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Abstract 

Background  More than 75 common variant loci account for only a portion of the heritability for Alzheimer’s disease 
(AD). A more complete understanding of the genetic basis of AD can be deduced by exploring associations with AD-
related endophenotypes.

Methods  We conducted genome-wide scans for cognitive domain performance using harmonized and co-cali‑
brated scores derived by confirmatory factor analyses for executive function, language, and memory. We analyzed 
103,796 longitudinal observations from 23,066 members of community-based (FHS, ACT, and ROSMAP) and clinic-
based (ADRCs and ADNI) cohorts using generalized linear mixed models including terms for SNP, age, SNP × age 
interaction, sex, education, and five ancestry principal components. Significance was determined based on a joint 
test of the SNP’s main effect and interaction with age. Results across datasets were combined using inverse-variance 
meta-analysis. Genome-wide tests of pleiotropy for each domain pair as the outcome were performed using PLACO 
software.

Results  Individual domain and pleiotropy analyses revealed genome-wide significant (GWS) associations with five 
established loci for AD and AD-related disorders (BIN1, CR1, GRN, MS4A6A, and APOE) and eight novel loci. ULK2 was 
associated with executive function in the community-based cohorts (rs157405, P = 2.19 × 10–9). GWS associations 
for language were identified with CDK14 in the clinic-based cohorts (rs705353, P = 1.73 × 10–8) and LINC02712 in the 
total sample (rs145012974, P = 3.66 × 10–8). GRN (rs5848, P = 4.21 × 10–8) and PURG​ (rs117523305, P = 1.73 × 10–8) were 
associated with memory in the total and community-based cohorts, respectively. GWS pleiotropy was observed 
for language and memory with LOC107984373 (rs73005629, P = 3.12 × 10–8) in the clinic-based cohorts, and with 
NCALD (rs56162098, P = 1.23 × 10–9) and PTPRD (rs145989094, P = 8.34 × 10–9) in the community-based cohorts. GWS 
pleiotropy was also found for executive function and memory with OSGIN1 (rs12447050, P = 4.09 × 10–8) and PTPRD 

†Jesse B. Mez and Lindsay A. Farrer equally supervised this work.

*Correspondence:
Lindsay A. Farrer
farrer@bu.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13024-023-00633-4&domain=pdf
http://orcid.org/0000-0001-5533-4225


Page 2 of 22Kang et al. Molecular Neurodegeneration           (2023) 18:40 

(rs145989094, P = 3.85 × 10–8) in the community-based cohorts. Functional studies have previously linked AD to ULK2, 
NCALD, and PTPRD.

Conclusion  Our results provide some insight into biological pathways underlying processes leading to domain-
specific cognitive impairment and AD, as well as a conduit toward a syndrome-specific precision medicine approach 
to AD. Increasing the number of participants with harmonized cognitive domain scores will enhance the discovery of 
additional genetic factors of cognitive decline leading to AD and related dementias.

Keywords  Alzheimer’s disease, Genome-wide association study, Cognitive domains, Longitudinal measures, 
Pleiotropy, Pathway analysis

Background
Late-onset Alzheimer’s disease (AD) occurring after age 
65 is the most common type of dementia and is highly 
heritable, estimated at 60% to 80% [1]. Common single-
nucleotide polymorphisms (SNPs) explain 24% to 33% of 
the total phenotypic variance of AD [2–4], of which up 
to 6% is accounted for by  APOE [3]. More than 75 loci 
affecting AD risk have been identified in several large-
scale genome-wide association studies (GWAS) [5–10], 
but much of the underlying genetic architecture of AD 
remains unknown [11].

Although GWAS conducted in larger samples will 
undoubtedly reveal additional AD loci, understand-
ing of the genetic influence on AD risk can be improved 
by examining the association with endophenotypes 
that potentially highlight specific pathways underlying 
the complex disease phenotype. Previously, numerous 
genetic associations have been identified for AD-related 
endophenotypes, such as cognitive performance [12–15], 
brain imaging traits [16–18], neuropathological traits 
[19–21], and biomarkers measured in cerebrospinal 
fluid [22–24]. GWAS have found several loci for gen-
eral cognitive ability [13, 25], but most findings for spe-
cific cognitive domains are not genome-wide significant 
(GWS), inconsistent, and rarely replicated in independ-
ent datasets, perhaps because of the variability in neu-
ropsychological (NP) tests administered across cohorts 
[26–29]. To address this concern, Mukherjee and col-
leagues applied confirmatory factor analysis models to 
co-calibrate and harmonize composite scores for several 
cognitive domains. The scores obtained are on the same 
scale, making them comparable to each other regardless 
of the NP protocol [15, 30].

Here, we conducted a GWAS for cognitive scores of 
three domains derived from longitudinal, prospectively 
collected NP tests administered to participants of several 
large cohort studies. The statistical power for detecting 
associations with endophenotypes can be increased by 
studying outcomes of multiple correlated traits under 
a model of pleiotropy—a phenomenon where a single 
gene or variant affects multiple phenotypes [31–34]. This 
approach has successfully identified novel associations 

for neuropathological processes in AD [35–37]. Because 
measures of cognitive performance are highly heritable 
and correlated with each other [38–40], they are well 
suited as outcomes for cross-phenotype genetic associa-
tion studies. Therefore, we also tested pleiotropy models 
for each pair of the three cognitive domains to identify 
novel loci which may be involved in AD.

Methods
Participants
This study included non-Hispanic white participants of 
the Framingham Heart Study (FHS), National Institute 
on Aging sponsored Alzheimer’s Disease Research Cent-
ers whose phenotypic information was assembled and 
curated by the National Alzheimer’s Coordinating Center 
(NACC), the Adult Changes in Thought (ACT) Study, 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 
and the Religious Orders Study/Rush Memory and Aging 
Project (ROSMAP). Briefly, FHS is a long-running multi-
generation community-based study of cardiovascular dis-
ease and other age-related disorders [41–43], including 
cognitive decline and dementia [44, 45]. ACT and ROS-
MAP are also community-based cohorts that recruited 
unrelated cognitively normal participants who are fol-
lowed longitudinally for cognitive disorders [46, 47]. Par-
ticipants of NACC and ADNI were clinically ascertained 
for AD research and were cognitively normal or met the 
criteria for mild cognitive impairment (MCI) or AD at 
the time of enrollment [48–52]. Extensive cognitive test-
ing of participants of all is conducted at all visits. Details 
regarding the ascertainment, evaluation, and diagnosis of 
members of these five cohorts were reported elsewhere 
[45–48, 52].

Cognitive domain scores
Scores for executive function, language, and memory 
domains were derived as previously described [15, 30, 53]. 
Scores are co-calibrated to put them on the same scale 
regardless of the cognitive battery administered. Briefly, 
an expert panel of neuropsychologists (EHT, AJS) and a 
behavioral neurologist (JBM) assigned each NP test item 
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to one of the three domains. Confirmatory factor analysis 
in Mplus [54] was used for co-calibration. Cognitive data 
from the most recent visit were first used to derive scores 
for each domain, with each domain modeled separately. 
Test items administered in multiple cohorts functioned 
as anchors for co-calibration. Parameters for anchor items 
were forced to be the same across studies to put scores 
across studies on the same metric. Within study, multi-
ple models (including single factor and bifactor models) 
were considered with the choice of model determined 
based on a combination of model fit and concordance 
with neuropsychological theory. Next, each study’s item 
parameters from calibration of data at the last visit were 
fixed and used to obtain scores for each person at each 
time point. Co-calibrated cognitive scores with a stand-

ard error (SE) > 0.6 or derived solely from the mini-men-
tal state examination (MMSE), which has a ceiling effect, 
were excluded. Time points less than age 60 were only 
available for FHS and were excluded due to concern that 
cognitive performance under age 60 may have a different 
genetic architecture that was only being captured in a sin-
gle study.

Genotype data processing
We obtained genome-wide SNP data that were pro-
cessed and imputed using the Trans-Omics for Preci-
sion Medicine (TOPMed) reference panel and aligned 
to Genome Research Consortium human build 38 
(GRCh38) [10, 55]. Variants with poor imputation qual-
ity (r2 < 0.3), minor allele frequencies (MAF) < 0.01, call 
rates < 95%, and Hardy-Weinberg Equilibrium (HWE) 
test  p-value < 1 × 10–6 were excluded, and approxi-
mately nine million variants remained for each cohort 
after quality control (QC). Principal components (PCs) 
of population structure were generated for individu-
als within each cohort using the set of post-QC variants 
that were pruned on the basis of a linkage disequilibrium 
(LD) threshold of 0.1 using the R package GENESIS [56]. 
Measures of relatedness, kinship coefficients for family-
based samples and empirical identity by descent (IBD) in 
the other samples, were estimated using established pro-
cedures [57–59].

Genetic and phenotypic correlation estimation
Genetic correlations between each pair of cognitive 
domain scores (executive function, language, and memory) 
were estimated in each cohort using GREML [60, 61]. The 

kinship matrix derived from self-reported FHS pedigrees 
was incorporated in the estimates using the kinship2 pack-
age [62]. We used the empirical genetic relationship matrix 
(GRM) to account for relatedness among individuals in the 
other cohorts. To concurrently investigate SNP associa-
tions with both performance at the median age and change 
in cognitive function over time in each domain, we applied 
a joint test of the marginal genetic effects and gene × age 
interaction together in a generalized linear mixed model 
framework with a random slope and intercept as imple-
mented in the mixed‐model association test for gene-
environment interactions (MAGEE) R package [63, 64]. 
Models included terms for SNP, the interaction between 
SNP and age, and covariates for age, sex, educational level 
(less than high school, high school, some college, or college 
graduate), and the first five PCs represented as follows:

where αA, αB, and αC indicate the effects of age, sex, and 
educational level, respectively; βG is the main SNP effect; γX 
represents the SNP × age interaction effect; αi is the effect 
of the ith PC (i between 1 and 5); and r is a random inter-
cept. We subtracted the median age for all observations for 
all individuals in the dataset from the individual’s age at 
each exam in order to center age because the intercept will 
refer to the mean outcome value when an individual’s base-
line age is equal to the mean age at baseline in each dataset. 
Models also incorporated the GRM as a random effect.

Cross‑trait analyses
We performed cross-traits LD score regression [65] to 
estimate genetic correlations across general cognitive 
function, cognitive domain scores, and neuropsychiatric 
disorders. We used GWAS summary statistics for gen-
eral cognitive function (n = 300,486) [13], cognitive factor 
scores (n = 23,066) from the current study, neuropsy-
chiatric disorders—AD, bipolar disorder, schizophrenia 
(n = 420,531), and depression (n = 370,457)—from the 
Pan-UK Biobank, and LD scores derived from the 1000 
Genomes Project (phase 3) European samples. We only 
included 4,815,014 variants with imputation quality 
r2 > 0.6 and MAF > 0.01 in cross-trait analyses.

Genetic association analyses
Analyses were performed in each dataset separately, 
and the GWAS results were combined across data-
sets by meta-analyses. To correct systematic infla-
tion in a joint test of the SNP’s main and interaction 
effects [66, 67], we applied the joint meta-analysis 
method [68] which considers the covariance between 

factor score = αAage+αBsex+αCeducation+βGSNP+γX SNP × age +αi

5

i=1

PCi+r
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the main and interaction effects, and the inverse vari-
ance weighted approach in METAL [69]. Meta-anal-
yses were performed for each cognitive domain in the 
total sample, clinic-based cohorts (NACC and ADNI), 
and community-based cohorts (FHS, ACT, and ROS-
MAP) separately (Fig. S1). Results for the clinic- and 
community-based cohorts were considered separately 
because some associations might be unique to one of 
the cohort groups due to disparity in age or proportion 
of participants with AD. The genomic inflation fac-
tor (λ) was calculated for each GWAS and applied to 
adjust p-values for each test. A GWS threshold was set 
at P = 5 × 10–8.

Genome‑wide pleiotropy analyses
We conducted a pleiotropy GWAS for each pair of 
cognitive domains in the total sample, clinic-based 
cohorts, and community-based cohorts using the 
pooled GWAS results from the joint meta-analysis 
(Fig. S1) and the R package PLACO [70, 71]. Because 
rejecting the global null hypothesis that neither pheno-
type is associated does not specifically imply the exist-
ence of pleiotropy, PLACO tests the composite null 
hypothesis that no more than one phenotype is asso-
ciated with a variant. Thus, rejecting the composite 
null hypothesis implies that both phenotypes are asso-
ciated with the variant,  i.e., pleiotropy. This approach 
uses the product of the Z-statistics as the test statistic 
for the association of a given variant with each indi-
vidual trait. The null distribution of the test statistic 
takes the form of a mixture distribution that allows for 
the variant to be associated with none or only one of 
the traits. Variants with squared Z-scores > 80 for one 
trait were removed because they could cause spuri-
ous pleiotropic signals [72, 73]. Because correlations 
between the Z-statistics for the association between 
a variant and the two traits can result in inflated type 
I errors [74], we adjusted for the Pearson correlation 
for variants with no effect (P > 1 × 10–4) as suggested by 
the developers of the method.

Pathway enrichment analyses
We performed several pathway analyses, each of which 
was seeded with genes containing variants associated 
with a single cognitive domain or pleiotropy for paired 
domains (P < 1 × 10–4) in the respective GWAS, using 
the Ingenuity Pathway Analysis software (QIAGEN Inc.) 
[75]. Enrichment p-values for each canonical pathway 
were adjusted for a false discovery rate (FDR) using the 
Benjamini-Hochberg method [76], and an FDR-adjusted 
P-value threshold was set at 0.001 to account for the 18 
separate pathway analyses (six single and paired domains 
multiplied by three sample strata).

Results
Cognitive domains are phenotypically and genetically 
correlated
Compared to the community-based cohorts, the clinic-
based cohorts had more males, participants who were 
younger and better educated, and higher proportion 
of participants who were diagnosed with MCI or AD 
(Table  1). Even though the mean and median ages at 
the last visits of individuals in the clinic-based cohorts 
were slightly lower than those in the community-based 
cohorts, scores for executive function and memory were 
significantly lower (P < 0.001), and the language score 
was significantly higher (P < 0.001) in the clinic-based 
cohorts. Phenotypic and genetic correlations for each 
pair of factor scores in each dataset were moderate to 
high (phenotypic r = 0.56–0.86, genetic r = 0.57–0.72) 
(Table S1). Most phenotypic and genetic correlations 
were higher for ROSMAP compared to the other cohorts. 
Cross-trait analyses revealed that factor scores for all 
three cognitive domains are significantly genetically cor-
related with general cognitive function (0.51 ≤ r ≤ 0.77) 
(Table S2). Although none of the traits were significantly 
correlated with AD or other psychiatric disorders, the 
language domain score was moderately associated with 
depression (r = 0.60, P = 0.11) and the memory domain 
score was strongly associated with AD (r = 0.90, P = 0.40). 
Lack of significance for these results may be due to insuf-
ficient power for genetic correlations with dichotomous 
outcomes.

GWAS identifies multiple established AD and novel loci 
associated with individual cognitive domains
There was little evidence of genomic inflation (λ = 1.006–
1.023) in the GWAS for each cognitive domain and strata 
of the sample (Figs. S2, S3 and S4). GWS associations were 
observed for many SNPs in the APOE  region for all traits 
(Table S3). We also identified associations with several 
other established AD loci (Table 2). BIN1 SNP rs6733839 
was associated with language (PJoint = 2.70 × 10–8) and 
memory (PJoint = 2.37 × 10–9) in the total sample and 
with both language (PJoint = 1.98 × 10–9) and memory 
(PJoint = 1.60 × 10–8) in the clinic-based cohorts. The sig-
nificant joint effect of rs6733839 is due primarily to the 
SNP’s main effect rather than its interaction with age 
and is supported by multiple adjacent variants (Figs. 
S5 and S6). GWS associations for memory were also 
observed with CR1 SNP rs1752684 (PJoint = 8.85 × 10–9) 
and MS4A6A SNP rs7232 (PJoint = 3.97 × 10–8) in the clinic-
based cohorts, findings which were supported by adjacent 
SNPs (Fig. S7). Similar to BIN1, results of the joint test of 
the main and interaction effects for rs1752684 and rs7232 
reflect the SNPs’ main effects. GWS associations were 
also detected with SNPs in four additional loci,  ULK2 (rs
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157405,  PJoint = 2.19 × 10–9) with executive function in 
the community-based cohorts,  CDK14 (rs705353,  PJoint 
= 1.73 × 10–8) with language in the clinic-based cohorts, 
PURG​  (rs117523305, PJoint = 1.73 × 10–8) with mem-
ory in the community-based cohorts, and LINC02712 
(rs145012974, PJoint = 3.66 × 10–8) with language in the 
total sample (Fig.  1). We also identified a GWS associa-
tion of memory with GRN (rs5848, PJoint = 4.21 × 10–8) in 
the total sample (Fig.  1). Unlike the associations with 

the other known AD loci, the interactions of the ULK2 
(PG×Age = 7.65 × 10–7), CDK14 (PG×Age = 2.54 × 10–9), PURG​ 
(PG×Age = 1.41 × 10–8), LINC02712 (PG×Age = 7.69 × 10–9), 
and GRN (PG×Age = 1.07 × 10–6) SNPs with age accounted 
for the significant joint test findings (Table 2).

The  APOE  region comprised many variants signifi-
cantly associated with all the cognitive domains in all 
cohort groupings (Table S3). The high LD between these 
variants suggests that there are not multiple independent 

Table 1  Characteristics of study participants

Overall Clinic-based cohorts Community-based cohorts

NACC​ ADNI Total FHS ACT​ ROSMAP Total

Observations, n 103,796 53,237 7,059 60,296 9,115 15,122 19,263 43,500

Unique participants, n 23,066 12,985 1,367 14,352 3,607 3,035 2,072 8,714

Mean age, years (SD)

  Overall 77.5 ± 8.9 75.7 ± 8.9 76.6 ± 7.4 75.8 ± 8.8 75.2 ± 9.6 79.3 ± 7.2 82.8 ± 7.6 80.0 ± 8.4

  First visit 73.1 ± 8.7 72.9 ± 9.0 73.9 ± 7.1 73.0 ± 8.8 69.1 ± 8.3 74.5 ± 6.5 78.8 ± 7.5 73.3 ± 8.4

  Last visit 78.2 ± 9.7 76.6 ± 9.3 77.6 ± 7.9 76.6 ± 9.2 75.3 ± 9.9 82.7 ± 7.7 87.8 ± 6.9 80.8 ± 9.9

Median age, years (IQR)

  Overall 78.0 (13.0) 76.0 (12.0) 76.7 (10.0) 76.0 (12.0) 75.0 (16.0) 79.0 (10.0) 83.2 (10.6) 80.4 (12.0)

  First visit 73.0 (12.3) 73.0 (12.0) 73.8 (9.8) 73.0 (12.0) 66.0 (11.5) 73.0 (10.0) 79.5 (10.6) 72.0 (14.0)

  Last visit 78.0 (14.3) 77.0 (13.0) 77.9 (11.4) 77.0 (13.0) 74.0 (16.0) 83.0 (11.0) 88.2 (9.0) 82.0 (15.6)

Sex, n (%)

  Male 10,198 (44.2) 5,856 (45.1) 766 (56.0) 6,622 (46.1) 1,620 (44.9) 1,331 (43.9) 625 (30.2) 3,576 (41.0)

  Female 12,868 (55.8) 7,129 (54.9) 601 (44.0) 7,730 (53.9) 1,987 (55.1) 1,704 (56.1) 1,447 (69.8) 5,138 (59.0)

Educational level, n (%)

  Under high school 
degree

974 (4.2) 302 (2.3) 41 (3.0) 343 (2.4) 305 (8.5) 240 (7.9) 86 (4.2) 631 (7.2)

  High school degree 3,988 (17.3) 1,958 (15.1) 160 (11.7) 2,118 (14.8) 927 (25.7) 620 (20.4) 323 (15.6) 1,870 (21.5)

  Some college 4,387 (19.0) 2,212 (17.0) 259 (18.9) 2,471 (17.2) 905 (25.1) 688 (22.7) 323 (15.6) 1,916 (22.0)

  Over college graduate 13,717 (59.5) 8,513 (65.6) 907 (66.3) 9,420 (65.6) 1,470 (40.8) 1,487 (49.0) 1,340 (64.7) 4,297 (49.3)

Executive function, mean (SD)

  Overall 0.197 ± 0.752 0.163 ± 0.827 0.318 ± 0.746 0.182 ± 0.819 -0.007 ± 0.688 0.189 ± 0.499 0.343 ± 0.698 0.217 ± 0.649

  First visit 0.157 ± 0.748 0.072 ± 0.842 0.377 ± 0.668 0.102 ± 0.832 0.167 ± 0.648 0.248 ± 0.454 0.380 ± 0.598 0.246 ± 0.581

  Last visit -0.091 ± 0.894 -0.143 ± 0.977 0.096 ± 0.891 -0.119 ± 0.971 -0.043 ± 0.726 0.044 ± 0.677 -0.181 ± 0.865 -0.046 ± 0.751

Language, mean (SD)

  Overall 0.353 ± 0.808 0.472 ± 0.869 0.392 ± 0.700 0.463 ± 0.851 0.229 ± 0.662 0.166 ± 0.422 0.154 ± 0.805 0.173 ± 0.695

  First visit 0.360 ± 0.739 0.392 ± 0.843 0.467 ± 0.610 0.399 ± 0.824 0.360 ± 0.626 0.239 ± 0.366 0.247 ± 0.625 0.291 ± 0.555

  Last visit 0.088 ± 0.935 0.135 ± 1.016 0.186 ± 0.863 0.140 ± 1.003 0.222 ± 0.722 0.039 ± 0.537 -0.429 ± 1.007 -0.004 ± 0.797

Memory, mean (SD)

  Overall 0.337 ± 0.890 0.372 ± 1.007 0.146 ± 0.873 0.346 ± 0.995 0.286 ± 0.636 0.512 ± 0.549 0.194 ± 0.836 0.324 ± 0.721

  First visit 0.293 ± 0.798 0.216 ± 0.927 0.235 ± 0.717 0.218 ± 0.909 0.406 ± 0.551 0.590 ± 0.456 0.181 ± 0.573 0.417 ± 0.548

  Last visit 0.010 ± 1.042 -0.019 ± 1.155 -0.083 ± 1.035 -0.025 ± 1.144 0.241 ± 0.688 0.176 ± 0.731 -0.393 ± 1.055 0.068 ± 0.845

Cognitive status, n (%)

  Cognitively normal 10,919 (47.3) 4,891 (37.7) 437 (32.0) 5,328 (37.1) 2,740 (76.0) 2,267 (74.7) 584 (28.2) 5,591 (64.2)

  MCI 2,248 (9.7) 820 (6.3) 444 (32.5) 1,264 (8.8) 287 (8.0) - 697 (33.6) 984 (11.3)

  AD 9,272 (40.2) 7,090 (54.6) 486 (35.6) 7,576 (52.8) 445 (12.3) 485 (16.0) 766 (37.0) 1,696 (19.5)

  Dementia (other than 
AD)

627 (2.7) 184 (1.4) - 184 (1.3) 135 (3.7) 283 (9.3) 25 (1.2) 443 (5.1)
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association signals, a conclusion supported by evidence 
that no genes in this region other than the APOE account 
for the observed association with AD risk or onset 
age [77]. Focusing on the  APOE  SNPs encoding the  ε4 
(rs429358) and ε2 (rs7412) alleles, the ε4 SNP was signifi-
cantly associated with lower (worse) scores for all cogni-
tive domains in an age-dependent manner, based on the 
negative sign of βG×Age. Notably, the magnitude of the 
effect of the  ε4 SNP on memory was approximately 1.7 
times greater than on executive function or language in 
the total sample at the median age (Table 2). In the same 
sample, the effect of interaction between ε4 and age was 
1.5–1.9 times larger for memory compared to executive 
function or language. Conversely, the ε2 SNP was signifi-
cantly associated with higher (better) cognitive domain 
scores in the clinic-based cohorts at the median age with 
some limited age-dependent effect (Table 2).

Numerous highly suggestive associations (P < 1 × 10–6), 
including several that were nearly GWS (P < 1 × 10–7), 
were found for individual cognitive domains with other 
loci (Table S3). Notably, language was associated with 
18  ADCY2  SNPs in the community-based cohorts 

(top SNP: rs7734697, PJoint = 6.34 × 10–8) and with 
19  DAPK2  SNPs in the clinic-based cohorts (top SNP: 
rs112972763, PJoint = 7.76 × 10–8). Six  PLXDC2  SNPs 
were associated with executive function in the total sam-
ple (top SNP: rs7083449, PJoint = 7.02 × 10–8), and most 
of the evidence was derived from the community-based 
cohorts.

Genome‑wide pleiotropy analysis identifies the association 
of cognitive domains with the progranulin gene and four 
novel loci
GWAS for the three pairs of cognitive domains col-
lectively identified GWS evidence of association with 
SNPs in five independent loci (Table  3, Table S4) with 
little evidence of genomic inflation in the total sample 
or separately within the clinic-based and community-
based cohorts (λ = 0.964–0.994, Figs. S8, S9 and S10). 
Consistent with the findings from analyses of indi-
vidual cognitive domains, GWS evidence of pleiotropy 
was found for the association of the APOE region SNPs 
with all cognitive domain pairs in the total sample and 
the clinic-based and community-based cohorts (Table 

Fig. 1  Locus Zoom plots showing the association of SNPs in the regions of novel loci with cognitive domains. The SNP with the lowest p-value at 
each locus is indicated with a purple diamond. Computed estimates of linkage disequilibrium (r2) of SNPs in the region with top-ranked SNP are 
color-coded according to the key. Vertical blue lines indicate locations of high recombination rates. Locations of genes in the region are shown 
below the diagram. a Association of rs157405 with executive function in the community-based cohorts. b Association of rs705353 with language in 
the clinic-based cohorts. c Association of rs117523305 with memory in the community-based cohorts. d Association of rs145012974 with language 
in the total sample. e Association of rs5848 with memory in the total sample
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S4). GWS pleiotropy was also observed with rs6733839, 
located between BIN1  and CYP27C1, in the total sam-
ple (PJoint = 9.01 × 10–12) and the clinic-based cohorts 
(PJoint = 6.85 × 10–10) for language and memory (Table 3). 
The association with rs6733839 was evident in the com-
munity-based cohorts (PJoint = 2.52 × 10–4), strengthened 
in the total sample (PJoint = 9.01 × 10–12), well supported 
by association with neighboring variants (Fig. S11), and 
attributable primarily to its main effect for each domain 
(Table 3).

In the clinic-based cohorts, there was GWS plei-
otropy for language and memory with rs73005629 
(PJoint = 3.12 × 10–8) located in an intergenic region 
on chromosome 4 (Table  3, Fig.  2). The joint effect of 
rs73005629 on language (PJoint = 4.66 × 10–7) and mem-
ory (PJoint = 1.47 × 10–7) was equally attributable to its 
main and interaction effects. There was no evidence 
of pleiotropy for rs73005629 in the community-based 
cohorts. Conversely, significant pleiotropy for the same 
domain pair was observed with NCALD SNP rs56162098 
(PJoint = 1.23 × 10–9) and  PTPRD  SNP rs145989094 
(PJoint = 8.34 × 10–9) in the community-based cohorts 
(Table 3). The association with rs56162098 was not evi-
dent in the clinic-based cohorts but was supported by the 
association with neighboring variants (Fig. 2). The same 
PTPRD SNP was also pleiotropic for executive function 
and memory (PJoint = 3.85 × 10–8), but this association 
is not supported by findings in the clinic-based cohorts 
(Table 3) or neighboring SNPs (Fig. 2).

We also identified significant pleiotropy in the commu-
nity-based cohorts for executive function and memory 
with rs12447050, located 5.5  kb upstream from  OSGIN
1  (PJoint = 4.09 × 10–8). This association was comparably 
supported by each domain and the SNP’s main effect and 
interaction with age (Table  3), as well as by neighbor-
ing SNPs (Fig.  2). There was no evidence of association 
with the individual domains or in the pleiotropy model 
in the clinic-based cohorts. However, the magnitude of 
effect for rs12447050 and its interaction with age in each 
domain, as well as the significance levels for the main, 
interaction, and joint pleiotropy tests in the community-
based cohorts and the total sample, were nearly identical 
(Table 3).

Highly suggestive pleiotropy was observed in the com-
munity-based cohorts with two SNPs (rs7081658 and 
rs7070729) located in the  USP6NL/ECHDC3  region, 
an established AD risk locus, for executive function 
and language (PJoint = 3.54 × 10–7 and PJoint = 8.76 × 10–8, 
respectively) and for executive function and memory 
(PJoint = 2.11 × 10–7 and PJoint = 5.09 × 10–8, respectively); 
rs7070729 was also pleiotropic for language and memory 
(PJoint = 7.76 × 10–7) (Table S4). There was also sugges-
tive pleiotropy for executive function and language with 

two SNPs in the AD risk locus  WWOX  (rs13329990, 
PJoint = 8.45 × 10–7; rs11862902, PJoint = 9.60 × 10–7).

Pathways involved in neuronal development or signaling, 
vascular and endocrine systems are related to cognitive 
domain performance
A total of 28 canonical pathways were significantly 
enriched for loci associated with pleiotropy for paired 
domains (Table  4), noting that none of these pathways 
were specific to the clinic-based cohorts, and no signifi-
cant pathways were identified in analyses seeded with 
top-ranked genes in the GWAS for individual cognitive 
domains. The evidence for approximately 60% (17/28) of 
these pathways was derived from analyses of the com-
munity-based cohorts only. The top-ranked pathway, 
synaptogenesis signaling, was significantly enriched for 
genes that emerged from pleiotropy analysis for all three 
pairs of cognitive domains. Several pathways are related 
to neuronal development or signaling (e.g., synaptogen-
esis signaling, synaptic long-term depression, endocan-
nabinoid neuronal synapse, netrin signaling, GABA and 
glutamate receptor signaling, and calcium signaling), 
AD-associated vascular risk factors (e.g., type II diabetes 
and maturity onset diabetes of young signaling, insulin 
secretion signaling, dilated cardiomyopathy and cardiac 
hypertrophy signaling, and nitric oxide signaling in the 
cardiovascular system), and the endocrine system (e.g., 
G protein-coupled receptor-mediated nutrient sensing 
in enteroendocrine cells, insulin, corticotropin-releasing 
hormone, gonadotropin-releasing hormone, androgen, 
and oxytocin signaling). Details for suggestive pathways 
(FDR-adjusted  P < 0.05) and the number of seed genes 
selected from each GWAS and pleiotropy analysis are 
summarized in Tables S5 and S6, respectively.

Discussion
Genome-wide scans for performance measures in three 
cognitive domains in two large clinically ascertained and 
three community-based cohorts revealed GWS asso-
ciations with four well-established AD loci (BIN1,  CR1, 
MS4A6A, and APOE) and eight loci not previously genet-
ically linked to AD or cognitive decline (ULK2, CDK14, 
PURG​, LINC02712, LOC107984373, NCALD, PTPRD, 
and OSGIN1), as well as with GRN which has been asso-
ciated with AD and several other dementing illnesses [7, 
10, 78–80]. These findings were based on analyses that 
leveraged data obtained from one or more cognitive 
examinations, considered cognitive performance changes 
over time, and examined genetic effects on individual or 
pairs of domains. In comparison to previous GWAS of 
cognitive performance, which were limited to the avail-
ability of data for particular NP tests and focused primar-
ily on clinic-based or community-based samples [26–29], 
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our study utilized harmonized measures that enabled 
pooling data obtained using multiple NP protocols and 
considered associations that may be common or unique 
to differentially ascertained samples.

To our knowledge, this is the first genome-wide plei-
otropy study using harmonized cognitive domain scores. 
Compared to previous conventional GWAS or pleiotropy 
studies of individual cognitive traits [26–29], our genetic 
analysis of harmonized cognitive scores allows combin-
ing results from studies using different NP protocols and 
permits greater opportunities for replication and meta-
analyses. This approach has been successfully used in a 
variety of studies of cognitive aging [81–84]. A recent 
study of five preclinical AD cohorts conducted a factor 
analysis on three domains—general cognitive perfor-
mance, episodic memory, and executive function—and 
established a common algorithm for classifying MCI 
progression across the heterogeneously evaluated sam-
ples [85]. Cognitive factor scores derived in an identical 
fashion as those used in this study have been utilized for 
a variety of investigations of AD subgroups [81], which 
linked cognition to imaging [83], neuropathology [84], 
and genetics [15]. Similarly, they have been used in 
genetic studies of cognitive resilience to AD [82, 86].

We identified three novel loci that have functional 
relevance to processes implicated in AD. Dysfunction 
of the protein encoded by ULK2, unc51 like autophagy 
activating kinase 2, has been suggested to cause multiple 
diseases. ULK2 SNPs have been associated with schizo-
phrenia [87], and a ULK2 circular RNA is expressed 
more than tenfold in a vascular dementia rat model 
[88]. Lee and colleagues recently demonstrated that 
amyloid-β 42 oligomer-mediated loss of excitatory syn-
apses in cortical neurons and hippocampal CA1 neurons 
requires AMPK-mediated activation of ULK2-dependent 
mitophagy [89]. PTPRD, protein tyrosine phosphatase 
receptor type D, was previously reported to be associated 
with AD susceptibility [90]. A recent study identified a 
significant association of PTPRD with the accumula-
tion of neurofibrillary tangles that was independent of 
amyloid-β pathology [20]. NCALD encodes a member of 
the neuronal calcium sensor family of calcium-binding 
proteins, which mediates signal transduction in response 
to calcium in neurons. NCALD is downregulated in the 
AD brain and may play a protective role in hippocam-
pal CA1 and CA3 regions [91, 92]. This observation is 
consistent with a finding from a study of differentially 
expressed proteins in rats fed a high-fat diet suggesting 

Fig. 2  Locus Zoom plots showing genome-wide significant pleiotropy for SNPs in the regions of novel loci. The SNP with the lowest p-value 
at each locus is indicated with a purple diamond. Computed estimates of linkage disequilibrium (r2) of SNPs in the region with top-ranked SNP 
are color-coded according to the key. Vertical blue lines indicate locations of high recombination rates. Locations of genes in the region are 
shown below the diagram. a Association of rs12447050 with executive function and memory in the community-based cohorts. b Association of 
rs56162098 with language and memory in the community-based cohorts. c Association of rs145989094 with executive function and memory 
in the community-based cohorts. d Association of rs145989094 with language and memory in the community-based cohorts. e Association of 
rs73005629 with language and memory in the clinic-based cohorts
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that the memory-impairing effects of diet-induced obe-
sity might potentially be mediated by down-regulated 
NCALD within the hippocampus [93].

We also identified a GWS signal in GRN, the gene that 
encodes the anti-inflammatory and neurotrophic factor 
progranulin (PGRN) [94].  GRN  mutations are a well-
established cause of frontotemporal lobar degeneration 
(FTLD). More than 60 disease-causing GRN mutations 
have been identified, accounting for 20% to 25% of famil-
ial FTLD cases and about 10% of all FTLD cases [95]. 
The most significantly associated GRN SNP in our study, 
rs5848, was found in the 3’-untranslated region, which 
is predicted to be a microRNA binding site. Rs5848 is 
the GRN variant most frequently associated with FTLD 
and is associated with a reduction in PGRN in plasma 
and cerebrospinal fluid [96, 97]. In addition to FTLD, 
several studies have shown an association between clini-
cal AD and the rs5848  T  allele, which we found to be 
linked to lower memory performance in both clinic- and 
community-based cohorts [98]. A recent large GWAS 
meta-analysis found a GWS association of AD risk with 
rs5848-T [10]. A recent study examining neuropatho-
logical AD correlates showed that rs5848  T  allele car-
riers had a higher frequency of hippocampal sclerosis 
and TDP-43 deposits, significantly increased tau pathol-
ogy burden, but showed no specific association with 
β-amyloid load or AD neuropathological diagnosis [99]. 
Interestingly, our finding was exclusive to the memory 
domain, which is affected in early stages of AD, but also 
commonly affected in hippocampal sclerosis and lim-
bic-predominant age-related TDP-43 encephalopathy 
(LATE) [100, 101]. Effects were driven by both the SNP’s 
main and SNP × age interaction effects. This finding 
provides additional evidence that variation in GRN may 
be related to neurodegeneration more broadly and that 
restoring PGRN levels may be an effective way to pre-
vent and treat dementia [102].

Highly suggestive pleiotropy (P < 1 × 10–7) was also 
found with other established AD risk loci, including 
USP6NL/ECHDC3 for all three paired cognitive domains 
and WWOX for executive function and language. 
ECHDC3, enoyl-CoA hydratase domain containing 3, 
was previously reported to be associated with AD [7, 10]. 
ADCY2, adenylate cyclase 2, was reported to be associated 
with AD-related changes in hippocampal gene expression 
[103, 104], as well as AD-associated structural changes 
detected by brain imaging [105]. A recent GWAS reported 
the association of DAPK2, death associated protein kinase 
2, with amyloid deposition in the brain [106], a finding 
consistent with studies showing that DAPK1 promotes 
APP phosphorylation and amyloidogenic processing [107]. 
PLXDC2, plexin domain containing 2, is upregulated with 
increasing β-amyloid plaque load or Braak stages [108].

There are no established links of OSGIN1, CDK14, 
and PURG​ to AD. The product encoded by OSGIN1 is 
an oxidative stress response protein that regulates cell 
death and appears to be a key regulator of both inflam-
matory and anti-inflammatory molecules [109, 110]. 
CDK14 encodes a protein kinase whose expression is 
more than two-fold higher in the brain than in any other 
tissue. However, it has been linked to cancer in various 
tissues, primarily outside of the brain. Although the func-
tion of PURG​ is unknown, a SNP in this gene showed sig-
nificant associations in GWAS of cognitive performance 
and intelligence [111, 112]. The biological significance 
of the pleiotropic association of memory and language 
with a chromosome 4 variant located about 170 kb from 
LOC107984373, which encodes a long non-protein cod-
ing RNA, is also puzzling at this time.

Bioinformatic analyses of the top-ranked genes emerging 
from GWAS implicated several biological pathways related 
to neuronal development and signaling, AD-associated 
vascular risk factors, and endocrine pathways. Notably, all 
of the significant pathways were identified from analyses 
of findings from the pleiotropy GWAS analyses, especially 
those supported by the community-based cohorts. Because 
pathways were constructed using information from well-
established metabolic and cell signaling pathways, they 
tend to reflect more common or shared mechanisms rather 
than particular or trait-specific mechanisms. Therefore, 
pleiotropic loci affecting multiple cognitive domains may 
be more suitable as seed genes for canonical pathways than 
loci associated with a single domain. Indeed, in the analyses 
of community-based cohorts, the numbers of seed genes 
from pleiotropy GWAS were 1.5–1.7 times larger than 
those from GWAS of individual cognitive domains (Table 
S6). Considering that AD pathology results in progressive 
dysfunction in several cognitive domains over time, the 
majority of our findings, which emerged from analyses of 
the community-based rather than the clinic-based cohorts, 
may represent pathways underlying cognitive processes 
related to AD progression rather than AD risk.

Interestingly, associations with several well-estab-
lished AD loci, including BIN1, CR1, and MS4A6A, were 
observed only in the clinic-based cohorts. Lack of rep-
lication in the community-based cohorts might be due 
to the relative paucity of AD cases and the higher likeli-
hood of mixed pathologies. Conversely, the associations 
with the known AD locus USP6NL/ECHDC3 and novel 
loci, including ULK2, NCALD, PTPRD, ADCY2, and 
OSGIN1, were observed only in the community-based 
cohorts. Lack of replication in the clinic-based cohorts 
may indicate that these loci are associated with normal 
age-related cognitive changes rather than an AD process. 
However, this explanation seems less likely given their 
previous association with AD risk (USP6NL/ECHDC3) 
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or functional relevance to processes implicated in AD 
and/or their association with other AD-related endo-
phenotypes (NCALD, ULK2 and PTPRD). Alterna-
tively, community-based cohort-specific findings may 
indicate that the effects of these genes are age-depend-
ent or detectable when tracked over time. This idea 
is supported by the observation of the highly signifi-
cant SNP × age interaction term for these loci, which 
for  ULK2, PTPRD, ADCY2, and OSGIN1 were respon-
sible for the significant joint effect to a much greater 
extent than the SNP’s main effect.

We employed a joint test that combines the main 
genetic effects and SNP × age interaction together to 
increase our power to detect genetic associations. 
Nonetheless, interpreting a joint test can be challeng-
ing, requiring examination of effect estimates for both 

the main and interaction terms. The contribution of the 
SNP’s main effect to the joint association for some find-
ings, including the well-established AD loci and several 
novel ones (e.g., ULK2, CDK14, PURG​, LINC02712, and 
GRN), was much stronger than its interaction with age. 
This may reflect that these loci are associated with the 
development rather than the progression of AD. This 
aligns with the fact that these loci were initially identi-
fied using a case-control design. In contrast, particularly 
for the more novel loci, the contribution of the SNP × age 
interaction to the joint association was stronger than the 
main effect. This may reflect that these loci are associated 
with the progression rather than the development of AD 
and could explain why they have not been identified pre-
viously, as few genetic studies of AD have utilized a longi-
tudinal design.

Table 4  Canonical pathways significantly enriched for top-ranked GWAS genes

All Total sample, Community Community-based cohorts, EF Executive function, L Language, M Memory
1 P-values were adjusted for a false discovery rate and 18 separate pathway analyses (threshold P < 0.001)

Pathway Sample GWAS Outcome Number of 
genes

PFDR
1

Synaptogenesis signaling Community L / M 334 4.07 × 10–6

EF / L 191 1.62 × 10–4

EF / M 286 6.61 × 10–4

Opioid signaling Community EF / L 191 8.13 × 10–6

Amyotrophic lateral sclerosis signaling All EF / L 211 2.14 × 10–5

Maturity onset diabetes of young signaling All EF / L 211 2.14 × 10–5

Corticotropin releasing hormone signaling Community EF / L 191 3.39 × 10–5

Dilated cardiomyopathy signaling Community EF / L 191 3.39 × 10–5

Netrin signaling Community EF / L 191 3.39 × 10–5

Neuronal nitric oxide synthase signaling in skeletal muscle cells Community EF / L 191 3.39 × 10–5

Circadian rhythm signaling Community EF / L 191 5.62 × 10–5

Insulin secretion signaling Community EF / L 191 5.62 × 10–5

White adipose tissue browning Community EF / L 191 1.05 × 10–4

Synaptic long-term depression Community EF / L 191 1.62 × 10–4

Nitric oxide signaling in the cardiovascular system All EF / L 211 1.74 × 10–4

GPCR-mediated nutrient sensing in enteroendocrine cells Community EF / L 191 2.63 × 10–4

Protein kinase A signaling Community EF / L 191 2.63 × 10–4

Hepatic fibrosis signaling Community EF / L 191 3.24 × 10–4

GABA receptor signaling Community EF / L 191 3.98 × 10–4

Endocannabinoid neuronal synapse All EF / L 211 4.68 × 10–4

Type II diabetes mellitus signaling All EF / L 211 4.68 × 10–4

GNRH signaling Community EF / L 191 5.25 × 10–4

Cardiac hypertrophy signaling (enhanced) Community EF / L 191 6.92 × 10–4

Gustation pathway Community EF / L 191 6.92 × 10–4

Androgen signaling All EF / L 211 7.94 × 10–4

Calcium signaling All EF / L 211 7.94 × 10–4

Oxytocin signaling All EF / L 211 7.94 × 10–4

G beta gamma signaling All EF / L 211 8.32 × 10–4

AMPK signaling All EF / M 210 9.55 × 10–4

Glutamate receptor signaling All EF / M 210 9.55 × 10–4
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Of note, all of the GWS pleiotropic associations and 
half of the GWS single-domain associations involved the 
memory domain. This is not surprising as prominent mem-
ory impairment is the most common cognitive feature in 
AD. Nonetheless, prominent impairment in other cogni-
tive domains occurs in a reasonable number of AD cases. 
Those specific loci were implicated for particular cognitive 
domains may provide syndrome-specific therapeutic targets 
with an eye toward a precision medicine approach to AD.

Our results also highlight that the biology underlying 
cognitive performance in older individuals is complex and 
likely a function of multiple processes including lifelong 
ability, neurodegeneration and resilience to neurodegen-
eration. Genetic architecture may be influencing cogni-
tion through each of these processes. Without a measure 
of underlying pathology, disentangling the mechanism by 
which genes are affecting cognition is difficult. This point 
applies to both the current study and the large AD GWAS 
in which most participants received a diagnosis based 
only upon assessment of cognition in life. Our finding that 
AD risk is strongly genetically correlated with the factor 
score for memory but not executive function or language 
might provide some insight into these processes. GWAS 
findings for the individual cognitive domains showing 
that memory was associated only with established AD 
risk genes. However, all of the novel associations identi-
fied in the pleiotropy analysis included memory as part 
of the paired outcome. These genetic association patterns 
might argue that our phenotypes for executive function 
and language could reflect decline from AD (rather than 
development of AD), underlying cognitive ability and/or 
cognitive resilience. Future studies that utilize both meas-
ures of cognition and underlying pathology will be needed 
to better disentangle the genetic architecture underlying 
these different processes that influence cognition.

This study has several limitations. Although we 
included several large cohorts whose cognitive test data 
were co-calibrated and harmonized with each other, the 
sample size was small compared to the previous GWAS 
of AD risk. In addition, there was a reduction in power 
for tests of marginal genetic effects or SNP × age interac-
tions because a large portion of the subjects had only one 
visit (FHS-21.5%, NACC-21.1%, ACT-9.9%, ADNI-13.3%, 
and ROSMAP-6.0%). The interpretation of our findings 
based on the joint effect of the SNP and SNP × age inter-
action is complicated because the identified loci could 
imply several meanings to cognitive domain functions or 
AD. Those findings may reflect genetic associations with 
the development or progression of AD or both, but addi-
tional work is needed to address this issue confidently. 
Further, our model assumes linearity in the cognitive 
trajectories, but cognitive trajectories at different dis-
ease stages may be non-linear. The observed associations 

with known AD loci provide validation for our modeling 
approach. Our results are not adjusted for the number of 
genome-wide scans performed, but the analyses for each 
cognitive domain and paired cognitive domain are testing 
separate hypotheses. Correction for analyses conducted 
separately in the clinic- and community-based cohorts 
would raise the significance threshold to 2.5 × 10–8, which 
would render associations for  MS4A6A, LINC02712, 
GRN, LOC107984373, PTPRD,  and OSGIN1  as border-
line GWS. Another concern is the lack of replication 
which will require the availability of co-calibrated longi-
tudinally obtained cognitive data from independent sam-
ples which are informative for AD. Ongoing phenotype 
harmonization efforts of the Alzheimer’s Disease Genet-
ics Consortium, Alzheimer’s Disease Sequencing Project, 
and other studies will likely yield the data necessary for 
replication testing. Because some of the identified loci 
have no obvious connection to AD or cognition, fur-
ther research is required to determine their mechanistic 
pathways. Finally, datasets from other population groups 
containing cognitive domain factor scores for adequately 
powered samples will be needed to extend our findings 
which were derived from non-Hispanic whites only.

Conclusion
Our results provide some insight into biological path-
ways underlying processes leading to domain-specific 
cognitive impairment and AD. The findings may provide 
a conduit toward a syndrome-specific precision medi-
cine approach to AD. Increasing the number of data-
sets by harmonizing measures of cognitive performance 
in other cohorts, as applied in this study, would likely 
enhance the discovery of additional genetic factors of 
cognitive decline leading to AD and related dementias.
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