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Abstract 

Background:  Alzheimer’s disease is characterized by an abnormal increase of phosphorylated tau (pTau) species in 
the CSF. It has been suggested that emergence of different pTau forms may parallel disease progression. Therefore, 
targeting multiple specific pTau forms may allow for a deeper understanding of disease evolution and underlying 
pathophysiology. Current immunoassays measure pTau epitopes separately and may capture phosphorylated tau 
fragments of different length depending on the non-pTau antibody used in the assay sandwich pair, which bias the 
measurement.

Methods:  We developed the first antibody-free mass spectrometric method to simultaneously measure multiple 
phosphorylated epitopes in CSF tau: pT181, pS199, pS202, pT205, pT217, pT231, and pS396. The method was first 
evaluated in biochemically defined Alzheimer’s disease and control CSF samples (n = 38). All seven pTau epitopes 
clearly separated Alzheimer’s disease from non-AD (p < 0.001, AUC = 0.84–0.98). We proceeded with clinical validation 
of the method in the TRIAD (n = 165) and BioFINDER-2 cohorts (n = 563), consisting of patients across the full Alzhei‑
mer’s disease continuum, including also young controls (< 40 years), as well as patients with frontotemporal dementia 
and other neurodegenerative disorders.

Results:  Increased levels of all phosphorylated epitopes were found in Alzheimer’s disease dementia and Aβ 
positron emission tomography-positive patients with mild cognitive impairment compared with Aβ-negative con‑
trols. For Alzheimer’s disease dementia compared with Aβ-negative controls, the best biomarker performance was 
observed for pT231 (TRIAD: AUC = 98.73%, fold change = 7.64; BioFINDER-2: AUC = 91.89%, fold change = 10.65), 
pT217 (TRIAD: AUC = 99.71%, fold change = 6.33; BioFINDER-2: AUC = 98.12%, fold change = 8.83) and pT205 (TRIAD: 
AUC = 99.07%, fold change = 5.34; BioFINDER-2: AUC = 93.51%, fold change = 3.92). These phospho-epitopes also 
discriminated between Aβ-positive and Aβ-negative cognitively unimpaired individuals: pT217 (TRIAD: AUC = 83.26, 
fold change = 2.39; BioFINDER-2: AUC = 91.05%, fold change = 3.29), pT231 (TRIAD: AUC = 86.25, fold change = 3.80; 
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BioFINDER-2: AUC = 78.69%, fold change = 3.65) and pT205 (TRIAD: AUC = 71.58, fold change = 1.51; BioFINDER-2: 
AUC = 71.11%, fold change = 1.70).

Conclusions:  While an increase was found for all pTau species examined, the highest fold change in Alzheimer’s 
disease was found for pT231, pT217 and pT205. Simultaneous antibody-free measurement of pTau epitopes by mass 
spectrometry avoids possible bias caused by differences in antibody affinity for modified or processed forms of tau, 
provides insights into tau pathophysiology and may facilitate clinical trials on tau-based drug candidates.

Keywords:  Tau, Phosphorylation, Alzheimer’s disease, LC–MS, Cerebrospinal fluid

Background
Abnormally phosphorylated tau (pTau) has been a focus 
of Alzheimer’s disease research since the discovery of 
these species as the main constituent of the intraneu-
ronal neurofibrillary tangles in Alzheimer’s disease brains 
[1]. Since then, deposition of abnormal tau in the brain 
has been found to be involved in a spectrum of neuro-
degenerative diseases, collectively termed ‘tauopathies’. 
The tauopathies are divided into primary tauopathies, 
depending on the role of the tau protein. In primary 
tauopathies, which include frontotemporal dementia, 
Pick’s disease, progressive supranuclear palsy, and cor-
ticobasal degeneration [2], tau is the main driver of the 
pathology, while in secondary tauopathies, such as Alz-
heimer’s disease, tauopathy occurs as a result of other 
proteinopathies.

Tau regulates the self-assembly of tubulin into micro-
tubules in neurons, helping to stabilize the axonal 
cytoskeleton. This physiological process is dynamic and 
is modulated by the phosphorylation state of tau. The 
leading hypothesis for the development of tau pathology 
in Alzheimer’s disease is that it is a downstream event of 
amyloid beta (Aβ) plaque pathology, and that abnormal 
phosphorylation of tau causes the protein to detach from 
the microtubules, thereby destabilizing them, leading to 
axonal degeneration and the aberrant aggregation of tau 
into paired helical filaments, which in turn assemble into 
neurofibrillary tangles [3]. Many parts of this process are 
still unknown, including the initial upstream trigger of 
abnormal phosphorylation of tau and whether different 
phosphorylation sites have different pathophysiological 
roles.

Together with the Aβ42/40 ratio (an amyloid plaque 
biomarker), cerebrospinal fluid (CSF) tau has an impor-
tant role as an Alzheimer’s disease biomarker. The con-
centrations of both pTau and non-phosphorylated tau, 
or “total” tau (tTau) are increased in Alzheimer’s disease 
patients [4]. While CSF pTau and tTau correlate tightly 
within Alzheimer’s disease and control cohorts, elevated 
CSF tTau, reflecting neurodegeneration, also occurs in 
other neurological conditions, such as Creutzfeldt-Jakob’s 
disease [5] and stroke [6], but increased pTau seems to be 
more specific to Alzheimer’s disease [4].

To date, CSF pTau has most frequently been measured 
by immunoassays that detect phosphorylation at amino 
acid Thr-181 (pT181), located in the mid-region of the 
protein, but methods to quantify other phospho-epitopes 
have also been evaluated, including pS199, pT217, and 
pT231, as well as the C-terminal residues pS396 and 
pS404 [7–13]. Recently, a study showed improved bio-
marker performance of pT217 compared with pT181 in 
Alzheimer’s disease [14]. However, two studies that com-
pared pT181 and pT217 head-to-head in CSF, using the 
same N-terminal antibody (Tau12) as the detector in the 
two assays, suggested identical diagnostic performance of 
these two pTau variants [15, 16]. Yet, each of the N-ter-
minal-directed pT181 and pT217 biomarkers became 
abnormal earlier in the disease process than standard 
mid-region pT181 biomarkers. Another study that used 
mass spectrometry to measure the degree of phospho-
rylation at different sites of tau in patients with domi-
nantly inherited Alzheimer’s disease found that abnormal 
phosphorylation at Thr-217 and Thr-181 occurred sig-
nificantly earlier than at Thr-205, beginning as early as 
20 years before the onset of symptoms [17]. Furthermore, 
other studies have shown that CSF pT231 is a marker 
of incipient sporadic frontotemporal dementia patho-
physiology, identifying early disease changes better than 
pT181 and pT217 biomarkers [16]. Additionally, pT396, 
an integral component of brain neurofibrillary tangles 
[18], has been shown to be increased in the CSF in Alz-
heimer’s disease patients compared with controls [9]. 
These studies suggest that the temporal sequence of tau 
phosphorylation at different epitopes provides disease-
relevant insights and underscores the importance of fur-
ther studying the phosphorylation at specific sites in tau.

Advances in antibody-based immunoassay technolo-
gies with improved sensitivity have enabled the quan-
tification of very low abundant tau species also in other 
biofluids than CSF [14, 16, 19–22]. However, these plat-
forms have some drawbacks. For example, multiplexed 
biomarker measurements are currently not available for 
pTau. Therefore, samples are analysed independently 
for each individual marker. Further, given that both tau 
(both tTau and pTau variants) are truncated into N-ter-
minal to mid-domain fragments before being secreted 
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to CSF and plasma [12], the signal in sandwich immu-
noassays will depend not only on which specific pTau 
species is captured, but also on which fragment of tau 
the pTau epitope is present.

Mass spectrometry (MS) has been instrumental 
in characterizing tau. In brain tissue, in which tau is 
abundant, over 80 utilized phosphorylation sites have 
been identified [23–25]. In CSF, the tau concentration 
is relatively low; 80 – 450 pg/ml in healthy individuals 
[26], and the proportion of pTau is roughly only 10% 
of tTau, making the phosphorylated forms challenging 
to detect against the background of higher-abundant 
CSF proteins. To date, this could only be achieved by 
using immunoprecipitation (IP) to enrich tau prior 
to liquid chromatography (LC)-MS [27]. While such 
IP-MS based methods can perform relative quantifi-
cation, e.g., measuring the ratio of phosphorylated to 
non-phosphorylated peptide, provided that antibodies 
are available that binds both forms with equal affinity 
[28], absolute quantification may be biased as the meas-
urement is affected by the affinity of the antibodies for 
the target protein. Using full-length isotope-labelled 
protein as internal standard can overcome this problem 
provided that the protein standard is captured by the 
antibody to the same extent as the endogenous protein.

In the present study, we present the first antibody-
free method for quantification of phosphorylated tau 
epitopes in CSF. The method is based on parallel reac-
tion monitoring (PRM) assay on a high-resolution 
orbitrap hybrid mass spectrometer and measures a 
multiplex panel of the phospho-epitopes pT181, pS199, 
pS202, pT205, pT217, pT231 and pS396, as well as two 
non-phosphorylated peptides covering amino acids 
195–209 and 212–221. Stable-isotope labeled peptide 
calibrants are spiked directly into the neat CSF sam-
ples and co-purified by precipitation of other sample 
proteins using perchloric acid, followed by solid-phase 
extraction and LC–MS. Compared to IP-based meth-
ods, this method affords higher throughput and is more 
cost-effective. Importantly, as has previously been dem-
onstrated, this sample preparation allows for absolute 
quantification of perchloric acid-soluble tau [29, 30]. 
This makes the novel method a suitable candidate to 
evaluate for the future development of reference meth-
ods and the detailed evaluation of pTau species in clini-
cal routine and therapeutic response.

We evaluated the performance of the method by the 
analysis of clinical samples with Alzheimer’s disease—
and non- Alzheimer’s disease biomarker profiles and 
compared the results with those of pTau immunoassays 
developed on the Single molecule array (Simoa) platform, 
and then used the method to analyze a cohort compris-
ing the entire Alzheimer’s disease spectrum.

Materials and methods
Study populations
A pilot study was performed of CSF samples submitted 
to the Clinical Routine Laboratory at the Sahlgrenska 
University Hospital, Mölndal, Sweden, that had previ-
ously been assayed for the core frontotemporal dementia 
biomarkers, measured by Lumipulse G Amyloid AMY-
LOID (1‐42), PHOSPHO‐TAU (181P), and hTAU immu-
noassays from FujiRebio Europe (Antwerp, Belgium) 
according to the manufacturers’ instructions. Samples 
with tTau > 440  pg/ml, pTau > 61  pg/ml, and amyloid-β 
1–42 < 620 pg/ml were classified as Alzheimer’s disease-
type, and samples with normal biomarker profile were 
assigned as controls.

The second set of samples consisted of cross-sectional 
CSF samples from the Translational Biomarkers in Aging 
and Dementia (TRIAD) cohort. The TRIAD includes 
participants within the whole Alzheimer’s disease spec-
trum which were highly profiled with clinical and neu-
ropsychological assessments as well as with fluid and 
imaging biomarkers. In this cohort, the Alzheimer’s dis-
ease dementia diagnosis was given following the National 
Institute on Aging and the Alzheimer’s Association cri-
teria for probable Alzheimer’s disease [31], with a Clini-
cal Dementia Rating (CDR) greater than 1. MCI patients 
had CDR of 0.5, subjective and objective memory impair-
ments but essentially normal activities of daily living. 
CU individuals had CDR of 0. Participants clinically 
diagnosed with frontotemporal dementia (clinical diag-
nosis of behavioral or semantic variant of frontotempo-
ral dementia, CDR score > 0.5 and Aβ positron emission 
tomography (PET) negative) were also included. For this 
analysis, were included only participants that had CSF 
samples available at the time of the experiment and PET 
imaging data available at the time of the analysis. In addi-
tion, participants were re-classified according to clinical 
diagnosis and Aβ status (positive ( +) and negative (-)) 
into young cognitively unimpaired (CU) Aβ-participants 
(nYoung = 22), elderly CU Aβ- (nCU- = 54), elderly CU 
Aβ + (nCU+  = 26), MCI Aβ + (nMCI+  = 19), Alzheimer’s 
disease Aβ + (nAD = 19), MCI and Alzheimer’s disease 
Aβ- (nnon-AD = 16) or frontotemporal dementia (nFTD = 9).

As a third cohort, samples from the prospective Swed-
ish BioFINDER-2 cohort were analyzed [32], which 
included patients with mild cognitive impairment (MCI), 
Alzheimer’s disease with dementia, and a spectrum of 
other neurodegenerative diseases, as well as cognitively 
unimpaired (CU) controls. The patients with Alzheimer’s 
disease fulfilled the Diagnostic and Statistical Manual of 
Mental Disorders [Fifth Edition] Alzheimer’s disease cri-
teria [33] and were required to be Aβ-positive. Further 
subdivision into Aβ-positive/negative participants of the 
cognitively unimpaired participants and participants with 
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MCI was performed as well as into preclinical Alzhei-
mer’s disease and Alzheimer’s disease with MCI if they 
were Aβ-positive and tau-positive participants without 
cognitive impairment and with MCI, respectively [34]. 
Inclusion criteria for the other neurodegenerative dis-
eases included fulfillment of criteria for frontotemporal 
dementia [33], Parkinson’s disease [35], PD with demen-
tia [33], subcortical vascular dementia [33], progressive 
supranuclear palsy [36], multiple system atrophy [37], or 
semantic variant primary progressive aphasia [38]. The 
CU participants were required to not the fulfil criteria for 
mild cognitive impairment or dementia, including hav-
ing no history of cognitive change over time and having 
a Clinical Dementia Rating score of 0. Participants were 
recruited at Skåne University Hospital between April 
2017 to September 2019. All participants underwent the 
Mini-Mental State Examination to assess global cogni-
tion [39]. Ethical approval was given by the Regional 
Ethical Committee in Lund, Sweden. Demographics are 
shown in Table 1 and for full details on diagnostic crite-
ria, refer to [40].

Sample preparation for LC–MS analysis of pTau epitopes 
in CSF
CSF samples (250  µl) were spiked with 10  µl of a mix-
ture of heavy isotope-labeled peptide standards (AQUA 
peptides, Thermo Scientific). The spike-in amount of 
each heavy peptide was adjusted to yield a light-to-
heavy peak area ratio of approx. 0.1 – 0.2 in CSF from 

non-AD subjects (Supplementary Table S1). The pep-
tide standards were diluted from 10  pmol lyophilized 
aliquots in 20% acetonitrile, with the final 1:10 dilution 
step performed in 50  mM ammonium bicarbonate to 
avoid potential interference from acetonitrile in the sam-
ple preparation. Protein precipitation was performed by 
adding perchloric acid (15  µl, 60% v/v) to the samples, 
which then were briefly vortexed and incubated on ice 
for 15  min. Under these conditions, a majority of CSF 
proteins precipitate, but not tau. The precipitated pro-
teins were pelleted by centrifugation at 30,000 × g for 
10 min at 4 °C, and the supernatants were transferred to a 
96-well filter microtitre plate (AcroPrep Advance, 350 µl, 
0.45 µm, Supor membrane, Pall Corporation). A vacuum 
manifold was used to pass the samples through the fil-
ter plate, and directly load them on a 96-well SPE plate 
(Oasis PRiME HLB 96-well µElution Plate, 3  mg Sorb-
ent per Well, Waters). The SPE plate was washed twice 
with 200 µl 5% methanol (v/v), and peptides were eluted 
into a microtitre plate with 200 µl 50% acetonitrile, 0.1% 
trifluoroacetic acid, and the eluates were lyophilized by 
vacuum centrifugation. Trypsin (Sequencing grade, Pro-
mega) was dissolved in the diluent provided by the man-
ufacturer and diluted to 2.5 µg/ml in 50 mM ammonium 
bicarbonate. Trypsin solution (40  µl) was added to the 
dry samples, which were vortexed and incubated at 37 °C 
overnight. TFA (1 µl, 10% v/v) was added to the samples 
to quench further proteolysis. The samples were stored at 
-20 °C prior to LC–MS analysis.

Table 1  Demographic and biomarker information of the TRIAD cohort by clinical and biomarker-defined groups

Data shown as mean (SD) or n (%), as appropriate. Variables were compared with a one-way ANOVA adjusted and P-values are presented. Aβ status for group 
definition was based on PET visual rating

Abbreviations: Aβ amyloid-β, AD Alzheimer’s Disease dementia, CU- Aβ-negative cognitively unimpaired, CU + Aβ-positive cognitively unimpaired, FTD Aβ- Fronto-
temporal dementia, MCI + Aβ-positive mild cognitive impairment, MMSE Mini-Mental State Examination, Non-AD Aβ-negative MCI and “AD” dementia, SUVR 
Standardized uptake value ratio

Young adults (n = 22) CU-
(n = 54)

CU + 
(n = 26)

MCI + 
(n = 19)

AD
(n = 19)

Non-AD
(n = 16)

FTD
(n = 9)

P-value

Age, years 23.3 (1.8) 71.0 (7.4) 72.2 (7.5) 72.2 (6.1) 64.6 (7.1) 70.5 (9.5) 62.4 (6.2)  < 0.0001*

Female, n (%) 14 (63) 34 (63) 17 (65) 9 (47) 8 (42) 7 (43) 6 (66) 0.44

Education, years 16.7 (1.5) 14.9 (3.6) 14.4 (2.7) 15.8 (2.8) 15.4 (3.1) 13.7 (4.0) 14.4 (4.0) 0.08

APOE-ε4 carriers, n (%) 6 (27) 17 (31) 8 (30) 12 (63) 13 (72) 4 (26) 1 (11) 0.002*

MMSE 29.7 (0.5) 29.1 (1.0) 29.3 (0.8) 27.9 (1.8) 20.0 (6.3) 26.7 (2.8) 26.0 (7.3)  < 0.0001*

Aß PET (SUVR) 1.18 (0.06) 1.26 (0.10) 1.96 (0.42) 2.40 (0.42) 2.35 (0.44) 1.33 (0.12) 1.15 (0.08)  < 0.0001*

Tau PET (SUVR) 0.82 (0.08) 0.91 (0.10) 1.00 (0.15) 1.56 (0.45) 2.09 (0.55) 1.11 (0.65) 0.79 (0.10)  < 0.0001*

p-Tau181 (fmol/mL) 0.86 (0.25) 1.15 (0.33) 1.41 (0.49) 1.79 (0.71) 1.74 (0.69) 1.48 (0.95) 0.98 (0.43)  < 0.0001*

p-Tau199 (fmol/mL) 0.17 (0.06) 0.24 (0.05) 0.29 (0.08) 0.35 (0.12) 0.43 (0.17) 0.32 (0.24) 0.24 (0.07)  < 0.0001*

p-Tau202 (fmol/mL) 0.06 (0.02) 0.09 (0.03) 0.10 (0.03) 0.13 (0.06) 0.15 (0.05) 0.12 (0.06) 0.09 (0.04)  < 0.0001*

p-Tau205 (fmol/mL) 0.01 (0.004) 0.02 (0.01) 0.03 (0.01) 0.08 (0.07) 0.11 (0.05) 0.05 (0.09) 0.02 (0.009)  < 0.0001*

p-Tau217 (fmol/mL) 0.04 (0.01) 0.08 (0.04) 0.20 (0.13) 0.40 (0.25) 0.54 (0.31) 0.25 (0.43) 0.12 (0.17)  < 0.0001*

p-Tau231 (fmol/mL) 0.02 (0.02) 0.07 (0.07) 0.29 (0.29) 0.50 (0.26) 0.60 (0.38) 0.31 (0.53) 0.12 (0.24)  < 0.0001*

p-Tau396 (fmol/mL) 0.03 (0.01) 0.05 (0.02) 0.06 (0.03) 0.07 (0.02) 0.06 (0.03) 0.06 (0.03) 0.04 (0.02)  < 0.0001*
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LC–MS
The samples were analyzed by LC–MS on a Ultimate 
3000 nanoflow-LC (RSLC nano, Thermo Scientific) 
equipped with a trap column (300 μm i.d. × 5 mm packed 
with Acclaim PepMap 100 C18, 5 μm, Thermo Scientific), 
and a separation column (Easy Spray 75  μm × 500  mm, 
C18, 2 μm, 100 Å, Thermo Scientific), coupled to a hybrid 
Orbitrap mass spectrometer (Fusion Tribrid, Thermo 
Scientific), fitted with a EasySpray nano-ESI ion source. 
The loading buffer was 0.05% TFA, Buffer A was 0.1% 
formic acid (v/v), and Buffer B was 84% acetonitrile (v/v), 
0.1% (v/v) formic acid. The loading pump was operated 
at 50 µl/min. After loading samples on the trap column 
(5 min), the trap was switched in line with the separation 
column and the following gradient was applied using the 
nano-flow pump: t = 0  min, B = 5%; t = 5  min, B = 5%; 
t = 30  min, B = 30%; t = 30.5, B = 100%; t = 40  min, 
B = 100%; t = 40.5  min, B = 5%; t = 50  min, B = 5%. The 
mass spectrometer was operated in the positive ion 
mode, with the following settings for the PRM scan: Acti-
vation Type: HCD; Collision energies were determined 
experimentally for each peptide and are listed in Sup-
plementary Table S1; Detector Type: Orbitrap; Orbitrap 
Resolution: 120 000; Scan Range: 150–1500; RF Lens: 
60%; Easy-IC: On; Isolation Type: Quadrupole; Isolation 
Window: 1.2  m/z; Maximum Injection Time: 400  ms; 
Normalized AGC Target: 1000%. LC–MS data was ana-
lyzed using the software Skyline v. 21 (McCoss Lab, Uni-
versity of Washington).

Simoa immunoassays
CSF samples from the discovery and validation cohorts 
were analysed using immunoassays for tau pT181, pT217 
and pT231 on the Single molecule array (Simoa) platform 
as previously [15, 16, 41]. For each biomarker, two or 
three internal quality control samples were measured at 
the start and the end of each analytical run. For all three 
analytes, the within-plate coefficients of variation (CV) 
were ≤ 1.7 and 0.2% respectively. All samples measured 
above the respective assay lower limits of detection.

Imaging analysis
Brain Aβ and tau load were indexed based on PET imag-
ing, using [18F]AZD4694 and [18F]MK6240 respectively. 
All participants underwent 3  T T1-weighted images for 
co-registration purposes. PET imaging acquisition was 
performed on Siemens High Resolution Research and 
scans were reconstructed using the ordered subset expec-
tation maximization (OSEM) algorithm on a 4-dimen-
sional volume as previously described (PMID: 22,323,782, 
PMID:  30,064,520, PMID:  31,860,000). The reference 
regions were the inferior cerebellum and the whole cer-
ebellum gray matter for [18F]MK6240 and [18F]AZD4694, 

respectively. Global Aβ PET positivity was visually 
defined by two neurologists blinded to clinical diagno-
sis. Tau PET Braak stage classification was defined as 
described in a previous study [42].

Statistical analysis
Statistical analyses were performed on R v3.6.3 (http://​
www.R-​proje​ct.​org/) and tests were 2-tailed, with 
α = 0.05. The normality of the biomarker distribution 
was visually assessed by the inspection of histograms 
and Q-Q plots and, when required, variables were log10 
transformed to assure normal data distribution. Linear 
regression models compared the biomarker distribution 
(log-transformed) across groups, covariating for age and 
sex. When post hoc analysis was needed, Tukey hon-
estly significant difference (HSD) was employed. Corre-
lations between variables were assessed using Spearman 
rank correlation test. Fold changes compared the mean 
of the biomarkers in the Alzheimer’s disease dementia 
group with the mean of the CU- group. Using the gener-
alized linear model (GLM) binary regression framework 
receiver operating curves (ROC) were estimated, which 
provided the area under the curve (AUC) for Aβ posi-
tivity, or diagnostic groups, for each biomarker. The two 
biomarkers with the greatest AUC were compared with 
the “pROC” package.

Data availability
The authors confirm that the data supporting the findings 
of this study are available within the article and its Sup-
plementary material.

Results
Antibody‑free measurement of tau phosphorylation in CSF
To achieve sufficient CSF sample clean-up to enable 
nano-LC–MS analysis without using antibody-based 
immunoprecipitation, a sample preparation protocol was 
developed that is based on partial protein precipitation 
using perchloric acid, followed by reversed-phase SPE 
in the 96-well format, and finally trypsin digestion. Neat 
CSF samples were spiked with a mixture of heavy isotope-
labeled peptide standards with amino acid sequences 
matching the trypsin proteolysis products containing the 
targeted phosphorylation sites (Supplementary Table S1). 
A set of b- and y-ions, clearly detectable and free from 
interfering signals from the CSF sample matrix were used 
for quantification. Representative examples of PRM chro-
matograms are shown in Supplementary Figure S1.

pS199, pS202, and pT205 were detected on isobaric 
tryptic peptides with identical amino acid sequence. 
pS199 (Supplementary Figure S1 B) and pS202 (Supple-
mentary Figure S1 C) co-eluted in the LC separation but 
could be quantified separately by using distinct fragments 

http://www.R-project.org/
http://www.R-project.org/


Page 6 of 14Gobom et al. Molecular Neurodegeneration           (2022) 17:81 

ions formed by cleavage between the two phosphoryla-
tion sites (b5-7 and y8-10, and corresponding fragments 
formed by neutral loss of phosphoric acid (-98  Da)). 
pT205 was resolved chromatographically from the other 
two isobaric peptides, and thus all prominent fragment 
ions detected from it could be used for quantification 
(Supplementary Figure S1 D).

The reproducibility of the method was determined by 
the analysis of eight aliquots of a CSF pool (Supplemen-
tary Table S2). At the time of analysis, no heavy calibra-
tor was available for pT205; instead, heavy pS199 peptide 
was used as calibrator. The lowest variation was observed 
for pS202 (CV = 3.1%) and the highest variation was 
observed for pT217 (CV = 19.01%). The CSF pool used 
for the measurements was composed of patient samples 
with a non-AD-type core biomarker profile, i.e., with low 
pTau and tTau levels. Thus, the low levels of the phos-
phopeptides are likely to contribute to the higher CVs 
observed for some of the peptides.

Pilot study
The performance of the pTau PRM method was evalu-
ated by analyzing CSF samples from patients with AD-
indicative and normal neurochemical biomarker profiles 
(n = 38), based on the core Alzheimer’s disease biomark-
ers (Supplementary Figure S2, Supplementary Table S3). 
All pTau species showed high performance for identify-
ing Alzheimer’s disease (AUC > 95%), with the largest 

fold-change (FC) observed for pT217 (FC = 7.7), followed 
by pT231 (FC = 6.7). pT217 also showed the largest effect 
size (Cohen’s d = 3.2), followed by pT205 (d = 2.5).

Correlation with Simoa immunoassay measurements
The pTau PRM method was also compared with digi-
tal immunoassays for pT181, pT217, and pT231 on the 
Simoa platform, by measuring a second set of CSF sam-
ples from the Discovery cohort (n = 44) with Alzheimer’s 
disease and normal core CSF biomarker profiles. The 
PRM method showed strong correlation with the Simoa 
immunoassays for all three analytes (pT181: Spearman 
(ρ) = 0.95, pT217: ρ = 0.79, pT231: ρ = 0.94, Supplemen-
tary Figure S3). The PRM methods for pT181, pT217, 
and pT231 also strongly correlated with each other 
(ρ = 0.94–0.96).

Tau phosphorylation across the Alzheimer’s disease 
continuum
To explore how the abundance of phosphorylated tau 
epitopes develop over the course of AD, CSF samples 
from two large cohorts were analyzed: TRIAD (n = 165) 
and BioFINDER-2 (n = 563). The patients in both cohorts 
had been subjected to clinical evaluation of cognitive 
function as well as measurement of Aβ and tau pathology 
by PET imaging. Demographic information, clinical diag-
nosis, and Aβ and tau PET status are presented in Table 1 
and 2.

Table 2  Demographic and biomarker information of the BioFINDER-2 cohort by clinical and biomarker-defined groups

Data shown as mean (SD) or n (%), as appropriate. Variables were compared with a one-way ANOVA adjusted and P-values are presented. Aβ status for group 
definition was based on CSF Aβ levels Abbreviations: Aβ Amyloid-β, AD Alzheimer’s Disease dementia, CU- Aβ-negative cognitively unimpaired, CU + Aβ-positive 
cognitively unimpaired, MCI- Aβ-negative mild cognitive impairment, MCI + Aβ-positive mild cognitive impairment, MMSE Mini-Mental State Examination, Non-AD- 
Aβ-negative and non-AD dementia, Non-AD + Aβ-positive and non-AD dementia, SUVR Standardized uptake value ratio
a  Data is missing for two individuals
b  Data is missing for three individuals

CU-
(n = 236)

CU + 
(n = 73)

MCI-
(n = 44)

MCI + 
(n = 68)

AD
(n = 81)

Non-AD-
(n = 33)

Non-AD + 
(n = 28)

P-value

Age, years 60.8 (14.9) 70.7 (8.2) 68.7 (8.0) 72.4 (7.4) 73.5 (7.2) 72.6 (8.2) 74.7 (6.0) < 0.0001*

Female, n (%) 118 (50) 31 (43) 15 (34) 35 (52) 41 (51) 9 (27) 10 (36) 0.074

Education, years a 12.7 (3.1) 12.3 (3.8) 12.2 (3.6) 12.4 (4.1) 11.8 (3.9) 10.6 (3.4) 13.8 (4.0) 0.008*

APOE-ε4 carriers, n (%) b 84 (35.6) 50 (68.5) 10 (22.7) 48 (70.6) 54 (66.7) 5 (15.2) 17 (60.7) < 0.0001*

MMSE 28.7 (1.8) 28.6 (1.8) 27.5 (1.9) 26.7 (1.9) 19.8 (4.7) 22.7 (3.7) 21.8 (5.6) < 0.0001*

Aß PET (SUVR) 0.62 (0.04) 0.84 (0.19) 0.63 (0.05) 0.98 (0.19) 1.08 (0.18) 0.63 (0.03) - < 0.0001*

Tau PET (SUVR) 1.13 (0.10) 1.29 (0.34) 1.16 (0.09) 1.44 (0.43) 2.12 (0.65) 1.18 (0.16) 1.31 (0.21) < 0.0001*

p-Tau181 (fmol/mL) 0.94 (0.33) 1.13 (0.45) 0.97 (0.27) 1.49 (0.58) 1.76 (0.77) 1.07 (0.52) 1.17 (0.34) < 0.0001*

p-Tau199 (fmol/mL) 0.20 (0.09) 0.26 (0.10) 0.23 (0.10) 0.30 (0.12) 0.39 (0.16) 0.25 (0.11) 0.26 (0.08) < 0.0001*

p-Tau202 (fmol/mL) 0.06 (0.03) 0.08 (0.05) 0.07 (0.04) 0.08 (0.03) 0.10 (0.04) 0.06 (0.03) 0.07 (0.03) < 0.0001*

p-Tau205 (fmol/mL) 0.02 (0.03) 0.04 (0.04) 0.02 (0.02) 0.05 (0.04) 0.09 (0.06) 0.02 (0.02) 0.03 (0.02) < 0.001*

p-Tau217 (fmol/mL) 0.06 (0.04) 0.21 (0.17) 0.08 (0.06) 0.31 (0.22) 0.57 (0.32) 0.10 (0.09) 0.18 (0.08) < 0.0001*

p-Tau231 (fmol/mL) 0.02 (0.03) 0.07 (0.11) 0.02 (0.02) 0.10 (0.14) 0.20 (0.28) 0.04 (0.05) 0.04 (0.05) < 0.0001*

p-Tau396 (fmol/mL) 0.06 (0.11) 0.07 (0.06) 0.05 (0.04) 0.09 (0.10) 0.08 (0.06) 0.05 (0.04) 0.04 (0.02) 0.038*
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The average age of the TRIAD study population was 
63.7  years, 57% were females and 36% were APOE-ε4 
carriers. As expected, the Alzheimer’s disease demen-
tia group had lower average MMSE scores, as well as 
higher frequency of APOE-ε4 carriers as compared to 
MCI + , non-AD and the CU groups. The average age of 
the BioFINDER-2 study population was 67.3  years, 46% 
were females and 48% were APOE-ε4 carriers. Also in 
BioFINDER-2, the Alzheimer’s disease dementia group 
had lower average MMSE scores and higher frequency of 
APOE-ε4 carriers compared to MCI + , non-AD and the 
CU groups.

To explore how the abundances of phosphorylated 
tau epitopes change over the course of AD, the study 
participants of both cohorts were organized by clinical 
assessment and PET data to form an Alzheimer’s disease 
continuum (Fig.  1 A-G and Fig.  2 A-G), starting with 
young, healthy individuals, followed by cognitively unim-
paired elderly without Aβ pathology (CU-), proceeding 
to cognitively unimpaired with Aβ pathology (CU +), 
symptomatic elderly with mild cognitive impairment 
and Aβ pathology (MCI +), and ending with clinical 
AD, verified by Aβ-PET or CSF Aβ1-42/1–40 ratio. On 
this continuum, all measured pTau epitopes increased 

in both cohorts, with the best distinction between the 
different disease stages and the CU- group observed 
for pT231 (TRIAD: AUC = 93.61%, fold change = 5.72; 
BioFINDER-2: AUC = 84.44, fold change = 6.40), pT217 
(TRIAD: AUC = 92.8%, fold change = 4.26), and pT205 
(AUC = 85.07%, fold change = 3.35, Supplementary 
Table S4 and Supplementary Table S5, Supplementary 
Figure S4 and Supplementary Figure S5). To distinguish 
between Alzheimer’s disease and CU-, the best perfor-
mance was observed for pT217 (TRIAD: AUC = 99.71%, 
fold change = 6.33; BioFINDER-2: AUC = 98.12%, fold 
change = 8.83), pT231 TRIAD: AUC = 98.73%, fold 
change = 7.64; BioFINDER-2: AUC = 91.89%, fold 
change = 10.65), and pT205 (TRIAD AUC = 99.07%, 
fold change = 5.34; BioFINDER-2: AUC = 93.51%, fold 
change = 3.92). These three peptides were also sig-
nificantly increased in MCI + compared with CU- 
(pT217, TRIAD: AUC = 98.93%, fold change = 4.73; 
BioFINDER-2: AUC = 94.79%, fold change = 4.86), 
pT231, TRIAD: AUC = 98.54%, fold change = 6.44), and 
between CU + and CU- (pT217, TRIAD: AUC = 83.26%, 
fold change = 2.39; BioFINDER-2: AUC = 91.05, fold 
change = 3.29). While pT205 and pT217 increased fur-
ther from MCI + to Alzheimer’s disease dementia, pT231 

Fig. 1  Abundances of phosphorylated tau epitopes across the Alzheimer’s disease spectrum in the TRIAD cohort (A-G). The concentrations of 
the seven phosphorylated tau epitopes, pTau-181 (A), pTau-199 (B), pTau-202 (C), pTau-205 (D), pTau-217 (E), pTau-231 (F) and pTau-396 (G) are 
plotted for the different groups. The boxplots depict the median (horizontal bar), interquartile range (IQR, hinges) and 1.5 × IQR (whiskers). Group 
comparisons were computed with a one-way ANCOVA adjusting for age and sex. Tukey honestly significant difference test was used for the post 
hoc pairwise comparisons in all cohorts. Biomarker fold change between CU- and Alzheimer’s disease groups (H). Abbreviations: Aβ, amyloid-β, 
AD, Alzheimer’s disease; CU-, Aβ-negative cognitively unimpaired; CU + , Aβ-positive cognitively unimpaired; frontotemporal dementia; MCI + , 
Aβ-positive mild cognitive impairment; Non-AD, Aβ-negative “AD” dementia or mild cognitive impairment patients. *P < 0.05; **P < 0.01, ***P < 0.001
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plateaued at MCI + . Non-AD participants as well as 
frontotemporal dementia (TRIAD), and patients suf-
fering from other dementias (BioFINDER-2) showed 
biomarker levels comparable to the CU- group for all 
phospho-epitopes in both cohorts. Group differences 
were less marked for pT181, pS199 and pS202 and no sig-
nificant group differences were observed for pS396 lev-
els. The largest fold-changes between Alzheimer’s disease 
and CU- were also observed for, pT231, pT217 and pT205 
in both cohorts (Fig. 1 H and 2 H), with pT231 showing 
a 5.6-fold increase in TRIAD and a 6.4-fold increase in 
BioFINDER-2. pS199, pS202, and pS396 showed a lower 
and similar increase of approximately 1.5-fold.

For the phosphorylated tau peptides for which it was 
possible to also measure the corresponding non-phos-
phorylated peptide (pS199, pS202, pT205 and pT217), we 
also calculated the ratios of phosphorylated to non-phos-
phorylated epitope (Supplementary Figure S6). We found 
that for all phospho-epitopes, the fold changes in Alzhei-
mer’s disease versus CU- cases were smaller for the phos-
pho-epitope ratios compared with the concentrations of 
the phospho-epitopes by themselves, quantified using the 
isotope-labelled internal standards.

Correlation of pTau forms with Aβ PET
Analysis of the correlations between the abundances of 
the different pTau epitopes with the average standard-
ized uptake values ratio (SUVR) of Aβ PET showed the 
strongest correlation for pT217, pT231 and pT205, both 
in TRIAD (Spearman (ρ)pTau-217 = 0.77, P pTau-217 < 0.001; 
ρpTau-231 = 0.76, P pTau-231 < 0.001; ρpTau-205 = 0.68, P pTau-

205 < 0.001; Fig.  3) and BioFINDER-2 ((ρ)pTau-217 = 0.65, 
P pTau-217 < 2.2*10–16; ρpTau-231 = 0.55, P pTau-231 < 2.2*10–

16; ρpTau-205 = 0.49, P pTau-205<2.2*10–16; Fig. 4).

Correlation of pTau forms with Tau PET
A correlation analysis was also performed between 
the abundances of the different pTau epitopes and 
the average SUVR regions of Braak stage I-IV. Again, 
pT217, pT231 and pT205 showed the strongest corre-
lation in both TRIAD (ρpTau-217 = 0.71, P pTau-217 < 0.001; 
ρpTau-231 = 0.70, P pTau-231 < 0.001; ρpTau-205 = 0.71, P pTau-

205 < 0.001; Fig. 5) and BioFINDER-2 (ρpTau-217 = 0.64, P 
pTau-217 < 2.2*10–16; ρpTau-231 = 0.49, P pTau-231 < 2.2*10–16; 
ρpTau-205 = 0.52, P pTau-205 < 2.2*10–16; Fig. 6).

Fig. 2  Abundances of phosphorylated tau epitopes across the Alzheimer’s disease spectrum in the BioFINDER-2 cohort (A-G). The concentrations 
of the seven phosphorylated tau epitopes, pTau-181 (A), pTau-199 (B), pTau-202 (C), pTau-205 (D), pTau-217 (E), pTau-231 (F) and pTau-396 (G) are 
plotted for the different groups. The boxplots depict the median (horizontal bar), interquartile range (IQR, hinges) and 1.5 × IQR (whiskers). Group 
comparisons were computed with a one-way ANCOVA adjusting for age and sex. Tukey honestly significant difference (HSD) test was used for the 
post hoc pairwise comparisons in all cohorts. Biomarker fold change, presented in (H) between CU- and Alzheimer’s disease groups. Abbreviations: 
Aβ, amyloid-β, AD, Alzheimer’s disease; CU-, Aβ-negative cognitively unimpaired; CU + , Aβ-positive cognitively unimpaired; MCI + , Aβ-positive mild 
cognitive impairment; Non-AD, Aβ-negative “AD” dementia or mild cognitive impairment patients; Other. *P < 0.05; **P < 0.01, ***P < 0.001
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Fig. 3  Correlation between the pTau biomarkers and Aβ PET indicated by Aβ PET (global average SUVR) in the TRIAD cohort, for pTau-181 (A), 
pTau-199 (B), pTau-202 (C), pTau-205 (D), pTau-217 (E), pTau-231 (F) and pTau-396 (G). Abbreviations: Aβ, amyloid-β; AD, Alzheimer’s disease; CU-, 
Aβ-negative cognitively unimpaired; CU + , Aβ-positive cognitively unimpaired; frontotemporal dementia; MCI + , Aβ-positive mild cognitive 
impairment; Non-AD, Aβ-negative “AD” dementia or mild cognitive impairment patients; P, P value of the correlation test; PET, positron emission 
tomography; ρ, Spearman rank correlation coefficient; SUVR, standard uptake value ratio

Fig. 4  Correlation between the pTau biomarkers and Aβ PET (global average SUVR) in the BioFinder cohort, for pTau-181 (A), pTau-199 (B), 
pTau-202 (C), pTau-205 (D), pTau-217 (E), pTau-231 (F) and pTau-396 (G). Abbreviations: Aβ, amyloid-β; AD, Alzheimer’s disease; CU-, Aβ-negative 
cognitively unimpaired; CU + , Aβ-positive cognitively unimpaired; frontotemporal dementia; MCI + , Aβ-positive mild cognitive impairment; 
Non-AD, Aβ-negative “AD” dementia or mild cognitive impairment patients; P, P value of the correlation test; PET, positron emission tomography; ρ, 
Spearman rank correlation coefficient; SUVR, standard uptake value ratio
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Fig. 5  Correlation between the pTau biomarkers and tau PET (average SUVR of the regions corresponding to Braak stages I-IV) in the TRIAD cohort, 
for pTau-181 (A), pTau-199 (B), pTau-202 (C), pTau-205 (D), pTau-217 (E), pTau-231 (F) and pTau-396 (G) and tau pathology. Abbreviations: Aβ, 
amyloid-β; AD, Alzheimer’s disease; CU-, Aβ-negative cognitively unimpaired; CU + , Aβ-positive cognitively unimpaired; frontotemporal dementia; 
MCI + , Aβ-positive mild cognitive impairment; Non-AD, Aβ-negative “AD” dementia or mild cognitive impairment patients; p, P value of the 
correlation test; PET, positron emission tomography; R, Spearman rank correlation coefficient; SUVR, standard uptake value ratio

Fig. 6  Correlation between the pTau biomarkers and tau PET (average SUVR of the regions corresponding to Braak stages I-IV) in the BioFINDER-2 
cohort, for pTau-181 (A), pTau-199 (B), pTau-202 (C), pTau-205 (D), pTau-217 (E), pTau-231 (F) and pTau-396 (G) and tau pathology,. Abbreviations: Aβ, 
amyloid-β; AD, Alzheimer’s disease; CU-, Aβ-negative cognitively unimpaired; CU + , Aβ-positive cognitively unimpaired; frontotemporal dementia; 
MCI + , Aβ-positive mild cognitive impairment; Non-AD, Aβ-negative “AD” dementia or mild cognitive impairment patients; p, P value of the 
correlation test; PET, positron emission tomography; R, Spearman rank correlation coefficient; SUVR, standard uptake value ratio



Page 11 of 14Gobom et al. Molecular Neurodegeneration           (2022) 17:81 	

Discussion
Recent studies using ultrasensitive immunoassays indicate 
that different pTau species (pT181, pT217 and pT231) in 
plasma samples perform very well to identify AD, and cor-
relate with both Aβ and AD-type tau pathology as meas-
ured by PET [16, 20–22]. Studies showing very high (AUC 
0.98) ability of plasma pT217 to discriminate Alzheimer’s 
disease from other neurodegenerative disorders [43], 
stronger correlation of pT217 than pT181 with tau PET 
[14], CSF and IP-MS data showing a higher magnitude of 
increase of plasma pT217 and stronger association with 
Aβ PET than pT181 [17], and CSF pT231 increasing at the 
early stage of the disease suggest that there may be disease 
associated differences across these pTau species and that 
measurement of specific phosphorylated species may be 
useful to track disease progression.

The PRM method described here is well suited to 
address this task as it enables multiple analytes to be 
measured in the same analytical run, thereby reducing 
analysis time, sample consumption, and importantly, 
also the effects of inter-run variation caused, e.g., by 
additional sample handling and freeze–thaw cycles. Fur-
thermore, employing an antibody-independent sample 
preparation makes it possible to measure phosphoryla-
tion at potentially any site in tau.

The use of perchloric acid to purify tau by precipitat-
ing other sample proteins is well-established [44] and 
no studies have reported discrimination of specific pro-
cessed or phosphorylated tau forms using this method. 
Absolute quantification of non-phosphorylated CSF tau 
using sample preparation based on perchloric acid pre-
cipitation has been previously reported [30, 45]. The high 
degree of correlation with Simoa data for pTau-181, pTau-
217, and pTau-231 in our study is also an indication that 
there is no discrimination of any of the phospho-epitopes 
analyzed using the perchloric acid-based samples prepa-
ration. Perchloric acid-based sample preparation may 
thus be suitable to use in a reference method.

While IP-MS based methods can perform relative 
quantification, e.g., measuring the ratio of phosphoryl-
ated to non-phosphorylated peptide [28], absolute quan-
tification presents a problem, as quantification is affected 
by the affinity of the used antibodies for the target pro-
tein. We found that the fold changes between Alzheimer’s 
disease and CU- patients for the phosphorylation ratios, 
pS199/S199, pS202/S202, pT205/T205, and pT217/T217, 
were all smaller compared with the fold changes for the 
concentrations of the corresponding peptides them-
selves, quantified using the isotope-labelled internal 
standards (Supplementary Figure S6). This finding is logi-
cal when considering the large number of papers showing 
that levels pTau and total tau in CSF both are increased in 
Alzheimer’s disease and correlate tightly.

We also found increased levels of tau phosphoryl-
ated at serine-396 in Alzheimer’s disease compared 
with controls, in line with neuropathological evidence 
[46]. A major component of neurofibrillary tangles in 
Alzheimer’s disease brains [47], Serine-396 is located at 
the extreme C-terminal part of the tau molecule. Previ-
ous studies have concluded that pTau-396 levels are not 
released into the CSF in quantities that are high enough 
to be reliably quantified, and so far only a single study 
published in 2002 reported increased levels of tau phos-
phorylated at 396 and/or 404 in CSF [9].

The PRM method also showed, in the discovery cohort, 
high diagnostic potential and differentiated between bio-
marker-positive Alzheimer’s disease patients from bio-
marker-negative controls with up to 99% accuracy. We 
found marked increase of all phosphorylated tau species, 
with the highest increases observed for pT217, pT231 and 
pT205. Further, CSF levels of pT181, pT217 and pT231 cor-
related tightly (p < 0.001) with Simoa measurements of the 
same pTau species using assays based on the N-terminal 
non-pTau antibody in the sandwich pair [16]. The correla-
tions were also strong between the PRM measurements for 
the three peptides (ρ > 0.94). Together, these findings sup-
port the LC–MS approach as a valid strategy to target mul-
tiple pTau biomarkers concurrently in the same sample.

The finding that both plasma and CSF pTau is trun-
cated into N-terminal to mid-domain fragments [17], 
suggests that not only which pTau variant is captured, 
but also which pTau fragment is measured (as governed 
by the assay setup), may control the performance of 
pTau immunoassays as well as IP-MS methods. With our 
antibody-free PRM method, since short tryptic peptides 
encompassing each phosphorylated site are detected, 
all tau fragments that contain a given phosphopeptide 
are included in quantification, in effect, making quanti-
fication independent on proteolytic processing of tau. 
While this has the advantage of making the measured 
entity well defined, it may not be advantageous in terms 
of biomarker performance in all cases. For example, the 
reported presence in CSF of short endogenous tau pep-
tides containing pT181 that are not increased in Alzhei-
mer’s disease [48], may decrease the performance of the 
PRM assay for this peptide, compared to pT181 immu-
noassays that require a longer tau fragment for detection.

Conclusions
Our study confirms the tau phospho-epitopes pT231 and 
pT217 as markers of early Alzheimer’s disease pathology, 
and identifies pT205 as a marker that increases in impor-
tance later in AD. The presented PRM method is the first 
antibody-independent method to measure pTau species 
in CSF, making it a potential candidate for future devel-
opment of a reference method.
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