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Abstract 

Amyotrophic lateral sclerosis (ALS) is caused by upper and lower motor neuron loss and has a fairly rapid disease 
progression, leading to fatality in an average of 2-5 years after symptom onset. Numerous genes have been implicated 
in this disease; however, many cases remain unexplained. Several technologies are being used to identify regions 
of interest and investigate candidate genes. Initial approaches to detect ALS genes include, among others, linkage 
analysis, Sanger sequencing, and genome-wide association studies. More recently, next-generation sequencing 
methods, such as whole-exome and whole-genome sequencing, have been introduced. While those methods have 
been particularly useful in discovering new ALS-linked genes, methodological advances are becoming increasingly 
important, especially given the complex genetics of ALS. Novel sequencing technologies, like long-read sequencing, 
are beginning to be used to uncover the contribution of repeat expansions and other types of structural variation, 
which may help explain missing heritability in ALS. In this review, we discuss how popular and/or upcoming methods 
are being used to discover ALS genes, highlighting emerging long-read sequencing platforms and their role in aiding 
our understanding of this challenging disease.
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Background
Amyotrophic lateral sclerosis (ALS) is a fatal neuro-
muscular disease caused by degeneration of both upper 
and lower motor neurons  in the brain, brainstem, and 
spinal cord, typically displaying accumulation of cyto-
plasmic TDP-43 [1, 2, 3]. The most common clinical 
presentations are asymmetric limb weakness, which 
is seen in about 75% of ALS cases, and bulbar segment 
onset in about 25% of cases [4]. In addition to the motor 

symptoms, approximately 60% of patients diagnosed with 
ALS will experience cognitive and/or behavioral changes, 
while up to 15% of cases may also receive a diagnosis of 
frontotemporal dementia (FTD) [5, 6]. Considerable clin-
ical heterogeneity exists in terms of age of disease onset, 
ranging from 20 to 70 years old [7, 8], and survival after 
diagnosis, which is generally 2-5 years after onset, with 
approximately 10% of the patients living for 10 years or 
more [9, 10]. Diagnosing ALS often proves to be chal-
lenging, with the median time of definitive diagnosis 
between 1 and 4 years to distinguish ALS from other 
motor neuron diseases (MNDs) [11–13]. Clinical history 
and physical examination remain the gold standard for 
diagnosing ALS, even with the advancement of genetic 
testing [14].

In terms of ALS genetics, approximately 10% of all cases 
can be classified as familial (fALS), and the remaining 90% 
of cases are considered sporadic (sALS) [15, 16]. While 
most fALS cases are caused by mutations in a single gene 
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(monogenic), a subset can be attributed to mutations in 
several genes (oligogenic) [17, 18]. With a heritability 
around 60% [19], sALS cases are thought to arise from a 
combination of variants in many genes (polygenic), prob-
ably in addition to environmental factors [17, 18, 20]. It 
should be noted that dividing ALS into fALS and sALS, 
although convenient, may not be straightforward. In fact, 
fALS cases are greatly underreported and can be misclas-
sified as sporadic due to a short disease duration, small 
pedigrees, genetic heterogeneity, phenotypic variability, 
and incomplete penetrance [21–24].

Since the discovery of the first ALS gene in 1993, SOD1 
[25], additional genes have been implicated, ranging from 
causative genes to potential risk factors and disease mod-
ifiers (Table 1). Many types of genetic variants may con-
tribute to ALS, such as single nucleotide variants (SNVs) 
and structural variants. SNVs in coding sequences can 
be pathogenic missense mutations that lead to the pro-
duction of proteins with incorrect amino acid sequences, 
while SNVs in non-coding regions can confer disease risk 
by affecting the expression or splicing of nearby or distal 
genes. The other major class of variants, structural vari-
ants, encompass large genomic alterations in the form of 
insertions, deletions, inversions, translocations, repeat 
expansions, and copy number variations. Structural vari-
ants can also occur in non-coding regions of the genome, 
which often do not change the composition of the mature 
protein [26], and have been implicated in ALS and FTD 
(e.g. repeat expansions in C9orf72) [27, 28]. Pathogenic 
mutations in the genes SOD1, C9orf72, FUS, and TAR-
DBP are the most frequently observed genetic causes of 
ALS [25, 27, 29, 30] and comprise both SNVs (i.e. SOD1) 
and structural variants (i.e. C9orf72).

Early genetic studies of ALS relied on mapping a chro-
mosomal location in ALS pedigrees to nominate dis-
ease genes using a method called DNA linkage analysis. 
One of the most notable examples is the identification 
of chromosomal region 9p21 [86–90] and its subse-
quent refinement [91–94], which eventually led to the 
groundbreaking discovery of a repeat expansion in the 
gene C9orf72 [27, 28]. Another popular method is a 
genome-wide association study (GWAS). The goal of 
a GWAS usually is to quantify differences in allele fre-
quencies across the genome between cases and controls. 
It is an unbiased approach to identify disease-associated 
common genetic variants. This is often performed by 
genotyping numerous single nucleotide polymorphisms 
(SNPs), which are SNVs that are present in at least 1% of 
the population [95], using various methods (e.g. micro-
arrays). A GWAS can reveal significant associations; 
please note, however, that association does not equal 
causation. In the ALS field, GWAS has resulted in sev-
eral discoveries, including that of UNC13A and KIF5A 

[61, 91]. Thus far, GWAS has only explained a small pro-
portion of genetic susceptibility to ALS, suggesting rare 
and structural variants may account for a substantial 
proportion of missing heritability [96].

Sequencing methods
Sanger sequencing
The methods described above were used to discover 
disease-associated genomic loci and genes, but, on their 
own, are unable to provide sequence information about 
the genes themselves. For that, sequencing methods 
could be used. Sanger sequencing was one of the earli-
est sequencing methods developed to determine the 
DNA sequence. Nowadays, a modified version is used, 
where genomic DNA is amplified using primers that tar-
get a region of interest. Subsequently, the amplicon is 
sequenced by capillary electrophoresis. Sanger sequenc-
ing is a reliable method with up to 99.9% accuracy. Cur-
rently, in the ALS field, it is most commonly used to 
screen samples for mutations in well-known ALS genes 
[97] and to confirm the presence of mutations identi-
fied through other methods, such as "next-generation" 
sequencing [98].

Next‑generation sequencing
More recently, sequencing efforts have shifted toward 
next-generation sequencing techniques, such as whole-
exome sequencing (WES) and whole-genome sequenc-
ing (WGS). This enabled researchers to continue their 
search for ALS-linked genes, even in cases without a 
multigenerational family history and in families with 
limited DNA sample availability. These technologies 
leverage high-throughput, large-scale parallel DNA 
sequencing of all coding sequences (WES) or the entire 
genome (WGS) and can be very powerful in address-
ing monogenic disorders [99–101]. Briefly, to perform 
next-generation sequencing, DNA must be fragmented, 
regularly by shearing, sonication, or enzyme digestion. 
Then, linkers or specialized adaptors are often added at 
the ends of the fragmented molecules to create template 
libraries. The resulting clusters of DNA fragments are 
typically amplified on a chip, producing millions of cop-
ies of double-stranded DNA. Frequently, a signal for each 
base is detected using fluorescence during the sequenc-
ing procedure. Using this method, it is possible to pro-
duce either single (one direction of sequencing) or paired 
(both directions of sequencing) end reads that will need 
to be analyzed by a process known as base calling. Dif-
ferent software programs are used to sort and align DNA 
sequences to the reference genome and analyze the data 
efficiently [102]. As the cost of sequencing is declin-
ing, bigger cohorts are being sequenced. This enables 
the identification of coding and non-coding variants 
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Table 1  Discovery methods of ALS-associated genes (Adapted from Goutmann et al- Emerging insights into the complex genetics 
and pathophysiology of amyotrophic lateral sclerosis [31])

Gene by Discovery 
Method

Chromosomal 
Position

Inheritance 
Pattern

ALSoD Category Pathogenic 
Mechanism

fALS sALS Year of 
Discovery

References

Linkage Analysis
  ALS2 2q33.1 AR Tenuous Trafficking and degra-

dation of proteins
< 1% < 1% 2001 [32]

  C9orf72 9p21.2 AD Definitive ALS gene Repeat expansion, 
Trafficking, degrada-
tion of proteins, RNA 
foci, DPRs

40% 7% 2011 [27, 28]

  DAO 12q24.11 AD Moderate evidence Oxidative stress < 1% < 1% 2010 [33]

  DCTN1 2p13.1 AD, AR Tenuous Trafficking and degra-
dation of proteins

< 1% < 1% 2003 [34]

  ERBB4 2q34 AD Moderate evidence Neuronal cell migra-
tion and develop-
ment

< 1% < 1% 2013 [35]

  FUS 16p11.2 AD Definitive ALS gene RNA processing/
splicing

4% 1% 2009 [29, 36]

  GLT8D1 3p21.1 AD Tenuous Unknown < 1% < 1% 2019 [37]

  hnRNPA1 12q13.13 AD Definitive ALS gene RNA processing/
splicing

< 1% < 1% 2013 [38]

  hnRNPA2B1 7p15.2 AD Tenuous RNA processing/
splicing

< 1% < 1% 2013 [38]

  MATR3 5q31.2 AD Tenuous RNA processing/
splicing

< 1% < 1% 2014 [39]

  SETX 9q34.13 AD Tenuous RNA processing/
splicing

< 1% < 1% 1998 [40]

  SOD1 21q22.11 AD, AR Definitive ALS gene Gain of toxic protein 12% 1-2% 1993 [25]

  SPG11 15q21.11 AR Tenuous DNA Repair damage < 1% < 1% 2010 [41, 42]

  TARDBP 1p36.22 AD Definitive ALS gene RNA processing/
splicing

4% 1% 2008 [30, 43, 44]

  UBQLN2 Xp11.21 XL Definitive ALS gene Trafficking and degra-
dation of proteins

< 1% < 1% 2011 [45]

  VAPB 20q13.32 AD Definitive ALS gene Trafficking and degra-
dation of proteins

< 1% < 1% 2004 [46]

Candidate Gene Analysis
  ANG 14q11.2 AD Moderate evidence RNA processing/

splicing
< 1% < 1% 2006 [47]

  ATXN2 12q24.12 AD Clinical modifier RNA processing/
splicing

< 1% < 1% 2010 [48]

  CHMP2B 3p11.2 AD Moderate evidence Trafficking and degra-
dation of proteins

< 1% < 1% 2006 [49]

  CHRNA3 15q24 N/A N/A Synaptic dysfunction < 1% < 1% 2009 [50]

  EWSR1 22q12.2 N/A Tenuous RNA processing/
splicing

< 1% < 1% 2012 [51]

  FIG4 6q21 AD Moderate evidence Trafficking and degra-
dation of proteins

< 1% < 1% 2009 [52]

  GLE1 9q34.11 N/A Moderate evidence RNA processing/
splicing

N/A N/A 2016 [53]

  NEFH 22q12.2 AD, AR Tenuous Trafficking and degra-
dation of proteins

< 1% < 1% 1999 [54]

  PON1-3 7q21.3 N/A Tenuous Lipid metabolism < 1% < 1% 2009 [55]

  PRPH 12q13.12 AD, AR Tenuous Trafficking and degra-
dation of proteins

< 1% < 1% 2004 [56]

  SIGMAR1 9p13.3 AR Tenuous Trafficking and degra-
dation of proteins

< 1% < 1% 2011 [49]
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associated with ALS. To prioritize variants, analyses like 
unsupervised learning [103, 104], linear mixed-model-
ling, and gene burden testing [105] have been employed. 
For example, an exome-wide rare variant burden analy-
sis confirmed the significant GWAS hit in KIF5A, and 

additionally, revealed significant associations for TBK1 
and NEK1 [71, 76, 106]. To extend aforementioned stud-
ies, Project MinE (see section ‘Collaborative sequencing 
efforts’ for additional details) aims at performing WGS 
on 15,000 ALS patients and 7500 matched controls. In 

Table 1  (continued)

Gene by Discovery 
Method

Chromosomal 
Position

Inheritance 
Pattern

ALSoD Category Pathogenic 
Mechanism

fALS sALS Year of 
Discovery

References

  SQSTM1 5q35.3 AD Tenuous Trafficking and degra-
dation of proteins

~ 1% < 1% 2011 [57]

  TAF15 17q12 N/A Tenuous RNA processing/
splicing

N/A N/A 2011 [58]

GWAS
  CFAP410 (C21orf2) 21q22.3 N/A Strong evidence Cytoskeletal defects < 1% < 1% 2016 [59]

  CAMTA1 1p36.31-p36.23 AD Clinical modifier Trafficking and degra-
dation of proteins

N/A N/A 2016 [60]

  CCNF 16p13.3 AD Strong evidence ~ 1-3.3% < 1% 2016 [59]

  KIF5A 12q13.3 AD Definitive ALS gene Axonal pathology N/A N/A 2018 [61]

  NIPA1 15q11.2 AD Strong evidence Repeat expansion N/A N/A 2019 [62]

  SARM1 17q11.2 N/A Moderate evidence Axonal pathology N/A N/A 2021 [63]

  TIA1 2p13.3 AD Tenuous Oxidative stress ~ 2.2% < 1% 2017 [64]

  UNC13A 19p13.11 N/A Definitive ALS gene Synaptic dysfunction N/A N/A 2012 [65, 66]

WES/WGS
  ANXA11 10q22.3 AD Definitive ALS gene Trafficking and degra-

dation of proteins
~ 1% ~ 1.7% 2017 [67]

  CHCHD10 22q11.23 AD Definitive ALS gene Trafficking and deg-
radation of proteins 
(Mitochondria)

< 1% < 1% 2014 [68, 69]

  DNAJC7 17q21.2 N/A Moderate evidence Trafficking and degra-
dation of proteins

< 1% < 1% 2019 [70]

  NEK1 4q33 AD Definitive ALS gene Trafficking and degra-
dation of proteins

~ 1-2% < 1% 2015 [71–74]

  PFN1 17p13.2 AD Definitive ALS gene Trafficking and degra-
dation of proteins

< 1% < 1% 2012 [75]

  TBK1 12q14.2 AD Definitive ALS gene Trafficking and degra-
dation of proteins

~ 3% < 1% 2015 [76–78]

  TUBA4A 2q35 AD Strong evidence Trafficking and degra-
dation of proteins

< 1% < 1% 2014 [79, 80]

  VCP 9p13.3 AD Definitive ALS gene Trafficking and degra-
dation of proteins

1% 1% 2010 [81]

  ERLIN2
Homozygosity mapping

10q24.31 AR Tenuous Lipid transport N/A N/A 2012 [82]

  EPHA4
Functional study

2q36.1 N/A Definitive ALS gene Axonal pathology N/A N/A 2012 [83]

  OPTN
Homozygosity mapping

10p13 AD, AR Definitive ALS gene Trafficking and degra-
dation of proteins

1% < 1% 2010 [84]

  VEGFA
Functional testing

6p21.1 N/A Tenuous Angiogenesis N/A N/A 2009 [85]

AD Autosomal dominant inheritance, AR Autosomal recessive inheritance, XL X-linked inheritance. ALS Online Database (ALSoD) category definitions = Definitive 
ALS gene Variants in these genes show increase in risk of ALS based on statistical test, Clinical modifier Variants in these genes have been linked to a difference in 
clinical phenotype of ALS, Strong evidence Variants in these genes have shown to increase risk in well-conducted recent studies but require replication or resolution 
of conflicting evidence, Moderate evidence Variants in these genes have been associated with ALS in smaller studies or there may be contradictory evidence, Tenuous 
Variants in these genes have been associated with ALS in smaller studies a while ago but have not stood up to replication. They may also be genes that have been 
associated with ALS-like diseases, which are no longer recognized as a clinical diagnosis of ALS. N/A Information is not available. fALS represents the reported 
frequency of these variants in familial ALS cases and sALS represents the reported frequency of these variants in sporadic ALS cases
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addition to KIF5A and NEK1, this project already iden-
tified CFAP410 [59, 61, 71, 107], as well as detected 
structural variants in C9orf72, VCP, and ERBB4 [108]. 
Nonetheless, WES and WGS are not entirely without 
limitations. One major drawback of WES is its restriction 
to exonic regions, generally missing intronic, promoter, 
and enhancer variants. Both WES and WGS depend on 
read quality and sequencing depth, and additionally, they 
encounter issues calling structural variation. For example, 
the intronic repeat in C9orf72 has been identified though 
linkage mapping and the locus has been implicated in 
several GWASs; however, the expansion is challenging/
arduous to capture and size by WGS because of the diffi-
culty aligning short-read data of microsatellite and minis-
atellite DNA sequences [109, 110]. Though bioinformatic 
tools have now been developed to detect structural vari-
ation in short-read data (ExpansionHunter, HipSTR, 
GangSTR, etc.) [102, 111, 112], other approaches that 
potentially provide a more in-depth characterization will 
be valuable in understanding the missing heritability in 
ALS and/or identifying disease modifiers [113].

Long‑read sequencing
While the previously discussed approaches have been 
crucial to gene discovery in ALS, newer technologies 
are beginning to take precedent to address outstanding 
genomic questions. One approach that is continuing to 
gain popularity is long-read sequencing. Though there 
are multiple platforms available, and others in develop-
ment, long-read sequencing can broadly be defined as 
any single-molecule sequencing approach that is capa-
ble of generating reads that are multiple kilobases in 
length. Platforms from Pacific Biosciences (PacBio) 
[114, 115] and Oxford Nanopore Technologies (ONT) 
[116, 117] appear to have emerged as the leading long-
read sequencing technologies (Fig. 1).

PacBio has developed a technology called single-mol-
ecule real-time (SMRT) sequencing [114, 118]. Origi-
nally developed in 2009, PacBio’s SMRT sequencing 
produces long reads by incorporating phospholinked 
nucleotides labelled with different colored fluorophores. 
SMRT sequencing is achieved at zero mode waveguides 
(ZMWs), which are tiny wells with a glass bottom, that 
can hold a single DNA molecule. PacBio’s SMRT cells 
accommodate millions of these ZMWs for sequencing 
to occur. At each ZMW, an anchored DNA polymerase 
will incorporate a labelled nucleotide, complementary 
to that from the template DNA molecule. When this 
occurs, light is emitted and the signal, which is unique to 
each base, is measured in real time [114, 118, 119]. More 
recently, PacBio has implemented updated sequenc-
ing technologies with the Sequel II system, and in 2019 
they introduced high fidelity (HiFi) sequencing, which 

drastically improves the accuracy of the sequencing by 
utilizing circularized adapters (SMRT Bell Adapters) 
so that each molecule can be sequenced multiple times 
[120]. With this option, the user can computationally call 
a consensus sequence – a circular consensus sequence 
(ccs read) – to obtain the most accurate read possible, 
with reads being > 99.9% accurate [120]. While HiFi 
sequencing may be the best option for obtaining the most 
accurate sequences, another method, called continuous 
long-read sequencing (clr) generates longer reads. Addi-
tionally, in 2022 PacBio announced a new platform called 
the Revio. The Revio is a sequencer that performs HiFi 
sequencing at a much greater scale than what was previ-
ously achievable. It is able to generate data at a 15x higher 
throughput than the Sequel II, containing 25 million 
ZMWs in a single SMRT cell [121].

The other most prominent long-read sequencing 
technology is from ONT. ONT has pioneered the nano-
pore technology for long-read sequencing, where they 
are able to sequence extremely long reads while also 
yielding many reads [116, 122]. Nanopore sequenc-
ing works by using a motor protein and tether to pull 
a single-stranded DNA molecule through a nanop-
ore. The change in ionic current is measured as each 
nucleotide is passed through the nanopore, with unique 
signals for each base [116, 123]. There are three main 
ONT sequencing platforms, including the MinION 
[116, 122, 124–126], GridION [127, 128], and Prome-
thION [129, 130], which are different sequencers with 
the same underlying technology, but varying strengths 
and weaknesses. The MinION is the smallest and most 
cost effective of the machines offering desktop and 
portable sequencing options, but has the lowest yield, 
lowest accuracy (initial estimates around 60%) and can 
only sequence one flow cell at a time [116]. The Grid-
ION allows for up to five flow cells at a time and can 
generate 250 Gb of sequencing data but does not offer 
much improvement from the MinION other than scal-
ability [131]. Lastly, the PromethION offers up to 48 
flow cells and produces the most accurate sequencing 
data offered by ONT, with a read accuracy of up to 99% 
[132]. Overall, considerations of cost, read length, read 
depth, and sequencing accuracy need to be considered 
when choosing which long-read sequencing technology 
to use.

Long‑read sequencing applications
Long-read sequencing has been used in other fields 
to create reference genomes and/or transcriptomes 
for a diverse number of species [122, 133–136]. More 
recently, in humans, long-read WGS has been utilized 
by the telomere-to-telomere consortium to sequence 
the first “complete human genome” [137, 138]. This 



Page 6 of 15Udine et al. Molecular Neurodegeneration            (2023) 18:4 

expedition begun to build a reference genome with-
out any gaps in humans, where researchers used both 
PacBio and ONT to sequence every part of the genome, 
including the telomeres and centromeres that were pre-
viously too difficult to capture [137, 138]. One of the 
main advantages of long-read WGS is its ability to cover 
these kinds of complex genomic regions and find struc-
tural variation [139–142]. Structural variation, includ-
ing insertions, deletions, inversions, translocations, 
expansions, and copy number variations are difficult to 
capture with short-read sequencing because the length 
of each sequencing read is often shorter than the size 
of the structural variant [140, 141, 143]. As previously 
mentioned, (see Background), structural variation may 

explain some of the missing heritability in ALS [113]. 
Thus far to our knowledge, only one published study has 
performed long-read WGS in the context of ALS, where 
they focused on C9orf72 repeat expansions [109]. Using 
the ONT MinION, they could not detect any reads cov-
ering the C9orf72 expansion, while with PacBio SMRT 
sequencing there was 8x coverage of the expansion [109]. 
Currently, no large-scale association studies in ALS have 
been reported (yet) with long-read WGS. Studies have 
utilized long reads, however, to identify many structural 
variants in a small number of subjects [144], and been 
used to resolve complex regions that harbor known pol-
ymorphisms [145–148] or to validate structural variants 
that have been determined by other methods [149, 150]. 

Fig. 1  Overview of short-read and long-read sequencing technologies. A Examples of widely used platforms for short-read and long-read 
sequencing technologies. B The primary difference between short-read and long-read sequencing technologies is the significant increase in read 
length. In contrast to short-read sequencing (150–300 bp), long-read sequencing has the capacity to sequence reads spanning multiple kilobases 
in one single read, thereby requiring fewer reads to cover the same gene. The read overlap seen with long-read data reduces the sequence gaps 
as observed in short-read data. C Semi-quantitative comparison of short-read and long-read sequencing of various features including the ability to 
detect single nucleotide variants (SNVs), structural variants, and complete genome phasing, as well as the overall read length, accuracy, throughput, 
and sequencing cost
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Therefore, there is great promise for this technology to 
be used in the future of ALS research.

Rather than performing genome-wide long-read 
sequencing, targeted sequencing approaches can be 
used to scrutinize highly complex regions of the genome 
where there is known genetic risk. For very long variants 
or repeat expansions, WGS may not have enough reads to 
sufficiently cover those regions [109]. Therefore, targeted 
methods are extremely useful for understanding repeat 
expansions and have been applied in many neurological 
diseases, such as those associated with repeat expansions 
in FMR1 [151, 152], NOTCH2NLC [153], DM1 [154] 
and HTT [155] to name a few. PacBio and ONT both 
offer targeted sequencing platforms that select a specific 
region of the genome using primers, probes, or CRISPR-
based methods. PacBio’s targeted sequencing method, 
No-Amp (no amplification) sequencing is a DNA 
sequencing approach that can be used with CRISPR-
Cas9 and custom designed guide RNAs to target a spe-
cific region in the genome [156]. The main advantages 
of this approach over alternative methods are that it can 
measure the exact length and sequence of the expansion, 
while detecting DNA methylation (as can ONT) [156]. 
In the design of No-Amp studies, researchers can elect 
to capture the flanking regions around the expansion so 
that expansion length, which may act as a disease modi-
fier in certain diseases, can be accurately sized by ensur-
ing the entire expanded region is captured. This has been 
applied, for example, to sequence through the C9orf72 
repeat expansion [109, 157]. No-Amp sequencing that 
has been completed in this region has demonstrated 
that the expansion length from No-Amp is correlated 
with the estimated length from Southern blotting, the 
current gold standard for sizing the C9orf72 expansion 
[157]. Targeted sequencing has been done for other ALS 
genes, where long-read sequencing revealed an unstable 
intronic repeat with variation in the sequence of the gene 
WDR7, which was missed by other sequencing technolo-
gies [158]. No-Amp sequencing can be done on a number 
of genes at the same time, especially with smaller expan-
sions. This multi-gene approach has been used to look 
at repetitive regions that cause various spinocerebellar 
ataxias (SCAs) [159], such as SCA1, SCA2, SCA10, and 
SCA36, as well as myotonic dystrophy type 1, where it 
was possible to size the repeats and detect interruptions 
in the sequence within the each repeat [159, 160]. One of 
these diseases, SCA2 is caused by a repeat expansion in 
the gene ATXN2 [161], which has been demonstrated to 
be a genetic modifier of ALS [48, 162, 163].

Here, we have highlighted the power of long-read 
DNA sequencing (Fig.  1), specifically demonstrating 
its ability to sequence through highly complex regions 
of the genome [141]. As mentioned previously, the two 

technologies highlighted above both detect DNA meth-
ylation, however, tools for analyzing this data are in 
earlier stages of development [164, 165]. In addition to 
these two main platforms, other options from compa-
nies such as Beijing Genomics Institute, 10x genomics, 
and Illumina are available or in development. Alterna-
tively, non-sequencing, optical mapping approaches 
from Bionano and OpGen can be used to visualize 
large chromosomal abnormalities. Despite the many 
advantages of long-read sequencing, there remain limi-
tations. Primarily, it is generally more expensive than 
alternative approaches, while generating fewer reads 
than short-read sequencing [166]. Additionally, there 
is a great computational cost. Data files can be on the 
scale of terabytes of data per flow cell, which makes 
data storage and processing costly. Moreover, the qual-
ity of the material required to guarantee sequencing 
integrity can be a challenge when working with frozen 
tissue, particularly tissue from the central nervous sys-
tem. Finally, though much longer reads can be obtained 
than with traditional sequencing methods, it is inevita-
ble that some structural variants will exceed read length 
capabilities. Nevertheless, this technology is continuing 
to advance, with reduction of cost and rapid improve-
ments to the number, the length, and the accuracy of 
reads that are generated.

Multi‑omics
Thus far, we have focused on the use of single DNA 
sequencing techniques to identify causal variants and 
genes, as well as genetic modifiers and/or risk factors of 
ALS. While these approaches have and will continue to 
be widely useful, there is tremendous value in integrating 
multiple data types to further prioritize disease-relevant 
or causative genes. Functional genomic and/or multi-
omic approaches rely on incorporating DNA sequenc-
ing data with other data types to look at the epigenome, 
transcriptome, proteome, etc. Methods for these analyses 
are very powerful for highly polygenic diseases, where 
multiple common variants may confer some disease risk 
if not sufficient to cause disease. Given the apparent poly-
genic nature of sALS [61, 107], it will be important to use 
these integrative approaches to nominate genes that may 
be impacted by identified genetic variants. Herein, this 
review will discuss common functional genomic/multi-
omic approaches while highlighting how they have been 
used in ALS or related diseases.

Perhaps the most commonly used approach in multi-
omic research is bulk short-read RNA sequencing 
(RNAseq). RNAseq is a next-generation sequencing 
method that can be used to quantify gene expression and 
splicing for many genes across the entire transcriptome. 
RNAseq analyses are commonly used in animal and cell 
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models of ALS to determine the transcriptomic effects 
of gene knockout or overexpression [167–171]. Standard 
disease-relevant RNAseq analyses in humans are used to 
perform case vs. control analyses to identify differential 
gene expression and differential splicing across the tran-
scriptome. Other analyses, like network and pathway 
analyses can be done to find networks of genes whose 
expression is correlated and determine the dysregulated 
molecular pathways, rather than single genes. This has 
been done many times across neurodegenerative dis-
eases including in the ALS field [172–175]. Differential 
expression analysis of human brain tissue in the context 
of ALS, for instance, has revealed that sALS and C9orf72-
linked ALS demonstrate wide-spread splicing altera-
tions, but have unique transcriptomic profiles [172, 174], 
and later showed that repetitive elements are increased 
in C9orf72-linked ALS [167, 173]. Another RNAseq 
study in ALS identified three major unique molecular 
subtypes - retrotransposon activation, oxidative dam-
age, and glial activation - of ALS, based on unique tran-
scriptomic profiles [175]. Additional RNAseq data was 
generated in human ALS tissue, which was used to show 
truncated transcripts of STMN2, a microtubule gene that 
has been implicated in ALS and FTD, are present specifi-
cally in tissues with TDP-43 pathology [176–178]. Fur-
ther analyses of RNAseq data revealed the mechanism 
by which ALS-associated SNPs in the gene UNC13A are 
likely pathogenic [65, 91, 107]. Moreover, RNAseq was 
performed in multiple cell types and in human tissues to 
show that variants in UNC13A increase the inclusion of 
a cryptic exon, which is an exon that is present within a 
normally intronic region and is incorrectly included in 
the mature mRNA, possibly by preventing TDP-43 from 
binding to the cryptic splice site [179, 180]. These cryptic 
exons may be particularly relevant in ALS, as one of the 
roles of TDP-43 is to prevent their inclusion into mature 
RNAs [167]. Cryptic splicing events may continue to 
be observed in additional genes relevant to ALS and 
are proposed to be pathogenic by either introducing an 
early stop codon, causing a loss of expression, or by being 
incorporated into the mature RNA, and thus potentially 
leading to the production of a toxic protein. Future stud-
ies, like the ones described here, are essential for increas-
ing our understanding about how genetic variants may 
confer pathogenicity [167].

Currently, single-cell and single-nuclei RNAseq 
approaches are being used to identify cell type changes 
and transcriptomic alterations within specific cell types. 
Many single-cell studies have been utilized in the cancer 
field and in other neurodegenerative diseases, like Alz-
heimer’s disease [181]. More recently, researchers have 
begun to perform single-cell sequencing in the ALS field. 
These studies have pointed toward alterations in multiple 

cell types, suggesting that genetic risk of ALS is conferred 
through interneurons, motor neurons/Betz cells, and 
oligodendrocytes [182]. This goes beyond bulk RNAseq 
methods, allowing researchers to find cell type alterations 
that are unable to be detected with current pathological 
measures.

Other newer approaches can be used to pinpoint genes 
and proteins that change in specific regions of a cell 
or tissue. Spatial transcriptomics has been used more 
widely in cancer and tumor biology, with more limited 
applications in neurodegeneration and ALS [183, 184]. 
One study performed spatial transcriptomics in mouse 
and human ALS tissue and found alterations in micro-
glia and astrocyte dynamics in the spinal cord [183]. 
Another study found 16 transcripts that were dysregu-
lated in the granular cell layer of ALS spinal cords [184]. 
This approach can be further applied to look for tran-
scriptomic changes surrounding the various pathologi-
cal features of ALS (i.e. TDP-43), as has been done in 
the context of amyloid pathology in Alzheimer’s disease 
[185].

In addition to these short-read RNAseq approaches, 
long-read RNAseq can also be used to improve upon 
short-read approaches by detecting more alternative 
splicing events than short-read sequencing [186] and 
identifying novel transcript variants and genes, which 
may be particularly relevant to ALS given the strong 
implication of RNA-binding proteins in disease patho-
genesis [187–192]. PacBio [159] and ONT [193] also 
dominate the long-read RNAseq field with RNAseq pos-
sible on all the previously described platforms. Efforts are 
currently ongoing to apply long-read RNA sequencing 
to sizeable human datasets, and thus far have primarily 
been used for transcriptome reference assembly.

Multi-omic approaches, however, are not just limited to 
expression profiling. Other approaches, such as ATAC-
seq (chromatin accessibility) [194], CHIP-seq (protein-
DNA/RNA binding) [195], and HI-C (genome structure/
interactions) [196] can be used to look at regulatory 
changes across the entire genome. Relevant to ALS, 
the Answer ALS consortium [197] is pioneering efforts 
to integrate many types of multi-omic data, including 
genomic, transcriptomic, epigenomic, proteomic, and 
metabolomic data, with the end goal of developing a cure 
for ALS (see section ‘Collaborative sequencing efforts’ for 
additional details). Various multi-omic studies relevant to 
ALS have been completed in induced pluripotent stem 
cell (iPSC) models [198, 199], with one group integrat-
ing ALS GWAS with RNAseq, ATAC-seq, CHIP-seq, and 
HI-C to identify KANK1 as an ALS risk gene [199].

A common way to integrate multi-omic data is through 
quantitative trait loci mapping (QTLs) [200]. QTLs can 
be used to determine the molecular effect of a genetic 
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variant, where the presence of a variant can be associ-
ated with expression (eQTL), splicing (sQTL), methyla-
tion (meQTL), or other -omic measures. QTL results are 
used in transcriptome-wide association studies (TWAS) 
to nominate genes that may be impacted by disease-
associated genetic variants [201]. Two TWASs have been 
completed in ALS, where expression was estimated from 
human brain tissue and blood. These studies have been 
able to validate previously identified GWAS loci, and 
nominate 7 and 5 novel genes, respectively [202, 203]. 
Like loci identified through GWAS and other methods, 
TWAS results require validation and replication, how-
ever it is clear that TWAS itself can also be used to iden-
tify novel loci.

Collaborative sequencing efforts
In many fields, not just in the ALS community, efforts are 
being made to generate large datasets that include many 
individuals in order to increase power to detect genetic 
variants. Project MinE aims at generating WGS from 
greater than 15,000 ALS patients and an additional 7500 
controls [204]. The Clinical Research in ALS and related 
disorders for Therapeutic development (CReATe) con-
sortium seeks to discover ALS biomarkers, creating a 
data repository that contains WGS and biospecimens for 
> 1000 subjects with ALS or other MNDs [205]. Answer 
ALS [197], which was also mentioned earlier, is focused 
on developing ALS patient-derived cell lines and gen-
erating multi-omic data from cell lines and human tis-
sue data. NeuroLINCS, which is a major contributor to 
Answer ALS, is a collaborative effort to perform multi-
omic profiling of iPSC-derived motor neurons [198]. 
Likewise, the NYGC ALS Consortium, which contributes 
to the sequencing effort of Answer ALS, is working to 
integrate WGS and RNAseq data from human ALS tis-
sue [61]. Each of these consortia and collaborative efforts 
have the same end goal – to work towards developing 
a treatment for ALS. It should be noted, though, that 
these efforts are all works in progress and do not pro-
vide all answers to the many challenging questions they 
are attempting to address. Of course, creating these large 
datasets will yield many new lines of investigation. How-
ever, researchers should be mindful that like other stud-
ies, validation and replication remains crucial.

These collaborative efforts use many of the previ-
ously discussed methods and technologies and apply 
them to global datasets to identify disease-relevant vari-
ants and genes that we currently do not have enough 
power to detect. Analysis of these datasets may require 
machine learning or deep learning approaches with the 
goal of deciphering causal variants and identifying dis-
ease subtypes that may contain distinct genetic drivers 
[206, 207]. These datasets seek to move/ will potentially 

move the field towards developing therapeutics and pos-
sibly to inform personalized medicine. In the genom-
ics field for sporadic diseases, which accounts for 90% of 
ALS patients, larger GWAS studies can allow researchers 
to calculate polygenic risk scores (PRS). These scores can 
be used to determine which pathways may be driving dis-
ease risk or to calculate a genetic risk for disease in a given 
individual. PRS can be calculated using the summary sta-
tistics from massive association studies (i.e. GWAS) and 
therefore can be updated with every new association 
study that is released [208, 209]. In the future, it may be 
possible to use these scores in the same way that we use 
current genetic testing, but rather than looking at one or 
a few genes, the whole genome will be considered [210]. 
While some PRS scores are currently being used for mel-
anoma [211], coronary artery disease [212] and diabetes 
[213], PRS is still primarily in the research phase for ALS 
and many other diseases. One PRS has been completed 
recently in ALS but did not seem likely to have clinical 
utility based on the small proportion of heritability that it 
could explain [214]. Perhaps this is because ALS is driven 
by variation other than common SNPs, so PRS calculated 
from GWAS may never be sufficient [107]. Possibly some 
of the long-read sequencing and multi-omic approaches 
can be utilized to improve the predictive power of PRS. 
It should be noted that PRS will require large datasets for 
training and is highly dependent on population structure 
[215]. Because most GWAS have been completed in Cau-
casian/European populations, there is a risk that if PRS 
are introduced in the clinic, they may not benefit diverse 
populations worsening current disparities in healthcare 
[215]. Therefore, efforts should continue to be made to 
include patients of many genetic population backgrounds 
in sequencing studies.

Conclusions
Classical gene discovery methods have helped to uncover 
important genetic variation that is causative or modu-
lates risk of developing ALS. Linkage analyses in familial 
studies and Sanger sequencing will continue to remain 
pertinent to identify variants in known genomic regions. 
Newer sequencing methods have facilitated discovery of 
pathogenic variation in individuals, families and even in 
large populations not just for known genes, but across 
the entire genome. The emergence of long-read sequenc-
ing has shed light on more complex variation, including 
repeat expansions and other types of structural varia-
tion in ALS. In the upcoming years, we expect that long-
read sequencing technologies will continue to be used by 
more researchers and clinicians, especially if the costs 
decrease, as it provides an unbiased approach to cap-
ture the complex genetics of ALS. Integration of multi-
ple methods using multi-omic techniques to determine 
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the effect of variants will also continue to help nominate 
genes and pathways that contribute to disease patho-
genesis. Improving our understanding of the origin and 
course of the disease will be useful not only in develop-
ing hypotheses for research but will be equally important 
clinically to help with genetic testing and disease predic-
tion, ultimately offering therapeutic solutions for this 
devastating disease.
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