificant. All analyses were performed using R software 
(R version 3.3.1, R Development Core Team [https​://
www.R-proje​ct.org/]) [22].

Results
Phenotypic identification and source of isolates
All the isolates that were examined presented typical 
biochemical reactions and were allocated into one of 
three motile Aeromonas complexes. Of 95 Aeromonas 
isolates, 55.8% (53/95), 32.6% (31/95) and 11.6% (11/95) 
were identified as A. hydrophila, A. sobria, and A. cav-
iae, respectively. A. hydrophila and A. sobria complexes 
were more prevalent within wild fish, with frequen-
cies of 75.5% (40/53) and 80.6% (25/31), respectively, 
compared with A. caviae complex. Conversely, the lat-
ter was the most frequently isolated complex from 
farmed fish (63.6%, 7/11). Those differences were signifi-
cant (χ2 = 8.47, P = 0.0078). No differences were found 
between the prevalences of the three Aeromonas com-
plexes in 2013 and 2016 (χ2 = 2.49, P = 0.2871).

Antimicrobial resistance
The AMR patterns of 95 Aeromonas isolates tested are 
shown in Table 1. All isolates were resistant to cloxacil-
lin, spiramycin, and tilmicosin. High AMR frequencies 
(> 95%) were also observed for tylosin, penicillin and sul-
fadiazine. Conversely, resistances to danofloxacin, enro-
floxacin, flumequine, ceftiofur, aminosidine, colistin, 
doxycycline, gentamicin, marbocyl, and florfenicol were 

https://www.R-project.org/
https://www.R-project.org/
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observed at low levels (< 10%). None of the isolates were 
found to be resistant to cefquinome.

Considering the antimicrobial classes, Aeromonas iso-
lates showed the highest levels of AMR to macrolides 
(100%), penicillins (100%), sulfonamides (96.8%), and 
pleuromutilins (83.5%). Aminoglycoside resistance was 
also frequently detected (62.1%), while resistance to poly-
myxins and cephalosporins (third and fourth genera-
tions) was observed rarely (6.3%).

With regard to different Aeromonas complexes, vari-
able profiles of AMR existed. Significant differences in 
AMR patterns were observed for 15 antimicrobials: ami-
nosidine, ampicillin, apramycin, ceftiofur, cephaloridine, 
doxycycline, enrofloxacin, erythromycin, nalidixic acid, 
neomycin, sulfadiazine, SXT, tetracycline, thiampheni-
col and tiamulin. In particular, strong associations were 

found between the complex A. caviae and resistance to 
apramycin (Phi = 0.51). In a multivariate analysis of data, 
complex-related variability resulted in statistical sig-
nificance only for four agents: aminosidine, cephalori-
dine, ceftiofur, and neomycin. For the others, the effect 
of strain source or sampling year on AMR was stronger 
than that of belonging to a specific complex. The prob-
ability of observing AMR to aminosidine (OR 188.6, 95% 
CI 2.8–inf ) and neomycin (OR 1.6, 95% CI 1.1–2.2) was 
higher in A. sobria than in the other two complexes. 
The probability of detecting resistance to cephaloridine 
was higher in A. caviae and A. hydrophyla than in an A. 
sobria complex (OR 30.2, 95% CI 7.5–121.9). Finally, the 
probability of finding AMR to ceftiofur was higher in A. 
caviae than the other two complexes (OR 17.1, 95% CI 
1.7–178.1).

AMR patterns of Aeromonas spp. recovered from 
farmed and wild freshwater fish are displayed in Table 2. 
According to the source of isolates, significant differ-
ences in AMR frequencies were found for five agents: 
apramycin, doxycycline, nalidixic acid, sulfadiazine and 
tetracycline.

Nevertheless, according to multivariate analysis, the 
effects on the source of isolates in the AMR results were 
statistically significant only for three antimicrobials: 
nalidixic acid, apramycin, and tetracycline. Aeromonas 
spp. recovered from farmed fish showed a probability to 
be resistant to nalidixic acid that was about four times 
higher when compared to wild isolates (OR 3.9, 95% CI 
1.3–12.3). Likewise, isolates of farmed origin were twice 
as likely to be resistant to tetracycline when compared to 
wild isolates (OR 2.1, 95% CI 1.4–3.2). Finally, isolates of 
wild origin exhibited a four times higher probability to be 
resistant to apramycin than farmed isolates (OR 4.2, 95% 
CI 1.4–12.6).

Statistical differences in AMR between Aeromonas spp. 
isolated in 2013 and 2016 were detected (Table 3). Over-
all, the isolates showed a significant increase in resistance 
to neomycin, AMC and apramycin while resistance to 
erythromycin, tetracycline, and thiamphenicol signifi-
cantly decreased during the study period.

No significant changes in AMR among farmed isolates 
were observed over the study period, with the exception 
of resistance to amoxicillin, which increased from 66.7% 
in 2013 to 100% in 2016 (Phi = 0.53) (data not shown). In 
contrast, a significant increase in resistance to neomycin, 
AMC, and apramycin among Aeromonas spp. from wild 
fish was observed during the study period while resist-
ance to erythromycin, tetracycline and thiamphenicol 
significantly decreased (data not shown).

Table 1  AMR profiles of Aeromonas isolates

Significant differences between Aeromonas complexes were indicated by: 
* P < 0.05, ** P < 0.01, *** P < 0.001

Antimicrobials No. of resistant isolates (%) Chi-square 
index (χ2)

A. hydrophila A. sobria A. caviae Total

Cloxacillin 53 (100) 31 (100) 11 (100) 95 (100) /

Spiramycin 53 (100) 31 (100) 11 (100) 95 (100) /

Tilmicosin 53 (100) 31 (100) 11 (100) 95 (100) /

Ampicillin* 53 (100) 31 (100) 10 (90.9) 94 (98.9) 7.72

Tylosin 53 (100) 30 (96.8) 11 (100) 94 (98.9) 2.09

Penicillin 52 (98.1) 30 (96.8) 11 (100) 93 (97.9) 0.44

Sulfadiazine* 53 (100) 28 (90.3) 11 (100) 92 (96.8) 6.40

Amoxicillin 52 (98.1) 30 (96.8) 10 (90.9) 92 (96.8) 1.55

Tiamulin** 48 (90.6) 22 (71.0) 11 (100) 81 (85.3) 8.13

Neomycin** 27 (50.9) 26 (83.9) 4 (36.4) 57 (60.0) 11.73

Erythromycin*** 35 (66.0) 9 (29.0) 11 (100) 55 (57.9) 20.04

Cephaloridine*** 38 (71.7) 3 (9.7) 10 (90.9) 51 (53.7) 37.19

AMC 27 (50.9) 11 (35.5) 5 (45.5) 43 (45.3) 1.89

Apramycin*** 16 (30.2) 23 (74.2) 0 39 (41.1) 24.32

Tetracycline** 12 (22.6) 1 (3.2) 5 (45.5) 18 (8.9) 10.49

SXT** 14 (26.4) 0 2 (18.2) 16 (16.8) 9.76

Nalidixic acid* 12 (22.6) 0 3 (27.3) 15 (15.8) 8.77

Thiamphenicol* 11 (20.8) 0 2 (18.2) 13 (13.7) 7.35

Kanamycin 5 (9.4) 6 (19.4) 0 11 (11.6) 3.51

Danofloxacin 7 (13.2) 0 2 (18.2) 9 (9.5) 5.08

Enrofloxacin*** 4 (7.5) 0 4 (36.4) 8 (8.4) 14.04

Flumequine 5 (9.4) 0 2 (18.2) 7 (7.4) 4.68

Ceftiofur*** 1 (1.9) 1 (3.2) 4 (36.4) 6 (6.3) 19.04

Aminosidine* 1 (1.9) 5 (16.1) 0 6 (6.3) 7.54

Colistin 4 (7.5) 2 (6.5) 0 6 (6.3) 0.88

Doxycycline** 2 (3.8) 0 3 (27.3) 5 (5.3) 12.64

Gentamicin 3 (5.7) 0 0 3 (3.2) 2.45

Marbocyl 3 (5.7) 0 0 3 (3.2) 2.45

Florfenicol 2 (3.8) 0 1 (9.1) 3 (3.2) 2.34

Cefquinome 0 0 0 0 /
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Multidrug resistance
Regardless of Aeromonas complex and the source of 
Aeromonas spp., all isolates were MDR. Moreover, each 
isolate showed a pattern of resistance to at least seven 
antimicrobials. The mean resistance value to tested anti-
microbials was 12.7 (± 2.7 ds; range 7–2; median 13). The 
minimum number of resistances (seven antimicrobials) 
was observed in two isolates, both belonging to the A. 
sobria complex. The maximum number of resistances (22 
antimicrobials) was found in one isolate, belonging to the 
A. hydrophila complex. Figure 1 shows the distribution of 
AMR per each Aeromonas isolate by sampling year, com-
plex and source. Our results indicated that there was a 

tendency towards a higher number of resistances among 
A. caviae isolates compared to other two complexes, both 
in 2013 and 2016. Considering the source of Aeromonas 
spp., an increase in resistance rates among isolates from 
farmed fish was observed during the study period, while 
isolates of wild origin tended to exhibit the same pattern 
over the time.

Discussion
In this study, fish isolates of motile Aeromonas spp. from 
northern Italy displayed high levels of resistance to vari-
ous antimicrobials agents. Regardless of Aeromonas com-
plex, resistance to penicillins, macrolides, pleuromutilins 

Table 2  AMR profiles of  Aeromonas isolates recovered 
from farmed and wild freshwater fish

Significant differences between Aeromonas isolates of farmed and wild origin 
were indicated by: * P < 0.05, ** P < 0.01, *** P < 0.001

Antimicrobials No. of resistant isolates (%) Chi-
square 
index (χ2)Farmed fish Wild fish

Cloxacillin 26 (100) 69 (100) /

Spiramycin 26 (100) 69 (100) /

Tilmicosin 26 (100) 69 (100) /

Ampicillin 25 (96.2) 69 (100) 0.26

Tylosin 25 (96.2) 69 (100) 0.26

Penicillin 24 (92.3) 69 (100) 2.33

Sulfadiazine* 23 (88.5) 69 (100) 4.88

Amoxicillin 24 (92.3) 68 (98.6) 0.79

Tiamulin 19 (73.1) 62 (89.9) 3.00

Neomycin 15 (57.7) 42 (60.9) 0

Erythromycin 14 (53.8) 41 (59.4) 0.07

Cephaloridine 13 (50.0) 38 (55.1) 0.05

AMC 10 (38.5) 33 (47.8) 0.34

Apramycin* 6 (23.1) 33 (47.8) 3.81

Tetracycline** 10 (38.5) 8 (11.6) 7.21

SXT 3 (11.5) 13 (18.8) 0.29

Nalidixic acid* 8 (30.8) 7 (10.1) 4.59

Thiamphenicol 2 (7.7) 11 (15.9) 0.50

Kanamycin 1 (3.8) 10 (14.5) 1.18

Danofloxacin 5 (19.2) 4 (5.8) 2.56

Enrofloxacin 4 (15.4) 4 (5.8) 1.18

Flumequine 4 (15.4) 3 (4.3) 1.95

Ceftiofur 2 (7.7) 4 (5.8) 0

Aminosidine 0 6 (8.7) 1.17

Colistin 0 6 (8.7) 1.17

Doxycycline*** 5 (19.2) 0 10.42

Gentamicin 2 (7.7) 1 (1.4) 0.79

Marbocyl 2 (7.7) 1 (1.4) 0.79

Florfenicol 2 (7.7) 1 (1.4) 0.79

Cefquinome 0 0 /

Table 3  AMR profiles of Aeromonas spp. isolated in  2013 
and 2016

Significant differences between Aeromonas spp. isolated in 2013 and 2016 were 
indicated by: * P < 0.05; ** P < 0.01; *** P < 0.001

Antimicrobials No. of resistant isolates (%) Chi-
square 
index (χ2)2013 2016

Cloxacillin 31 (100) 64 (100) /

Spiramycin 31 (100) 64 (100) /

Tilmicosin 31 (100) 64 (100) /

Ampicillin 30 (96.8) 64 (100) 0.14

Tylosin 31 (100) 63 (98.4) 0

Penicillin 31 (100) 62 (96.9) 0.05

Amoxicillin 29 (93.5) 63 (98.4) 0.43

Sulfadiazine 31 (100) 61 (95.3) 0.36

Tiamulin 27 (87.1) 54 (84.4) 0

Neomycin** 12 (38.7) 45 (70.3) 7.42

Erythromycin** 25 (80.6) 30 (46.9) 8.43

Cephaloridine* 23 (74.2) 28 (43.8) 6.61

AMC* 8 (25.8) 35 (54.7) 5.91

Apramycin** 6 (19.4) 33 (51.6) 7.67

Tetracycline* 10 (32.3) 8 (12.5) 4.1

SXT 8 (25.8) 8 (12.5) 1.78

Nalidixic acid 5 (16.1) 10 (15.6) 0

Thiamphenicol** 9 (29.0) 4 (6.3) 7.35

Kanamycin 2 (6.5) 9 (14.1) 0.56

Danofloxacin 1 (3.2) 8 (12.5) 1.15

Enrofloxacin 4 (12.9) 4 (6.3) 0.49

Flumequine 1 (3.2) 6 (9.4) 0.43

Aminosidine 1 (3.2) 5 (7.8) 0.17

Colistin 1 (3.2) 5 (7.8) 0.17

Ceftiofur 2 (6.5) 4 (6.3) 0

Doxycycline 2 (6.5) 3 (4.7) 0

Florfenicol 0 3 (4.7) 0.36

Gentamicin 1 (3.2) 2 (3.1) 0

Marbocyl 1 (3.2) 2 (3.1) 0

Cefquinome 0 0 /
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and sulfonamides was particularly widespread and it was 
detected in all or almost all the isolates. The high resist-
ance to penicillins observed here is in agreement with the 
intrinsic resistance of Aeromonas species to beta-lactams 
widely reported in the literature; in fact, Aeromonas bac-
teria are known to be intrinsically resistant to aminopeni-
cillins and first generation cephalosporins.

This is due to the production of multiple, induc-
ible, chromosomally encoded beta-lactamases [23, 24]. 
According to the source of isolates, very few differences 
in AMR rates were observed between aeromonads recov-
ered from farmed and wild fish. Among antimicrobials 
registered for use in Italian aquaculture and tested here 
(i.e., amoxicillin, flumequine, SXT, tetracycline), only tet-
racycline showed higher AMR in isolates from farmed 
fish than those from wild ones. Moreover, except for 
amoxicillin, no significant trend of increased resistance 
among isolates of farmed origin was observed during the 
study period. These results suggest that the antimicrobial 
use in aquaculture should not be the only contributing 
factor considered when evaluating the AMR of Aero-
monas species from fish.

Excluding the intrinsic AMR to beta-lactams, the high 
AMR frequencies observed here could be explained by 
acquired mechanisms involving the transfer of antibiotic 
resistance genes (ARGs) from other aquatic bacteria [25]. 
In this research, all sampling sites (fish farms and natu-
ral water bodies) are located near urban centres and live-
stock-producing areas. Thus, it is possible that some of 
the AMR resulted from the release of AMR bacteria and 
drugs residues from urban and animal wastewater being 
discharged into the aquatic ecosystems and their varia-
tions could reflect local antimicrobial usage. Once these 
bacteria are in the water environment, the exchange of 
ARGs among aquatic microorganisms through mobile 
genetic elements (MGEs), such as plasmids, is readily 
facilitated [26]. This outcome can result in a higher fre-
quency of MDR isolates. There is concern that ARGs are 
widespread not only among clinical pathogens but also 
in environmental bacteria, as a consequence of the wide 
usage of antimicrobials in clinical practice, animal hus-
bandry and agriculture [26–28].

With regard to Aeromonas complexes, our data 
revealed the presence of significant differences in the 
AMR, suggesting that phenotypic identification of motile 
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aeromonads at complex level may be useful in clinical 
practice for the selection of the first line of antimicrobial 
to be administered in infections caused by these bacte-
ria. Moreover, phenotypic methods have the advantage 
of being particularly suitable for use in diagnostic routine 
activity because it uses standard biochemical tests [14].

However, it is worth noting that AMR profiles of iso-
lates tested showed a considerable high variability, which 
is likely due to the relatively small number of isolates 
included in the research. This can potentially affect the 
reliability of the results, which may not reflect the real 
resistance patterns of Aeromonas populations in freshwa-
ter habitats. Thus, data on AMR of these microorganisms 
should be further investigated through epidemiological 
studies based on a larger sample size.

The frequent occurrence of MDR aeromonads 
observed in this study is of concern considering the ubiq-
uitous nature and the potential role as reservoir of ARGs 
of Aeromonas spp. [27, 29]. Motile species also have a 
zoonotic potential, causing gastroenteritis, skin and soft 
tissue infection, and bacteraemia in immunocompro-
mised patients [1]. In this regard, the detection of various 
degrees of resistance even to drugs listed in the high-
est priority, critically important antimicrobial classes in 
human medicine (macrolides, quinolones, fluoroquinolo-
nes, polymyxins, third and fourth generations of cepha-
losporins) [30] is of particular concern. Among these 
classes, quinolones are even considered the antimicrobi-
als of choice to treat human Aeromonas infections [31].

Conclusions
Our findings contribute to highlight the role of fresh-
water fish as reservoir of MDR motile Aeromonas spp., 
which can represent a potential hazard to consumers via 
food-borne infections and a risk factor for wound infec-
tions after handling contaminated fish (e. g. in the case of 
aquaculture workers, fish handlers, or aquarium owners).

The broad distribution of these bacteria in different 
habitats remains a relevant public health issue. Therefore, 
there should be a continuous and regular effort to moni-
tor the dissemination of resistant aeromonads in aquatic 
ecosystems on a global scale, evaluating different envi-
ronmental sources.
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