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prescribed to AD patients to ease the cognitive symp-
toms [2]. The newest FDA-approved drug, aducanumab, 
is an antibody-based immunotherapy designed to remove 
amyloid-β (Aβ) plaques. The clinical efficacy of this new 
drug is under debate limiting its application to broad 
AD patients [3, 4]. Overall, there is an urgent need to 
develop effective therapeutics to reverse or robustly 
attenuate pathological progression of AD and associated 
neurodegeneration.

At the cellular level, AD is characterized by synaptic 
dysfunction and neurodegeneration, neuroinflammation, 
as well as vascular dysfunction [5, 6]. This combination 
of neuronal loss surrounded by a heightened inflamma-
tory state is thought to give rise to the eventual decline 
in cognition seen in AD patients. The key neuropatho-
logical hallmarks of AD include extracellular Aβ plaques 

The pathogenesis of Alzheimer disease
Alzheimer’s disease (AD) is the most common cause of 
dementia, accounting for approximately 60–80% of all 
dementia cases [1]. Despite the broad prevalence and 
rising incidence of AD, there are only six FDA-approved 
drugs currently used to treat symptoms including cho-
linesterase inhibitors, NMDA receptor antagonists, 
and other neuromodulatory agents that are presently 
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Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly 
increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the 
apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD 
cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the 
common ε3 allele. These gene alleles encode three apoE protein isoforms that differ at two amino acid positions. 
The primary physiological function of apoE is to mediate lipid transport in the brain and periphery; however, 
additional functions of apoE in diverse biological functions have been recognized. Pathogenically, apoE seeds 
amyloid-β (Aβ) plaques in the brain with apoE4 driving earlier and more abundant amyloids. ApoE isoforms also 
have differential effects on multiple Aβ-related or Aβ-independent pathways. The complexity of apoE biology and 
pathobiology presents challenges to designing effective apoE-targeted therapeutic strategies. This review examines 
the key pathobiological pathways of apoE and related targeting strategies with a specific focus on the latest 
technological advances and tools.
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and intracellular neurofibrillary tangles (NFTs) com-
posed of aggregated tau protein [7, 8]. Much of what we 
have learned about the etiology of AD comes from stud-
ies of the familial form of early-onset AD (FAD), which 
occurs before 65 years of age. This hereditary form of AD 
is primarily caused by specific mutations in the genes 
encoding amyloid precursor protein (APP), presenilin 
1 (PSEN1), and presenilin 2 (PSEN2), essential for Aβ 
production, suggesting a critical role of Aβ in disease 
development [9]. However, more than 95% of AD cases 
are sporadic or late-onset AD (LOAD), where the etiol-
ogy is heavily influenced by environmental and genetic 
risk factors [10]. With considerable genetic heterogene-
ity in LOAD cases, it has been difficult to pinpoint spe-
cific genes or pathways that directly lead to the onset of 
clinical pathology. However, as the strongest genetic risk 
factor for LOAD [11], the apolipoprotein E (APOE) gene 
clearly impacts the majority of the pathogenic pathways 
that contribute to AD. As such, targeting apoE offers a 
unique opportunity to potentially benefit a greater num-
ber of AD patients [12].

ApoE isoform is a risk determinant for AD and related 
dementias
There are three predominant APOE alleles in humans; 
the ε2 (APOE2), ε3 (APOE3), and ε4 (APOE4) alleles 
which confer varying levels of disease risk. APOE4 is a 
major genetic risk factor for AD in a gene dose-depen-
dent manner increasing risk by up to 15 fold in homo-
zygotes [13], whereas APOE2 reduces AD risk by almost 
half and contributes to longevity [14]. In addition to the 
relatively common variants, there have been various rare 
variants of apoE identified, such as apoE3-R136S (apoE3-
Christchurch; apoE3-Ch), apoE3-V236E (apoE3-Jack-
sonville; apoE3-Jac,) and apoE4-R251G [15–19], that are 
thought to confer some protection against AD pathology. 
These rare mutations are being investigated in the hope 
of identifying the molecular mechanisms involved in alle-
viating disease risks and developing novel therapeutic 
strategies. Mounting evidence demonstrates that APOE4 
increases the risk of developing AD via a combination of 
gain of toxic effects and loss of protective functions [20]. 
While APOE2 has been shown to offer protection against 
AD-related pathology [21, 22], the mechanisms involved 
remain unclear. Intriguingly, Insel, et al. has reported 
that carrying an APOE2 in the presence of APOE4 may 
offer some protection against Aβ accumulation com-
pared to APOE3 [23]. However, others have found that 
the odds ratio of APOE2/4 individuals is more similar to 
that of APOE4 carriers than APOE2 carriers [21], sug-
gesting that the increased risk associated with APOE4 is 
more dominant than the protection offered by APOE2. 
The multitude of pathological pathways by which apoE 

impacts AD risk and disease progression makes it an 
ideal therapeutic target for AD [24].

APOE4 has also been shown to increase the risk for 
other dementias. For example, APOE4 carriers are more 
likely to have increased severity of Lewy body pathol-
ogy, independently of AD pathology [25–27]. Similarly, 
APOE4 was shown to increase the risk of Parkinson’s 
disease dementia as well as reduce the age of symptom 
onset [28]. More recently, animal studies have revealed 
that apoE4 regulates α-synuclein pathology and exacer-
bates its toxic effects independent of amyloid pathology 
[29, 30]. Additionally, patients with vascular dementia 
carrying APOE4 present with greater cognitive impair-
ment compared to other alleles [31]. Thus, gaining an 
understanding of the mechanisms of apoE in disease 
pathogenesis will ultimately shed light on therapeutic 
strategies for the treatment of AD and related demen-
tias. Here, we summarize relevant biological functions 
of apoE and potential pathological mechanisms that con-
tribute to disease progression. We will further discuss 
current therapeutic strategies targeting apoE to improve 
AD pathology and offer insights on how these strategies 
could be improved based on recent evidence from novel 
technologies.

APOE biology: synthesis, structure, and function
ApoE is a 299 amino acid glycoprotein with a molecular 
weight of 34 kDa. It primarily functions as a lipid trans-
porter responsible for delivering cholesterol and phos-
pholipids throughout the body. In the periphery, apoE 
is mainly produced by hepatocytes and macrophages 
in the liver [32]. While apoE does not cross the blood-
brain barrier (BBB), it is also abundantly expressed in 
the central nervous system (CNS) by astrocytes, acti-
vated microglia, vascular mural cells, choroid plexus 
cells, and to a lesser extent in stressed neurons [33–37]. 
The three major isoforms of human apoE are distin-
guished by amino acid positions 112 and 158, which 
vary between a cystine and an arginine (apoE2: Cys112/
Cys158; apoE3: Cys112/Arg158; apoE4: Arg112/Arg158). 
This single amino acid substitution between apoE4 and 
apoE3, and apoE3 and apoE2 drastically alters the func-
tionality of apoE, resulting in isoform-specific variations 
in structure that modulate lipid binding, receptor bind-
ing, oligomerization propensity, and stability [38–41] 
(Fig. 1). Thus, understanding key differences in the apoE 
structure between isoforms is paramount to understand-
ing its function. Although the precise structure of native 
apoE is still ambiguous due to the protein’s propensity 
to aggregate, there is a Nuclear Magnetic Resonance 
(NMR)-based working model generated from a mutated, 
monomeric apoE3 [42]. ApoE consists of two main struc-
tural domains connected by a hinge region. The N-ter-
minal domain (residues 1-167) contains the receptor 
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binding region [43], while the C-terminal domain (resi-
dues 206–299) contains the lipid-binding region [44] 
(Fig. 1). Lipids are loaded onto apoE via interaction with 
transmembrane ATP-binding cassette (ABC) transport-
ers such as ABCA1 and ABCG1 [45].

In the brain, apoE plays an important role in transport-
ing cholesterol and other lipids to neurons through bind-
ing to cell-surface apoE receptors involved in lipoprotein 
metabolism, such as low-density lipoprotein receptor 
(LDLR), and LDLR-related protein 1 (LRP1) [46]. ApoE 
also interacts with heparan sulfate proteoglycans (HSPG) 
[47] and binds heparin through two separate sites [48]. 
Modulation of these apoE receptors has been shown to 
affect amyloid and tau pathologies [49–52], further sup-
porting the role of apoE in AD pathogenesis. Receptor 
binding of apoE is dependent on the isoform, lipidation 
status, and aggregation status of apoE [5, 42]. However, it 
remains unclear whether downstream receptor-mediated 
pathways are modulated by apoE isoforms. Understand-
ing these mechanisms will help to fully elucidate isoform-
dependent pathways involved in AD pathogenesis and 
could provide novel therapeutic targeting strategies.

Physiological function of apoE
ApoE is abundantly expressed in the periphery and in 
the CNS. However, due to the BBB, apoE in the periph-
ery and in the CNS exist as distinct pools [53]. There-
fore, it is critical to consider the independent role that 
each may play in AD pathogenesis, and the opportunity 
presented by each for therapeutic intervention. ApoE 
in the periphery is predominantly produced by the liver 
[32]. Peripheral apoE maintains lipid homeostasis by 
participating in the redistribution and metabolism of lip-
ids, such as triglycerides, cholesterol, cholesteryl esters, 
and phospholipids, through the formation of lipoprotein 
particles. ApoE isoforms have been shown to be differ-
entially associated with peripheral lipoprotein particles. 
For instance, apoE4 is mostly found in triglyceride-rich 
particles like chylomicrons and very low-density lipopro-
teins (VLDL), whereas apoE2 and apoE3 have preference 
to the high-density lipoproteins (HDL). Thus, the single 
Arg to Cys amino-acid substitution at position 112 dic-
tates the differential distribution of apoE isoforms among 
lipoprotein particles [54]. Single amino acid substitutions 
in rare apoE isoforms may also modulate their distribu-
tion among peripheral lipoproteins. For instance, apoE3-
Jac exhibits higher cholesterol efflux capacity compared 
to apoE3, suggesting that apoE3-Jac may differentially 

Fig. 1 Structural model of apoE highlighting AD-related amino acid variations. ApoE is a 299 amino acid glycoprotein with a molecular weight of 34 kDa 
(PDB 2L7B). It is formed of two independently folded domains linked by a hinge region: the N-terminal domain (residues 1-167) contains the receptor-
binding region while the C-terminal domain (residues 206–299) includes the lipid-binding region. There are three major apoE isoforms that differ at amino 
acid positions 112 and 158: apoE2 (C112/C158); apoE3 (C112/R158); and apoE4 (R112/R158). Additional rare apoE variants have been identified: apoE3-
Christchurch (R136S), apoE3-Jacksonville (apoE3-V236E), and apoE4-R251G
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bind lipids and could be differentially distributed among 
lipoprotein particles compared to the common apoE iso-
forms. Peripheral apoE is also important for cardiovascu-
lar function and immune modulation, both factors that 
contribute to AD risk [20, 55]. These effects will be dis-
cussed in more detail later in this review.

In the CNS, apoE-mediated cholesterol and lipid trans-
port plays a critical role in synapse formation and tissue 
repair [5]. It also plays a role in neurite outgrowth follow-
ing injury in an isoform dependent manner with astro-
cytic apoE3 inducing greater neurite outgrowth than 
astrocytes secreting apoE4 [56]. Human apoE4-targeted 
replacement (TR) mice, as well as human APOE4 carri-
ers, show a reduction in dendritic spine density even in 
the absence of disease pathology [57]. This is consistent 
with studies which revealed that apoE4 alters structural 
reorganization of neurons [58], reduces expression of key 
synaptic proteins [59], and inhibits glutamatergic signal-
ing which are critical for neuronal plasticity and network 
maintenance [60].

Emerging evidence shows that the function of apoE 
is largely cell type-specific [61, 62]. While apoE expres-
sion in the brain was first described in astrocytes, it has 
been found to be drastically up regulated in activated 
microglia and in stressed neurons under pathological 
conditions and injury [34, 36, 63, 64]. Recent reports also 
suggest that primary astrocytes and microglia express 
and secrete apoE with varying sizes likely due to different 
post-translational modifications and lipid compositions, 
which might contribute to cell type-specific functions in 
response to injury [65]. Other cell types, such as pericytes 
and oligodendrocytes, have also been reported to express 
apoE more abundantly after liver X receptor (LXR) stim-
ulation and after injury [66–69]. Thus, exploring the 
structure, lipidation status, and biochemical properties 
of apoE isoforms expressed by individual brain cell types 
will be critical for understanding apoE-related effects in 
the brain.

Pathobiological function of apoE
ApoE and Aβ
It is well established that apoE co-deposits with Aβ in 
amyloid plaques [70]. The interaction between apoE and 
pathological Aβ deposition appears to be a central mech-
anism by which apoE contributes to AD risk. Knocking 
out endogenous Apoe in amyloid model mice alters the 
morphology of Aβ plaques from compact to diffused 
[71, 72], suggesting that apoE may play a major role in 
Aβ fibrilization and amyloid deposition. Importantly, 
the effect of apoE on amyloid pathology is shown to be 
isoform-dependent (apoE4 > apoE3 > apoE2). ApoE4-TR 
mice show increased Aβ levels in brain tissues and in the 
CSF compared to apoE3-TR [73, 74]. Additionally, post-
mortem studies of human brain tissue have increased Aβ 

plaque deposition and earlier onset of amyloid pathology 
in individuals carrying APOE4 [75–77]. Positron emis-
sion tomography (PET) imaging revealed that APOE4 
carriers show earlier deposition of Aβ [78, 79], as well 
as greater overall deposition and broader cortical dis-
tribution [80–82]. Conversely, APOE2 carriers showed 
delayed onset of Aβ deposition, less severe pathology, 
and protected cognitive function [83]. Studies of Aβ 
kinetics in the presence of apoE suggests that apoE4 sta-
bilizes soluble, cytotoxic, oligomeric Aβ fragments and 
enhances fibrillogenesis [84]. In addition, apoE4 has been 
shown to accelerate early seeding of amyloid pathology. 
For instance, using mouse models in which apoE isoform 
expression is conditionally induced, astrocytic expression 
of apoE4 during the seeding stage of Aβ plaque develop-
ment, but not in the rapid growth period, resulted in a 
substantial increase in plaque deposition as well as an 
increased Aβ half-life in the brain [85]. Similar results 
were found using APP/PS1-21 animal models treated 
with antisense oligonucleotides (ASOs) against APOE4, 
where inhibition of apoE4 during the seeding stage leads 
to larger Aβ plaques with reduced plaque-associated 
neuritic dystrophy [86]. The findings of earlier Aβ depo-
sition [87], greater Aβ oligomerization, and lower CSF 
and plasma Aβ levels in human APOE4 carriers [88, 89] 
strongly support the idea that apoE isoforms differen-
tially regulate Aβ fibril formation via its interaction with 
Aβ, and that this interaction may represent a potential 
target for therapeutic intervention at early stages of the 
disease.

In addition to promoting Aβ plaque formation, apoE is 
also involved in the clearance of Aβ via various mecha-
nisms, such as receptor-mediated clearance and proteo-
lytic degradation. LRP1 receptor in neurons is shown to 
mediate Aβ clearance via the uptake of Aβ/apoE com-
plexes [90–92]. Due to the reduced stability of the com-
plex between apoE4 and Aβ [93, 94], this uptake process 
is impaired in APOE4 carriers. This clearance impairment 
is further compounded by alterations in receptor bind-
ing and the competition of apoE for Aβ receptor binding 
sites [95], resulting in dramatically reduced receptor-
mediated clearance in the presence of apoE4. In addi-
tion, soluble Aβ can be cleared by proteolytic enzymes, 
such as metalloendopeptidases, plasminogen activators, 
matrix metalloproteinases, and lysosomal peptidases 
[96]. It has been shown that apoE promotes Aβ degrada-
tion within microglia in an isoform-dependent manner 
through neprilysin (NEP) and insulin-degrading enzyme 
(IDE) in the extracellular space. Enhanced expression of 
lipidated apoE was also shown to stimulate proteolytic 
Aβ degradation through LXRs and ABCA1 [97]. Given 
that apoE4 is a less-effective lipid transporter compared 
to apoE2 and apoE3, the apoE4-mediated proteolytic 
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degradation of Aβ is also compromised [98], leading to 
reduced Aβ clearance.

ApoE and tau
Along with Aβ plaque formation, a major hallmark of AD 
pathology is the presence of NFTs composed of hyper-
phosphorylated tau aggregates. ApoE4 has been shown 
to increase tau phosphorylation compared to apoE2 and 
apoE3 in the presence of Aβ oligomers [99]. Human stud-
ies using PET imaging revealed that APOE4 carriers show 
an increased tau deposition both in the presence and 
absence of Aβ plaques [100]. Neuronal apoE4 was shown 
to promote tau phosphorylation and cell death compared 
to apoE3 in induced pluripotent stem cell (iPSC) cultures 
[101]. Additionally, animal models of tauopathies have 
shown that apoE4 is associated with greater total tau and 
phospho-tau levels [102], and exacerbates tau-mediated 
neurodegeneration by modulating microglial activation 
[103, 104]. A recent study reported that selective dele-
tion of astrocytic apoE4 can reduce tau-related synaptic 
degeneration, disease-associated gene signatures, and 
protect against microglial phagocytosis [105]. Moreover, 
a study using an adeno-associated virus (AAV)-tau deliv-
ery approach found that apoE2 may lead to increased tau 
phosphorylation and aggregation and is associated with 
the risk of developing primary tauopathy. The increased 
tau aggregation is potentially due to the formation of 
tau/apoE complexes, which primarily occur in the pres-
ence of non-lipidated apoE2 [106]. A recent GWAS study 
indicates that apoE2 distinctly regulates protein phos-
phatase 2 A (PP2A) activity, a major tau phosphatase in 
the human brain, which could offer protection against 
AD risk. The authors further suggest that the protective 
mechanism of APOE2 might be distinct from the del-
eterious effect of APOE4 on AD risk [107]. These results 
demonstrate the effects of apoE on the pathogenesis of 
tauopathies, as well as tau-mediated neurotoxicity, and 
provide supporting evidence that the role of apoE is 
isoform-dependent.

The isoform-specific interactions between apoE and 
tau have become of interest not only in AD research, but 
also for other tauopathies such as frontotemporal demen-
tia (FTD), chronic traumatic encephalopathy (CTE), and 
corticobasal degeneration (CBD) [103, 106, 108, 109]. For 
example, human APOE4 carriers with FTD, a primary 
tauopathy, are younger in age at the onset of tau pathol-
ogy, exhibit signs of exacerbated neurodegeneration, 
and show greater cognitive decline than non-APOE4 
carriers [108, 110]. Together these findings suggest that 
apoE influences tau pathology, even independently of 
Aβ pathology, which contributes to disease progres-
sion. Thus, understanding the molecular mechanisms of 
apoE in the context of tauopathy might provide critical 

information on developing strategies for AD and other 
tau-related neurodegenerative diseases.

Early research showed that apoE binds to the region of 
tau believed to be responsible for aggregation into patho-
genic NFTs. It has been postulated that apoE might bind 
tau directly and block its phosphorylation sites. Such 
interaction was also observed to be isoform-specific, with 
apoE3 showing much stronger binding affinity to the 
microtubule-binding region of tau than apoE4 [111]. The 
reduced affinity of apoE4 binding to tau may increase the 
availability and likelihood of GSK3-mediated tau hyper-
phosphorylation, which leads to an increased forma-
tion of NFTs [112]. Alternatively, it has been postulated 
that apoE4 inhibits the Wnt signaling pathway through 
LRP5/6 receptors by increasing GSK3 activity, leading 
to increased tau phosphorylation [113]. These potential 
mechanisms continue to be studied to better understand 
the contributions of apoE to tau pathogenesis.

ApoE and neuroinflammation
A growing body of literature now suggests that inflam-
mation plays a key role in neurodegenerative processes 
and is subject to modulation by apoE. While apoE con-
tributes to AD pathogenesis in a wide range of path-
ways, recent data suggests that these different pathways 
may have a common node in neuroinflammation [114]. 
Microglia, often observed surrounding plaques in post-
mortem brain tissue, have been shown to mediate the 
inflammatory response and phagocytosis of amyloid 
plaques [115]. Interestingly, studies have demonstrated 
that apoE-deficient mice show reduced microglial reac-
tivity to plaques [105, 116, 117], suggesting that apoE 
may be necessary for the microglial response to amyloid 
aggregation. Emerging studies show that disease-associ-
ated microglia (DAM), or microglial neurodegenerative 
(MGnD) phenotype, exhibit a conserved transcriptional 
signature across AD mouse models with Apoe serving as 
one of the central regulators [116, 118]. Furthermore, the 
impact of apoE on microglial function is likely isoform-
specific [119, 120]. A recent report demonstrates that 
apoE3 is more efficient at inducing microglial response 
to injected Aβ compared to apoE4, and such observa-
tion may be mediated by triggering receptor expressed 
on myeloid cells 2 (TREM2) [121]. Expressed specifically 
by microglia in the brain, TREM2 is shown to interact 
with apoE with high affinity and modulate microglial 
responses [122]. There is also evidence that binding of 
apoE to TREM2 is dependent on apoE isoform [123] 
and lipidation status [124], which may account for differ-
ences in microglial function between isoforms. Specifi-
cally, apoE4 may impair homeostatic microglial functions 
compared to other isoforms [125] potentially due to its 
reduced lipidation and reduced affinity to TREM2.



Page 6 of 26Raulin et al. Molecular Neurodegeneration           (2022) 17:72 

In the peripheral immune system, APOE genotype has 
been shown to modulate the level of C-reactive protein 
(CRP) in plasma or serum in multiple cohorts [126–128]. 
CRP is an inflammatory protein primarily produced by 
hepatocytes in response to injury or inflammation [129]. 
Interestingly, APOE4 carriers show lower levels of CRP 
relative to APOE3 individuals and APOE2 carriers [126–
128]. CSF proteomics has also shown a reduction of CRP 
and complement cascade proteins in APOE4 carriers 
versus APOE2 carriers and APOE3 individuals. Contrary 
to this trend in genotype, cumulative incidence of AD 
was shown to markedly increase as levels of serum CRP 
increase, with the greatest effect in APOE4 carriers [126]. 
However, APOE but not CRP haplotype was associated 
with life-long cognitive decline in a longitudinal cohort 
[130], which does not support a causal effect of CRP on 
cognitive decline. Therefore, APOE4 carriers may be 
subjected to aberrant immune responses to pathologi-
cal development, which can ultimately lead to harmful 
effects on injury responses and cognitive deficits. Thus, 
targeting apoE-mediated inflammatory responses may 
attenuate AD pathologies and neurodegeneration, and is 
a valid therapeutic approach to be explored.

ApoE in dysregulation of lipid metabolism
As a major lipid transporter in the brain, apoE has been 
shown to mediate lipid and cholesterol metabolism in an 
isoform-dependent manner [131]. In rat primary astro-
cytes and neurons, recombinant apoE2 was more efficient 
at promoting the efflux of cholesterol and phosphatidyl-
choline (PC), followed by apoE3, and then apoE4 [132]. 
Deficiency in facilitating cholesterol efflux may result in 
its intracellular accumulation, which can lead to cytotox-
icity. For instance, APOE4 iPSC-derived astrocytes tend 
to build up more unsaturated fatty acids and cholesterol 
compared to APOE3 astrocytes [62, 133], and are more 
prone to accumulation of esterified cholesterol stored as 
lipid droplets [134]. In addition to astrocytes, microg-
lia can also accumulate lipid droplets during aging and 
under disease-associated conditions [135, 136]. Claes et 
al. have reported that human iPSC-derived xenografted 
microglia (xMG) transplanted into the brains of an amy-
loid mouse model accumulate numerous lipid droplets in 
the vicinity of amyloid plaques, but not in those distant 
from plaques [136]. In animal studies, no major changes 
in lipid profiles were reported in the brains of young and 
middle aged apoE-TR mice [137]. However, apoE2-TR 
mice were shown to have lower cholesterol levels in the 
cortex, and higher levels in CSF and plasma compared to 
apoE3- and apoE4-TR mice [138], suggesting more effi-
cient cholesterol efflux in apoE2-TR mice.

In human observational cohort studies, individu-
als with different APOE genotypes exhibit distinct lipid 
profiles in the periphery. APOE2 carriers present with 

lower total cholesterol, and APOE4 carriers with higher 
total cholesterol compared to APOE3 carriers [115]. 
However, both APOE2 and APOE4 carriers have higher 
plasma triglycerides compared to APOE3 carriers [115]. 
Lipid dyshomeostasis has also been reported in post-
mortem AD brains [134] and has been shown to be apoE 
isoform dependent. For instance, demented APOE4 car-
riers display decreased levels of several lipid classes, such 
as phosphatidylethanolamine (PE) and phosphatidic acid 
(PA) [139]. The association of apoE4 with lower cho-
lesterol transport capacity and increased lipid droplet 
accumulation may be a major contributing mechanism 
through which APOE4 presents a strong risk for AD.

ApoE in vascular dysfunction and BBB integrity
The contribution of the vasculature to AD pathogenesis 
is gaining an increased interest as research has shown 
that vascular cognitive impairment and dementia (VCID) 
and AD share some converging pathology and etiology, 
including the involvement of apoE [140]. ApoE4 inten-
sifies cholesterol dysregulation, stimulates inflamma-
tion, promotes metabolic dyshomeostasis, and enhances 
BBB breakdown, which promotes cerebrovascular dam-
age and increases the risk for both VCID and AD [140]. 
Interestingly, both APOE2 and APOE4 have been found 
to correlate with increased amyloid accumulation in 
the parenchymal and meningeal cerebrovasculature, 
classified as cerebral amyloid angiopathy (CAA) [141]. 
However, APOE2 was found to reduce Aβ positivity in 
patients with AD-related cognitive decline but increase 
Aβ positivity in patients with VCID, potentially due to 
the presence of vascular amyloid which increases the 
risk of CAA [142]. The progression of CAA alters Aβ 
clearance mechanisms and leads to vascular pathologi-
cal changes, including augmented vascular pulsation 
and reduced vascular smooth muscle cell coverage [143]. 
The reduction of Aβ clearance may be further exacer-
bated by apoE4, which causes premature shrinkage of 
meningeal lymphatic vessels, resulting in abnormal lym-
phatic function [144]. Conversely, apoE-enriched HDL 
particles have been shown to drastically diminish CAA 
in bioengineered vessels in an in vitro system by reduc-
ing vascular Aβ deposition [145]. Further investigation 
is required to elucidate how apoE-containing HDL par-
ticles reduce CAA, and whether these mechanisms are 
isoform-dependent.

Vascular mural cells (VMCs), including smooth mus-
cle cells and pericytes are responsible for the homeo-
stasis and function of the cerebrovasculature. It was 
recently demonstrated that VMC-derived apoE4 leads 
to a reduction of arteriole blood flow and behavioral 
deficits, likely due to increased astrogliosis of the vascu-
lature [146]. In addition, cognitively normal APOE4 car-
riers have reduced retinal capillary density, which could 
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act as a measurable in vivo model of impaired capillary 
blood flow in the cerebral vasculature [147]. However, it 
is interesting to note that APOE4 carriers have a reduced 
risk of developing glaucoma due to impaired activation 
of microglia in the retina [148]. Another study shows 
that APOE4 carriers presenting with increased arteri-
ole stiffness perform worse on memory tasks compared 
to non-carriers [149]. Overall, APOE4 is associated with 
reduced blood flow, increased arteriole stiffness, and 
enhanced sensitivity to hypertension [150]. As such, 
long-term treatment with angiotensin receptor blockers 
has been shown to improve memory and neuroinflam-
mation independently of Aβ pathology in female mice 
expressing human APOE4 [151]. Similarly, research sug-
gests that vascular endothelial growth factor A (VEGFA) 
is protective against AD in apoE4-TR mice and could be 
a promising therapeutic target [152]. In addition, sys-
temic treatment with epidermal growth factor (EGF) 
improved memory performance of apoE4-TR mice inde-
pendent of Aβ pathology [153]. Neuropilin 1, a regulator 
of angiogenesis, also modifies the risk for poor cognitive 
outcomes based on APOE4 status [154]. Together these 
data provide evidence that apoE contributes to vascular 
pathology in an isoform-dependent manner and could be 
a viable target for therapies toward AD and related vas-
cular dementias.

Emerging evidence suggests that the breakdown of 
the BBB may be one of the earliest pathogenic events 
of cognitive decline and AD pathology. ApoE has been 
shown to modulate cerebrovascular tight junction integ-
rity independent of CAA in AD brains [155]. Addition-
ally, a study showed that BBB breakdown contributes to 
cognitive decline in APOE4 carriers independent of Aβ 
or tau pathology [156]. A major component of the BBB 
are vascular endothelial cells, which form tight junctions 
to create a functional barrier [157]. Interestingly, apoE2 
and apoE3 are shown to induce proliferation of vascular 
endothelial cells while apoE4 decreases their prolifera-
tion [158], potentially contributing to the breakdown of 
the BBB. Studies also indicate that apoE4 disrupts the 
endothelial BBB integrity by influencing extracellular 
matrix, cell adhesion machinery, cytoskeleton stabil-
ity, and translation in brain endothelium. The progres-
sive BBB breakdown in the presence of apoE4 leads to 
synaptic dysfunction and behavior deficits [159, 160]. 
BBB breakdown is also shown to be a result of dysfunc-
tional pericytes, which regulate the BBB by controlling 
gene expression in endothelial cells and inducing polar-
ization of astrocytic end-feet [161]. Pericytes expressing 
apoE4 have a reduced capacity for supporting endothelial 
cell function, which leads to impaired BBB integrity and 
increased susceptibility to cognitive decline [66]. Impor-
tantly, accelerated BBB breakdown and degeneration of 
capillary pericytes can also be recapitulated in amyloid 

mouse models and human iPSC models [67, 162]. Using 
a novel iPSC-based 3-D model that recapitulates human 
BBB in vitro, a recent study showed that dysregula-
tion of calcineurin/NFAT-signaling in pericytes induces 
apoE4-associated CAA pathology, whereas inhibition 
of calcineurin reduces apoE expression and vascular 
amyloid accumulation [67]. Additionally, apoE4 accel-
erates the degradation of the BBB through activation of 
the cyclophilin A-matrix metalloproteinase-9 (MMP9) 
pathway in pericytes, whereas suppression of this path-
way improves BBB integrity and prevent apoE4-medi-
ated behavioral deficits in amyloid mouse models [162]. 
These studies demonstrate that apoE plays a major role 
in maintaining BBB integrity and that targeting these 
pathways may present novel therapeutics for AD-related 
neurodegeneration.

ApoE and other comorbidities
Many AD patients present with comorbidities includ-
ing cardiovascular disease (CVD) and type 2 diabetes 
mellitus (T2DM). Not surprisingly, diabetes appears 
to accelerate cognitive decline and increase vascular 
pathology [163]. Interestingly, APOE4 has been shown to 
increase the risk for both CVD (OR = 3.0, p = 0.018) and 
T2DM (OR = 2.2, p = 0.04) independently of AD pathol-
ogy [164, 165]. In addition, APOE4 is shown to increase 
the prevalence and hazard for metabolic syndrome in a 
cross-sectional study of 4,408 middle-aged men [166]. 
Evidence suggests that these metabolic deficits can occur 
before AD pathology becomes evident [167]. Thus, some 
have proposed research to focus on metabolic dysregula-
tion for novel biomarkers and therapeutic targets for AD 
pathology. Given the influence of metabolism on modi-
fying AD pathology, Polis and Samson have suggested a 
new perspective of AD as a complex metabolic disorder, 
which may offer alternative therapeutic strategies in the 
future [168].

Studies that inform therapeutic strategies
While APOE has been known to be the strongest genetic 
risk factor for AD for decades, there are currently no 
apoE-targeted FDA-approved therapeutics for the treat-
ment of AD. Although apoE has been extensively stud-
ied in the context of AD pathogenesis, there is still much 
more to learn about the mechanisms involved. Recently, 
a novel “ApoE Cascade Hypothesis” was proposed sug-
gesting that the biochemical and biophysical properties 
of apoE impact a cascade of events at the cellular and 
systems levels, which ultimately contribute to the aging-
related cognitive decline, pathogenic conditions, and AD 
disease development [169]. Here, we highlight some of 
the most recent advances in the field that may help guide 
novel apoE-targeted therapeutic strategies.
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ApoE in omics analysis
Recent advances in technology have allowed for the gen-
eration of bioinformatic data from Omics experiments in 
iPSCs and mouse models, as well as in AD patients. Col-
lectively, these data have shed light on important genetic 
targets and pathways that are modulated by APOE geno-
type (Table  1). Recently, RNA-sequencing of isogenic 
iPSC-derived neurons revealed that apoE4 disrupts 
pathways related to synaptic formation, which leads to 
increased synaptic transmission [62]. Additionally, apoE 
expression is reduced in apoE4 astrocytes compared to 
apoE3, and the presence of apoE4 was shown to alter 
cholesterol metabolism and impair the uptake of Aβ [62]. 
Likewise, apoE4 expression in microglia is associated 
with less efficient Aβ clearance and activation of inflam-
matory genes. These data suggest that APOE4 causes 
global gene expression changes that may alter cellular 
function and lead to AD pathology [62]. Similar results 
can be seen from single nucleus RNA-sequencing of 
post-mortem human samples, providing further evidence 
that APOE expression plays a major role in AD pathology 
[170]. In support of these results, transcriptome profiling 
of microglia during disease progression reveals that apoE 
may be a key upstream regulator of the transition from 
homeostatic to DAM [116]. Additionally, transcriptomic 
analysis of apoE-TR mice found differential regulation 
of genes involved in energy metabolism in apoE4 mice 
compared to apoE3 mice, suggesting that apoE4 mice 
are more vulnerable to bioenergetic deficits which could 
also induce or exacerbate AD pathology [171]. Transcrip-
tomics analysis of cerebral organoids generated using 
iPSCs from AD patients reveals genes associated with 
disrupted RNA metabolism with stress granule formation 
especially in the presence of APOE4. Generating cerebral 
organoids from isogenic iPSC lines where apoE4 is con-
verted to apoE3 attenuates the apoE4-related phenotypes 
[172]. This is also recapitulated in a study using apoE-TR 
mice which identified distinct serum metabolite profiles 
and upregulated lipid levels in APOE2 mice compared 
to APOE3 and APOE4 [173]. Furthermore, proteomic 
analysis of human brain tissue and CSF has revealed apoE 
isoform-dependent changes, with a reduction in syn-
aptic and mitochondrial function and increased abun-
dance of neuroimmune signaling [174–176]. These data 
demonstrate the importance of apoE in the initiation 
and progression of AD pathology across multiple levels. 
One question the field has been hoping to address with 
recent bioinformatic approaches is how various genetic 
risk factors, such as APOE and TREM2, play a synergistic 
role and interact through common pathways. Recently, a 
multi-omics comparison of human ESC-derived microg-
lia-like cell lines found that upregulation of apoE is a con-
verging pathogenic node between SORL1 and TREM2 
mutant models of AD. These data suggest that various 

risk factors for AD may have overlapping mechanisms 
through the upregulation of apoE, specifically in microg-
lia [177].

Collectively, these studies suggest that not only does 
APOE4 increase the risk of developing various non-amy-
loid neuropathologies, but this risk may be synergistically 
heightened by altered immunomodulation and inhibited 
ability to respond to neuronal injuries on a synaptic level 
to maintain proper signaling networks. Future research 
on the complex interplay between apoE, various neuro-
pathologies, immunomodulation, and synaptic function 
will help to shed light on the pathogenic mechanisms 
of AD and other neurodegenerative diseases. Although 
much of the therapeutic research in LOAD has been 
geared toward targeting Aβ and tau pathologies, the 
role of apoE as a common mediator of several amyloid-
dependent and amyloid-independent pathways suggests 
that apoE itself could be a powerful target upstream of 
multiple AD pathologies.

Cell-type specific functions
Studies using iPSC-derived cellular models, animal 
models, and human brains have revealed cell-type and 
isoform specific functions of apoE. Using iPSC-derived 
isogenic lines for APOE, it was shown that APOE4 is 
associated with altered transcriptomic profiles related 
to synaptic function in neurons compared to APOE3. 
In astrocytes, apoE4 expression results in intracellular 
cholesterol accumulation, as well as impairment of Aβ 
clearance [62]. Another study also showed that apoE4 
is associated with impaired lipid and fatty acid metabo-
lism by disrupting neuron-astrocyte coupling. Fatty acid 
accumulation in neurons leads to disruption in fatty acid 
oxidation and lipid dysregulation in astrocytes. Com-
promised lipid metabolism in astrocytes can then affect 
several downstream pathways, including Aβ clearance 
[178]. Astrocytic apoE expression has also been shown 
to affect Aβ clearance and deposition in vivo [85]. In 
addition, microglia-like iPSC-derived cells expressing 
APOE4 exhibit transcriptomic changes associated with 
immune response, resulting in morphological altera-
tions that correlate with diminished phagocytosis of Aβ, 
amongst several other downstream effects [62]. Whether 
apoE isoforms differentially modulate lipid metabolism 
and neuroinflammation in a cell type-dependent manner 
warrants further investigation. Interestingly, a very recent 
study showed that APOE4 drives lipid metabolic dysreg-
ulation in astrocytes and microglia that may contribute 
to increased AD risk [179]. Together, these data demon-
strate that restoring apoE4-mediated dysregulation of Aβ 
and lipid metabolism in astrocytes and microglia could 
be a cell-type driven therapeutic avenue.

A genotype-dependent role for APOE has also been 
reported in VMCs, including pericytes. VMC-expressed 
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Cohort Findings Source DOI
Transcriptomics

Normal; AD • APOE2/3 AD brains are enriched in complement pathway genes 
(C4A, C4B, and HSPA2) whose expressions are associated with an 
increase of pTau231/tTau [296]

Brain https://doi.org/10.1038/s41380-021-01266-z

AD • APOE2 is associated with genes involved in protein synthesis, 
folding and degradation, response to unfolded protein, autophagy, 
and mitochondrial function [139]

Brain https://doi.org/10.1186/s13195-019-0558-0

Normal; AD • APOE is one of the DAM-like signature genes that is significantly 
up-regulated in human AD brain assessed by single cell- or single 
nuclei-RNA Sequencing [64, 297–299]

Brain https://doi.org/10.1038/s41467-020-19737-2
https://doi.org/10.1038/s41586-019-1195-2
https://doi.org/10.1007/s00401-020-02200-3
https://doi.org/10.1007/s00401-021-02263-w

Normal
APOE mice

• APOE4 reduces energy expenditure in young females and 
decreases glucose oxidation by redirecting flux through aerobic 
glycolysis [300]

Brain
Plasma

https://doi.org/10.1186/s13024-021-00483-y

APOE mice
Amyloid mouse 
models

• APOE4 increases the expression of Serpina3 family genes, whereas 
APOE2 drives distinct blood metabolome profile [173]
• DAM/MGnD/ARM exhibit conserved transcriptional signatures 
across different AD mouse models with Apoe being one of the 
central regulators [116, 118, 301]

Brain
Plasma

https://doi.org/10.1016/j.neuron.2020.02.034
https://doi.org/10.1016/j.cell.2017.05.018
https://doi.org/10.1016/j.
immuni.2017.08.008
https://doi.org/10.1016/j.celrep.2019.03.099

Normal • Microglial gene expression modules associated with APOE4 and 
sex are also enriched with genes involved in cholesterol absorption 
and lipid digestion [302]
• Microglial gene expression modules associated with APOE4 and 
age suggest perturbations in lipid and carbohydrate metabolism 
as well as microglial activation [302]

Brain https://doi.org/10.1111/acel.13606

Normal; AD
APOE mice

• APOE4 astrocytes and microglia demonstrate dysregulated lipid 
metabolism [179]
• APOE4 alters the matrisome, ECM, and immune pathways in 
hiPSC-mixed cortical cultures and AD brains [179]

Brain
hiPSC

https://doi.org/10.1016/j.cell.2022.05.017

Proteomics

Normal; AD • AIF1, APP, GDI2, HSP90AA1, METAP2, NACA, NCK1, PRDX1, RPS27A, 
SFTPD and UFC1 are downregulated in AD versus control among 
APOE4 carriers. [303]

Plasma, 
brain

https://doi.org/10.18632/aging.202950

Normal • APOE genotype is associated with levels of PSD95 in superior 
temporal cortex in AD (E4/* > E3/E3 > E2/*) [59]
• APOE2 is associated with significantly increased levels of PSD95 in 
superior temporal cortex [59]

Brain https://doi.org/10.1016/j.
neurobiolaging.2005.04.008

Control; AsymAD; 
AD

• The matrisome module (i.e., extracellular matrix associated pro-
teins) is influenced by the APOE4 but is not associated with cogni-
tive decline rate after adjustment for neuropathology [304].

Brain https://doi.org/10.1038/s41593-021-00999-y

Lipidomics

Normal; AD • APOE4 copy number is positively associated with LysoPE and 
acylcarnitine species [305]
• APOE4 copy number is negatively associated with PE(O), PE(P), 
ceramides, and triglycerides versus APOE2 carriers [305]

Plasma https://doi.org/10.3233/jad-191304

Normal; Aging • LDL cholesterol levels are genotype dependent (E4/E4 > E4/
E3 > E3/E3 > E2/E3 > E2/E2) [306]
• APOE2 is associated with increased levels of most phospholipids 
(i.e., lysophosphatidylcholines and all PE subclasses) [306]
• APOE4 is associated with reduced levels of phosphatidylinositol 
relative to APOE2 and APOE3 carriers [306]

Plasma https://doi.org/10.3233/jad-190524

AD • APOE4 is associated with reduced levels of CAR, LPC, LPE, PA, PC, 
PE, PI, PS, SM, and ST [139]

Brain https://doi.org/10.1186/s13195-019-0558-0

Apoe-KO mice • Both APOE3 and APOE4 treatment reduces hyperlipidemia in a 
dose-dependent manner, lowering both plasma cholesterol and 
lipoprotein levels [307]
• Expression of APOE4 increases VLDL-cholesterol and reduces HDL-
cholesterol levels relative to apoE3 [307]

Plasma https://doi.org/10.1161/atvbaha.112.301193

Metabolomics

Table 1 APOE isoform effects in aging and AD: Insights from multi-omics and biomarker studies

http://dx.doi.org/10.1038/s41380-021-01266-z
http://dx.doi.org/10.1186/s13195-019-0558-0
http://dx.doi.org/10.1038/s41467-020-19737-2
http://dx.doi.org/10.1038/s41586-019-1195-2
http://dx.doi.org/10.1007/s00401-020-02200-3
http://dx.doi.org/10.1007/s00401-021-02263-w
http://dx.doi.org/10.1186/s13024-021-00483-y
http://dx.doi.org/10.1016/j.neuron.2020.02.034
http://dx.doi.org/10.1016/j.cell.2017.05.018
http://dx.doi.org/10.1016/j.immuni.2017.08.008
http://dx.doi.org/10.1016/j.immuni.2017.08.008
http://dx.doi.org/10.1016/j.celrep.2019.03.099
http://dx.doi.org/10.1111/acel.13606
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http://dx.doi.org/10.1016/j.neurobiolaging.2005.04.008
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apoE has been shown to differentially regulate neu-
robehaviors, gliovascular functions, and transcriptomic 
profiling depending on isoforms [146]. Transcriptomic 
profiles in human pericytes isolated from the prefron-
tal cortex and the hippocampus show an upregula-
tion of apoE4 both at the transcript and at the protein 
levels compared to apoE3 [67]. Similarly, in a human 
iPSC-derived BBB model, apoE4-expressing VMCs with 
pericyte-like properties display elevated apoE levels com-
pared to those expressing apoE3, which could be in part 
responsible for amyloid accumulation in the vasculature. 
Thus, APOE is differentially regulated depending on the 
cell-type it is expressed by, supporting the consideration 
of cell-type specific targeting of apoE [67].

A study using single-nucleus RNA-sequencing of 48 
prefrontal cortex tissues brought to light several new 
findings relating to both sex-dependent and cell type-
dependent mechanisms in AD pathophysiology. Cell-
type specific changes mostly occurred in the early stages 
of AD pathogenesis, with disease-related cell population 
changes occurring predominantly in females. This study 
also identified disease-driven changes in myelination-
related pathways, pointing to a major role for myelination 
in AD [64]. Understanding how apoE isoforms modu-
late myelination-related pathways and transcriptomic 
changes in different cell types during disease progression 
may further shed light on the pathogenic mechanisms of 
AD.

Cohort Findings Source DOI
AD • APOE4 is associated with reduced LysoPC(18:1), LysoPC(P-18:0), 

and Cardiolipin [308]
Plasma https://doi.org/10.1016/j.jpba.2019.113088

Normal; Young • APOE4 carriers show higher levels of cholesterol relative to APOE2 
carriers [309]
• APOE influences GlycA, isoleucine, LDL-TG, VLDL-TG, and M-VLDL 
(E2 < E3 < E4) [309]
• APOE influences LDL particle diameter (E2 > E3 > E4) [309]

Serum https://doi.org/10.1038/s41598-018-36450-9

Biomarkers

Normal • APOE4 is associated with increased LDL, IGF-1, SHBG, bilirubin, 
triphosphate, ApoB, and total cholesterol, and reduced HDL, 
HbA1C, lipoprotein A, CRP, GGT, vitamin D, creatine, urate, and urea 
compared to APOE3 [310]
• APOE2 is associated with increased HDL, CRP, vitamin D, CysC, 
ApoA, creatinine, and alkaline phosphatase; and reduced LDL, IGF-
1, bilirubin, and ApoB, compared to APOE3 [310]

Serum 
blood

https://doi.org/10.3233/jad-200338

Normal; Aging • APOE2 reduces total cholesterol, LDL, lipoprotein A, and ApoB and 
increases apoA1 compared to APOE3 [311]

blood https://doi.org/10.18632/aging.103405

Normal • APOE4 is associated with increased SNAP-25 in cognitively normal 
patients [312]

CSF https://doi.org/10.1016/j.
neurobiolaging.2021.02.008

Normal; Aging • APOE2 carriers without dementia have reduced Aβ burden, with 
no differences in tau accumulation [313]
• APOE4 carriers without dementia have increased Aβ burden and 
tau burden [313]

PET https://doi.org/10.1007/s00259-021-05192-8

AD • APOE4 carriers with preclinical AD have increased VILIP-1 [314] CSF https://doi.org/10.2147/ndt.s235395

AD • APOE4 is associated with increased levels of CDH6 and HAGH in 
AD patients [315]

Plasma https://doi.org/10.1038/s41598-020-65038-5

AD • Levels of CRP are influenced by APOE (E2/E3 > E3/E3 > E3/E4 > E4/
E4 > E2/E4) [316]
• Levels of ApoB are influenced by APOE (E2/E3 < E2/E4 < E3/
E3 < E3/E4 < E4/E4) [316]
• Levels of IL-13 are influenced by APOE (E2/E3 < E2/E4 < E3/E3 < E3/
E4 < E4/E4) [316]
• Levels of CXCL9 are influenced by APOE (E3/E3 > E3/E4 > E4/E4) 
[316]

Plasma https://doi.org/10.1001/
archneurol.2012.1070

APOE mice • APOE4 is associated with increased NP1 levels [317] Plasma https://doi.org/10.1016/j.nbd.2018.02.014
Abbreviations: pTau: phosphorylated Tau, tTau: total Tau,DAM: disease-associated microglia, MGnD: microglial neurodegenerative phenotype, ARM: activated response microglia, 
AIF1: Allograft inflammatory factor 1, APP: Amyloid precursor protein, GDI2: Guanosine Diphosphate Dissociation Inhibitor 2, HSP90AA1: Heat Shock Protein 90 Alpha Family Class A 
Member 1, METAP2: Methionyl Aminopeptidase 2, NACA: Nascent Polypeptide Associated Complex Subunit Alpha, NCK1: Non-catalytic region of tyrosine kinase adaptor protein 1, 
PRDX1: Peroxiredoxin 1, RPS27A: Ribosomal Protein S27a, SFTPD: Surfactant Protein D, UFC1: Ubiquitin-Fold Modifier Conjugating Enzyme 1, PSD95: Postsynaptic density protein 95, 
AsymAD: asymptomatic AD, LysoPE: Lysophosphatidylethanolamine, PE: Phosphatidylethanolamine, LDL: Low-density lipoprotein, CAR: Carnitine, LPC: Lysophosphatidylcholine, LPE: 
Lysophosphatidylethanolamine, PA: Phosphatidic acid, PC: Phosphatidylcholine, PI: Phosphatidylinositol, PS: Phosphatidylserine, SM: Sphingomyelin, ST: Sterol, VLDL: Very low-density 
lipoprotein, HDL: High-density lipoprotein, LysoPC: Lysophosphatidylcholine, GlycA: Glycoprotein acetylation, TG: Triglyceride, IGF-1: Insulin-like growth factor-1, SHBG: Sex hormone 
binding globulin, HbA1C: Hemoglobin A1C, CRP: C-reactive protein, GGT: Gamma-glutamyl transferase, CysC: Cystatin C, ApoA: Apolipoprotein A, ApoB: Apolipoprotein B, VILIP-1: Visinin-
like protein 1, CDH6: Cadherin 6, HAGH: Hydroxyacylglutathione Hydrolase, IL-13: Interleukin-13, CXCL9: Chemokine ligand 9, NP1: Neuronal pentraxin 1

Table 1 (continued) 
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Rare apoE variants associated with AD risk
The APOE3-Christchurch (APOE3-Ch) variant has 
sparked interest in the AD field since its homozygosity 
was linked to remarkable resistance against an aggres-
sive form of familial AD driven by the PSEN1-E280A 
mutation in a single case report [15]. Carrying two cop-
ies of this rare allele significantly reduced tau pathology 
and neurodegeneration in the patient, with preserved 
glucose metabolism and cognition. The effect on amy-
loid pathology is unclear since high amyloid burden 
was still detected by amyloid PET [15]. APOE3-Ch was 
discovered in 1987 as a susceptibility factor for type III 
hyperlipoproteinemia in Caucasian populations [180]. It 
encodes a missense mutation on an APOE3 background 
which results in an Arg to Ser substitution at position 
136, within the receptor binding region of apoE [180, 
181] (Fig. 1). In vitro studies using bacterially produced 
apoE3-Ch have suggested that the R136S mutation leads 
to reduced binding to the LDL receptor and heparin [15, 
181]. How these differences in biochemical properties 
result in protection against AD is still unclear. It is pos-
sible that deficient interaction between apoE3-Ch and 
HSPG may directly or indirectly impact AD pathologies 
in a positive manner.

Other rare APOE variants have since been linked to 
either AD risk or AD protection. The APOE3-Jacksonville 
(APOE3-Jac) mutation on an APOE3 backbone results in 
a Val to Glu substitution at position 236 within the C-ter-
minal domain (Fig. 1). APOE3-Jac was linked to reduced 
risk for AD and dementia with Lewy bodies (DLB) [17, 
18]. A recent study showed that apoE3-Jac promotes 
healthy brain aging and decreases amyloid deposition 
and associated toxicity by reducing apoE self-association 
and increasing lipidation [17]. The C-terminal region of 
apoE is involved in its oligomerization in solution and it 
also contains a lipid binding region. Given that lipidation 
of apoE is favored when the protein is in its monomeric 
form [84], it is possible that the reduced hydrophobicity 
and/or conformational change in apoE3 caused by the 
V236E substitution results in its reduced oligomeriza-
tion and increased lipidation capacity, contributing to its 
protective role in AD. Other mutations in APOE, such 
as L28P in an APOE4 backbone (APOE4-Freiburg) or 
APOE3-R145C (APOE3-Philladelphia) (Fig. 1) have been 
linked to increase risk for lipid disorders and cardiovas-
cular diseases [182, 183]. However, genetic association 
of these rare variants to LOAD have not been robustly 
studied yet [18]. In a more recent report, a new APOE 
protective variant (APOE4-R251G) was discovered upon 
analyses of multiple disease cohorts [19]. Interestingly, 
this mutation is on an APOE4 backbone with a Arg to 
Gly substitution at position 251 within the C-terminal 
domain of apoE. How this APOE4-R251G variant pro-
tects against AD risk is not clear although changes in 

apoE structure and/or lipidation capability are among the 
possibilities. The location of the protective APOE3-Jac 
and APOE4-R251G variants within the carboxyl-terminal 
portion of apoE suggests that this region of apoE plays an 
important role in apoE biology and pathobiology. In sum-
mary, understanding how mutations in apoE affect its 
structure, biochemical properties, and function, and how 
this may translate in differential effects on AD pathobiol-
ogy, would allow for the identification of new therapeutic 
avenues and personalized medicine.

ApoE-Targeted therapeutic strategies
Removal of amyloid plaques is a promising therapeutic 
avenue in AD and efforts have led to the development 
of aducanumab, a newly FDA-approved treatment that 
targets amyloid aggregates [184]. A recent encouraging 
clinical trial result reported that another anti-Aβ drug, 
lecanemab, could potentially slow the cognitive decline in 
people with early onset of AD by 27% over 18 months. 
However, the long-term safety and effectiveness of this 
new therapy still need to be explored. Whether APOE 
genotype further modifies the safety and efficacy of this 
drug will also require further investigation. It is well-
known that anti-amyloid immunotherapy can increase 
the incidence of amyloid-related imaging abnormalities 
(ARIA) with brain edema or hemorrhage [185]. Inter-
estingly, APOE4 is greatly associated with ARIA and 
exhibits a gene dose effect; thus, obtaining APOE geno-
type status has been recommended to be a prerequisite 
for an AD therapy to better inform ARIA risk, treatment 
plan, and clinician vigilance [186, 187]. In addition, since 
APOE genotype has been shown as a key determinant 
of AD risk impacting multiple disease pathways, apoE-
targeted therapy has become an attractive avenue for 
consideration of novel therapies. Here, we outline and 
discuss the major apoE-related properties and mecha-
nisms being examined as potential apoE-targeted thera-
peutic strategies.

Modulating the levels of apoE
Characterization of apoE isoforms in animal models and 
clinical studies has shown different protein levels among 
them [188, 189], which appears to be independent of Aβ 
levels or AD diagnosis [190]. Since apoE plays a major 
role in Aβ plaque formation [71, 85], several strategies 
have focused on modulation of apoE levels to prevent 
or reduce pathological development of AD. ApoE hap-
loinsufficiency was shown to reduce amyloid deposition 
in amyloid model mice [191]. Furthermore, astrocyte-
specific deletion of the Apoe gene improves cognitive 
performance [192] and reduces Aβ deposition and apoE 
accumulation in the brain of AD mouse models [105]. 
Thus, the dependence of Aβ on apoE levels has given rise 
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to several strategies aimed toward altering apoE levels for 
prophylactic and therapeutic benefits.

One promising apoE-focused therapeutic avenue is the 
use of immunotherapies to reduce apoE, in particular 
apoE4, and consequently alleviate Aβ deposition (Fig. 2). 
In vivo experiments showed that intraperitoneal injec-
tion of HJ6.3, a monoclonal antibody specific against 
apoE, is effective in reducing amyloid deposition by mod-
ulating microglial responses and inflammatory cytokine 
levels [193]. Administration of HJ6.3 to amyloid model 
mice reduces Aβ pathology, improves spatial learning 
performance, and restores functional connectivity with-
out altering plasma cholesterol levels when administered 
both prior to and after plaque onset [194]. These data 
demonstrate that reducing apoE4 level may be beneficial 
in attenuating AD pathology.

Peptide-based interventions for apoE
Insights into the structure of apoE and its biochemical 
interactions have opened the door to several mecha-
nisms by which the function of apoE could be modulated. 
One such mechanism is to inhibit apoE receptor bind-
ing through mimetic peptides, short peptide sequences 
designed to compete for apoE binding sites and thereby 
reduce its function [24, 195] (Fig.  2). For example, pep-
tides encompassing the apoE receptor binding region 
(amino acids 130–150) have been shown to reduce 
microglial immunoreactivity in vitro [196], and improve 
survival in mouse models of traumatic brain injury [197, 
198] and AD [199]. On the other hand, peptide mimet-
ics have also been used to promote apoE function. In one 
approach, peptides were designed to mimic HDL to bind 
apoE, thereby increasing apoE secretion and enhancing 
lipidation status to negate the impacts on Aβ metabo-
lism [200]. These preclinical data support the idea that 
mimetic peptides might be a useful strategy for therapeu-
tics targeting of apoE function.

Given the role of apoE in amyloid deposition, inhibiting 
the interaction between apoE and Aβ peptides is another 
potential strategy for preventing AD pathogenesis 
(Fig. 2). Peptides binding to residues 12–28 of apoE have 
been shown to inhibit this interaction [201] and effec-
tively reduce Aβ pathology and synaptic loss in mouse 
models of AD [202]. Further upstream in the amyloid 
processing pathway, peptides that prevent apoE binding 
to APP have been shown to reduce Aβ and tau pathology, 
improve cognitive performance, and have no effects on 
lipid profiles in a mouse model [203]. Thus, preventing 
amyloid deposition by modulating the function of apoE 
with mimetic peptides demonstrates a promising thera-
peutic avenue in preclinical studies.

ApoE self-association and aggregation
ApoE protein is deposited within Aβ plaques and CAA. 
ApoE4 is believed to have a higher propensity to oligo-
merize, thus reducing its lipidation and capacity for 
Aβ clearance as well as facilitating Aβ aggregation [20, 
39, 46]. A previous study showed that apoE4 potently 
increases amyloid deposition by promoting Aβ seeding 
[85], suggesting that apoE4 may nucleate Aβ aggregation 
or plaque formation through its self-aggregating propen-
sity. Importantly, both central [chronic intracerebroven-
tricular (i.c.v.) infusion] and peripheral [intraperitoneal 
(i.p.) injection] administration of an anti-human apoE 
antibody (HAE-4), which selectively targets poorly-lip-
idated, aggregated forms of apoE present in the plaque, 
has been shown to remove Aβ plaques via a microglial-
mediated clearance mechanism [204]. Of note, i.p. injec-
tion of HAE-4 antibody had a slightly greater effect on 
reducing Aβ levels than those with i.c.v. infusion likely 
due to relatively higher HAE-4 antibody levels remaining 
in the brain after 6 weeks of treatment in the i.p. injection 
paradigm. Of note, HAE-4 treatment can reduce CAA 
and Aβ parenchymal plaques after the onset of plaque 
deposition without inducing ARIA, the adverse vascu-
lar effects, and inhibit Aβ-associated tau seeding and 
spreading [205, 206]. Furthermore, a recent study showed 
that expression of apoE3-Jac variant which exhibits a 
decreased self-association reduces the risk of AD and 
amyloid deposition [17]. These findings suggest that tar-
geting aggregated pools of apoE and/or apoE self-aggre-
gation might be an ideal therapeutic strategy for AD.

ApoE lipidation status and lipid metabolism
Given that lipidated apoE is more effective in supporting 
brain homeostasis and injury repair, as well as mediating 
Aβ clearance compared to non-lipidated apoE, another 
therapeutic strategy is to alter the physiological balance 
between lipidated and non-lipidated apoE (Fig. 2). Peptide 
mimetics used to upregulate ABCA1 have been shown to 
increase apoE4 lipidation, and reduce Aβ, tau, and cog-
nitive deficits in a mouse model [207]. Similar results 
may be accomplished by reducing apoE aggregation to 
increase its ability to accept lipids [204]. The LXR and 
retinoid X receptors (RXRs) family are known to promote 
apoE lipidation and expression [208]. Oral administration 
of bexarotene, an LXR/RXR agonist and FDA-approved 
anti-cancer agent, resulted in enhanced clearance of Aβ 
and improved cognitive performance in animal models 
[209]. However, Phase 1B studies with APOE3 individuals 
showed that bexarotene failed to increase CNS apoE or 
alter Aβ levels, likely due to poor BBB permeability [210]. 
A different cohort of AD patients, which included diverse 
APOE genotypes, showed that bexarotene treatment did 
reduce Aβ deposits in several brain areas. However, there 
were no signs of cognitive improvements and elevated 
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Fig. 2 ApoE-targeted therapeutic strategies for AD. One avenue of AD therapy is modulating apoE expression from various cell types. This can be 
achieved through LXR/RXR agonists which increase apoE levels and lipidation. LXR/RXRs are upstream regulators of apoE expression making them a suit-
able target for modulating apoE levels. Targeting apoE should also consider the isoform- and cell type-specific effects. Another apoE-targeted therapeutic 
strategy is the use of small molecules that modulate apoE functions. These include peptides designed to mimic the binding site for apoE on LDL and 
HDL, which has been shown to increase apoE lipidation and secretion. Additionally, mimetic peptides can increase the function of apoE receptors to im-
prove cholesterol transport. Small molecules or immunotherapies that prevent apoE self-association and/or aggregation may increase the lipid carrying 
capacity of apoE and reduce Aβ seeding. Similarly, modulating the lipidation of apoE has become an interesting target. Mimetic peptides can be used to 
increase the activity of ABCA1, which increases the lipidation of apoE4 and improves cognitive function. This can also be achieved through anti-sense oli-
gonucleotide (ASO) inhibition of miR-33. Another promising therapeutic avenue is structural modification of apoE through genetic manipulation or small 
molecules. The CRISPR/Cas9 system has the potential to directly convert APOE4 to APOE3 or APOE2. This may also be achieved through an AAV system to 
induce apoE2 expression. A similar approach without genetic manipulation would be small molecule inhibitors to reduce interdomain interactions and 
structurally modify apoE to alter its function. Lastly, targeting peripheral apoE may be an alternative avenue for AD therapy. For example, plasma exchange 
by infusing APOE3 young plasma in APOE4 carriers is currently being tested in clinical trials to determine the beneficial effects of young plasma and the 
isoform-dependent effects. While these various therapeutic approaches have shown some promise in preclinical and clinical settings, they have yet to 
make a significant impact on the overall prognosis of AD. Research continues to seek alternative approaches to refine the current therapeutic strategies. 
Presently, many new technologies are being employed to discover new targets and networks such as transcriptomics, proteomics, lipidomics, and me-
tabolomics. These multi-omics and integrative analysis may help better inform future apoE-related disease modifying therapy for AD.
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plasma triglycerides as well as liver toxicity were some of 
the negative consequences observed in the clinical trial 
[211]. Although the clinical trials for bexarotene in the 
treatment of AD showed disappointing results, the stud-
ies on LXR/RXR agonists highlighted the importance of 
considering APOE genotype in modulating the response 
to clinical trials and identifying potential therapeutic 
targets. In addition, administration of choline, a soluble 
phospholipid precursor, is shown to restore the defec-
tive lipid homeostasis in APOE4 iPSC-derived astrocytes 
[133]. These studies suggest that modulating the lipida-
tion status of apoE and/or lipid metabolism in the brain 
may serve as a therapeutic approach to alleviate the lipid 
dysregulation associated with apoE4.

ApoE structural correctors
Due to the amino acid substitutions at positions 112 and 
158, the amino- and carboxyl-termini of apoE4 have an 
interdomain interaction which makes the protein more 
compact compared to apoE2 and apoE3. It has been sug-
gested that this interdomain interaction contributes to 
the pathogenic effects of apoE4 [212]. Thus, small mol-
ecules have been proposed as a method to target and 
inhibit interdomain interactions [213], essentially act-
ing as a structural corrector of apoE4 (Fig.  2). Human 
iPSC studies suggest that phthalazinone derivatives may 
inhibit these domain interactions and thus ameliorate the 
toxic effects of apoE4 in neurons [214, 215]. This suggests 
that structural modification of apoE4 may be an alterna-
tive approach to reduce the toxic effects of apoE4. Fur-
ther research on the structure of apoE and its receptors 
will yield greater mechanistic insight toward this goal.

Gene therapies targeting APOE
The CRISPR/Cas9 genome-editing system has been 
explored as a therapeutic avenue for several geneti-
cally inherited disorders and is currently being tested 
in clinical trials to treat certain types of cancers [216, 
217]. One intriguing idea is that CRISPR/Cas9 could be 
used to convert the APOE genotype of APOE4 carriers 
to APOE3 or APOE2, thus ameliorating the toxic effects 
of apoE4 and conferring the protective benefits of other 
isoforms (Fig. 2). In human-derived iPSCs, CRISPR/Cas9 
was effective in altering the genome to produce isogenic 
lines homozygous for all three major APOE alleles [218]. 
In iPSC-derived neurons, CRISPR/Cas9 correction of 
APOE4/4 to an APOE3/3 genotype reduces susceptibil-
ity to cytotoxicity, tau secretion, and tau phosphoryla-
tion [101]. Experiments in iPSC-derived organoids show 
that converting APOE4 to APOE3 seems to attenuate 
Aβ pathology by improving astrocytic and microglial 
clearance of Aβ [62]. Although there are challenges with 
using CRISPR/Cas9 in vivo, including neuroanatomi-
cal specificity, potential off-target effects, and timing of 

treatment, its potential as a precise and efficacious thera-
peutic is unlimited.

A viral delivery approach, such as AAV, is another 
method that has been used to safely and accurately 
introduce recombinant genes into a host genome [219] 
and has proven safe and effective for several genetic dis-
orders [220, 221]. Harnessing the protective effects of 
apoE2 by using AAVs could negate the toxic effects of 
apoE4. Experiments in mouse models show that trans-
duction with AAV vectors encoding the three apoE iso-
forms differentially alters Aβ deposition and clearance 
in an isoform-dependent manner [222]. Furthermore, 
viral mediated overexpression of apoE2 in apoE4-TR 
mice enhances apoE lipidation and associated choles-
terol, whereas overexpression of apoE4 has an opposite 
effect [223]. These results suggest that introducing apoE2 
in APOE4 carriers could be beneficial to treating AD. 
However, AAV-mediated intracerebroventricular deliv-
ery of apoE appears to have no effect on tau burden in 
models of tauopathy [224]. Although there are certainly 
hesitations regarding CNS delivery of AAVs in humans, 
work in non-human primates has proven this method to 
be safe and effective in promoting widespread expression 
of apoE2 [225]. Furthermore, a phase 1 clinical trial is 
currently recruiting patients to evaluate the use of intra-
cisternal administration of AAV-mediated expression of 
APOE2 in APOE4 homozygous patients (NCT03634007) 
with expected completion by September 2024. The effi-
cacy of treating APOE4 homozygotes with expression 
of apoE2 may be dependent on the protective effects of 
apoE2 being able to compensate for the toxic effects of 
apoE4 which warrants further investigation.

MicroRNAs
Micro-RNAs (miRNAs) have emerged as important con-
tributors to several pathogenic processes in AD [226], 
as well as potential biomarkers for disease progression 
in LOAD [227]. Research has identified miRNAs that 
contribute to Aβ-induced neurotoxicity [228], synap-
tic dysfunction [229], immune reactions [230], and tau 
pathogenesis [231]. One such example is miRNA-33, 
which has been identified as a key modulator of ABCA1, 
apoE levels, and subsequently of Aβ metabolism in 
AD [232]. Targeting of miRNA-33 via ASO results in 
increased ABCA1 levels, elevated apoE lipidation, and 
decreased Aβ levels in mouse models [233]. Not only 
can miRNAs alter apoE function through a variety of 
mechanisms, but some miRNAs appear to be expressed 
differentially based on APOE genotype. For instance, 
miRNA-146a is involved in inhibitory feedback for the 
brain’s immune responses and is reduced in the brain and 
plasma of APOE4 mice, thus exacerbating innate immune 
responses [234]. Further research on miRNAs related to 
apoE and AD pathogenesis is needed to reveal insights 
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into this mechanistic relationship and the transcriptional 
networks involved in AD development and progression.

Targeting the periphery
In addition to the role of apoE in the CNS, the contri-
butions of peripheral apoE have also become a topic of 
interest. Although there are indeed separate pools of 
apoE in the CNS and periphery due to BBB imperme-
ability [24, 53, 235], research suggests that peripheral 
apoE can influence cognitive function [236]. In Apoe-
deficient animal models, restoration of peripheral, but 
not CNS apoE reduced synaptic loss and improved cog-
nitive function [237]. However, it seems that reducing the 
levels of hepatic apoE in the periphery did not influence 
Aβ pathology in a mouse model in which apoE is pres-
ent in the CNS [238]. A recent study showed that liver-
expressed apoE4 compromises synaptic plasticity and 
cognitive behaviors likely by impairing cerebrovascular 
functions [160]. In addition, exposure of young apoE3 
plasma ameliorates aging-related BBB damage and pro-
motes endothelial barrier integrity, shedding light on 
the therapeutic potential of young plasma based on 
APOE genotype. In humans, these effects are also shown 
to be isoform-specific, perhaps due to APOE4 carri-
ers having reduced levels of plasma apoE than APOE3 
or APOE2 individuals [239]. It has been shown that low 
plasma apoE levels seen in APOE4 carriers are associated 
with increased plasma glucose levels, which negatively 
impacts cerebral glucose metabolism [240]. In addition, 
researchers have found differences in peripheral extra-
cellular vesicles (pEVs), which may function to promote 
crosstalk between the brain and periphery. A study 
reports that pEVs from APOE4 carriers have reduced 
neurotrophic and inflammatory markers, and these 
changes may predict AD five years before symptom onset 
[241]. Interestingly, apoE deficiency can lead to accumu-
lation of pyrrolated serum albumin, which has a higher 
binding affinity for apoE3 compared to apoE2 and apoE4 
and increases the immune response [242]. Though the 
mechanism remains unclear, these data suggest a rela-
tionship between peripheral apoE expression and inflam-
matory signaling that is isoform-dependent.

Thus, interventions harnessing the protective function 
of peripheral apoE in an isoform-specific manner are 
appealing options with numerous potential mechanisms 
of action (Fig. 2). A clinical trial targeting the periphery 
with promising results is the Alzheimer Management by 
Albumin Replacement (AMBAR) study, where patients 
undergo plasmapheresis with albumin replacement [243]. 
However, this study has not considered the influence of 
age, sex, or APOE genotype [244]. To further investigate 
the potential benefits of peripheral apoE, clinical trials 
are currently exploring the effects of introducing plasma 
from young donors to cognitively impaired and AD 

patients in an isoform-specific manner (NCT02256306, 
NCT03887741). While these clinical trials are still in 
early stages, the safety, tolerability, and feasibility appear 
promising [245]. Alternative approaches could be used to 
alter levels of apoE in the periphery via genetic interven-
tions, or with the use of structural modifiers to modulate 
the function of peripheral apoE in an isoform-specific 
fashion as discussed in earlier sections.

Lifestyle changes
Exercise
Lifestyle changes, such as physical exercise and diets, can 
potentially attenuate AD pathology. Physical activity has 
been shown to reduce Aβ accumulation, improve cho-
lesterol levels, reduce neuroinflammation, and enhance 
cognitive function [246]. Despite some contradictory 
evidence in the field, it is becoming increasingly appar-
ent that the beneficial effects of exercise and diet are 
likely dependent on APOE genotype [247]. Following the 
assessment of physical activity and cognitive function in 
806 participants over 6 years, a recent study showed that 
an active lifestyle has a favorable correlation with cogni-
tive performance in APOE4 non-carriers [248]. Though 
some studies suggest the effects of the APOE4 allele are 
mixed and need to be further characterized [249], many 
reports provide evidence that APOE4 carriers are more 
responsive to exercise interventions compared to non-
carriers [250, 251]. Additionally, recent studies have 
shown that APOE4 carriers who participated in aero-
bic exercise show increased hippocampal blood flow, 
improved verbal memory performance, improved neu-
ropsychiatric symptoms and physical mobility compared 
to non-carriers and sedentary APOE4 carriers [252, 253]. 
Another study shows that physical activity was able to 
reduce functional connectivity, preserve brain structure, 
and reduce anxiety levels in APOE4 individuals [254]. It 
has been hypothesized that physical exercise and APOE 
genotype impact amyloid clearance and the proteasome 
system through epigenetic mechanisms [255]. Interest-
ingly, exercise has been shown to increase plasma anti-
oxidant capability and influence Aβ accumulation in 
APOE4 carriers [255]. Although the mechanism by which 
specific exercise paradigms benefit APOE4 carriers has 
yet to be established, it remains a valuable therapeu-
tic strategy for reducing or delaying AD symptoms and 
pathology (Fig. 3).

Diet
Preclinical and clinical studies over the past decade 
have suggested the ketogenic diet to be neuroprotec-
tive against AD by reducing Aβ toxicity, decreasing 
neuroinflammation, protecting against reactive oxygen, 
and regulating mitochondrial homeostasis [256, 257]. 
Since apoE is strongly associated with lipid and glucose 
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metabolism, it is no surprise that APOE genotype affects 
preferences for cellular energy sources and modifies the 
response to diet [258]. The low-carbohydrate, high-fat 
ketogenic diet provides ketones as energy to mitigate the 
effects of impaired glucose metabolism in APOE4 carri-
ers [259]. Recent case studies have shown that 10 weeks 
of the ketogenic diet was able to improve cognition 
along with reducing the blood levels of insulin, triglycer-
ides, and glucose in APOE4 carriers [260, 261]. APOE4 
carriers appear to have a delayed response to ketogenic 
therapy compared to non-carriers, though the outcomes 
were still overall positive [262]. A recent review high-
lights the importance of determining the APOE-depen-
dent effects of ketogenic dietary modifications, as well 
as identifying effective doses of dietary compounds to 
improve clinical outcomes [263]. Multiple other dietary 
changes have been proposed to affect AD pathology in an 
APOE-dependent manner including the Mediterranean 
diet which consists of extra virgin olive oil, capers, red 
onions, cruciferous vegetables, and fatty fish. These com-
ponents have been shown to increase LRP1 and ABCA1 
levels, decrease NFκB and MMP9 activity, and increase 
brain docosahexaenoic acid (DHA) levels [264]. In sum, 
specific dietary changes may provide beneficial outcomes 

to those at-risk for developing cognitive impairments 
(Fig. 3).

The potential benefits of dietary supplements, such 
as DHA have also been extensively studied in the con-
text of AD. It has been shown that APOE4 carriers have 
impaired metabolism of plasma DHA, an omega-3 fatty 
acid partly responsible for BBB integrity, which is asso-
ciated with behavioral and cognitive impairments [265]. 
Preclinical and clinical studies of DHA supplementation 
have had success in rebalancing DHA levels and improv-
ing cognitive outcomes [266], although it seems to be 
ineffective in APOE4 carriers [267, 268]. Interestingly, it 
has been proposed that APOE4 carriers have impaired 
transport of free DHA into the brain, while increased 
amounts of DHA in phospholipid form (DHA-lyso-PC) 
from fish intake has led to positive benefits [269]. This 
idea has been corroborated by evidence suggesting that 
disrupted DHA absorption from plasma to CSF exists in 
APOE4 carriers and can reduce markers of AD pathology 
[270]. Further studies will be required to fully elucidate 
the effects of DHA supplementation on the cognitive 
function of individuals with different APOE genotype.

Fig. 3 Lifestyle changes can influence the pathogenesis of AD. ApoE4 has been shown to increase Aβ and tau aggregation, inflammation, and lipid 
dysregulation while reducing glucose metabolism, microbiome diversity, and BBB integrity. Healthy lifestyle changes have been suggested to benefit 
cognitive function and ameliorate AD pathology even in the presence of APOE4. Studies have demonstrated that ketogenic and Mediterranean diets as 
well as dietary supplements such as DHA can improve clinical outcomes. Along with diet, exercise has been shown to improve AD prognosis in apoE4 
carriers. Chronic sleep disturbance appears to accelerate Aβ and tau pathology and exacerbate cognitive symptoms. The influence of APOE4 on sleep 
quality may lead to sleep disturbances in people at increased risk for dementia. Thus, improving sleep quality could reduce AD pathology and attenuate 
the negative impact of APOE4 on AD risk. The communication between gut microbiome and the brain, the microbiota-gut-brain axis, plays an important 
role in modulating AD pathology. ApoE isoforms have been shown to differentially modulate microbiome diversity. Evidence supports the use of sesamol 
to reshape the gut microbiome and prevent systemic inflammation. Thus, understanding the link between AD, apoE, and gut microbiota modulated 
through dietary approaches may offer avenues for identifying novel biomarkers and therapeutic strategies against AD
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Sleep-wake cycle
Sleep disruptions and nightly restlessness have been a 
common complaint of AD patients for decades. Dis-
turbed sleep has been shown to result in increased Aβ 
and tau aggregation, which ultimately leads to sleep dis-
ruptions [271]. The potential role of sleep disruption and 
specific oscillatory patterns are suggested to be useful 
in diagnosing and tracking the evolution of AD, and as 
a biomarker for cognitive decline [272]. Mounting evi-
dence suggests sleep disturbances may be worsened or 
more common in patients who carry APOE4, as they 
have been shown to have reduced rapid eye movement 
(REM) sleep and increased fragmented sleep compared 
to non-carriers [273, 274]. Furthermore, APOE4 exacer-
bates objective sleep disturbances in individuals, which 
precedes subjective sleep complaints [275]. This may 
ultimately lead to longer total sleep duration in APOE4 
carriers with cognitive decline [276, 277]. Importantly, it 
has been reported that for each sleep interruption, Aβ42 
clearance is reduced by 5.4%, which is further reduced by 
the presence of an APOE4 allele [278]. Thus, understand-
ing the molecular mechanisms by which apoE isoforms 
influence sleep/awake cycles may facilitate the develop-
ment of therapeutic approaches to alleviate AD-related 
sleep disturbances (Fig. 3).

The observance of sleep disturbances in AD patients 
has led researchers to examine the role of melatonin in 
sleep regulation for relieving several AD-related symp-
toms. Melatonin has been shown to reduce Aβ toxicity 
[279], and reverse the pro-aggregatory and neurotoxic 
properties of apoE4 [280]. In addition, increased levels of 
melatonin contribute to cholesterol regulation, choline 
transport, neurogenesis, tau inhibition, insulin-regula-
tion, calcium homeostasis, mitochondrial function, and 
can delay cellular senescence [281]. However, compared 
to age-matched controls, melatonin levels in the CSF are 
decreased in AD patients, and this reduction is exacer-
bated by the presence of APOE4 [282]. Thus, melatonin 
supplementation has been explored as a remedy for AD-
related sleep disturbances. Recently, a meta-analysis of 
randomized control trials concluded that while melato-
nin improves total sleep time and sleep efficacy, cogni-
tive function is not significantly altered [283]. Thus, the 
potential of melatonin for future treatments of AD mer-
its continued research efforts [284, 285]. Recent studies 
corroborate the need for earlier intervention, and to con-
sider APOE genotype when testing interventions target-
ing the sleep-wake cycle in AD patients [273, 275, 277, 
286]. These findings suggest that APOE genotype may be 
one of the critical factors impacting the efficacy of mela-
tonin-based therapies.

Gut microbiome
More recent evidence suggests an emerging role for the 
gut microbiome in modulating AD pathology through 
metabolism and immune function [287] (Fig.  3). Inter-
estingly, work in transgenic mouse models demonstrated 
that gut microbiome species are modulated by both 
APOE genotype and gender [288–290]. Furthermore, it 
has been shown that AD patients have altered gut micro-
biota, which is associated with APOE genotype [291]. 
Research has also shown ways to modulate the gut micro-
biome in a beneficial way. In an APOE4 mouse model, 
insulin supplementation was shown to increase the lev-
els of beneficial microbiota which increases metabolism 
and reduces neuroinflammation [292]. Additionally, 
sesamol has been shown to reshape the gut microbiome 
and prevent systemic inflammation in an APOE-depen-
dent manner [293]. The effects of diet, microbiome, and 
inflammation on AD pathogenesis further support the 
notion of a critical communication between the brain 
and the periphery [294, 295].

Together, understanding the relationship between 
APOE genotype, exercise, diet, and microbiome is neces-
sary for elucidating the underlying mechanisms that drive 
AD pathology, which may inform the search for robust 
biomarkers for successful interventions and therapeutics.

Conclusion
Mounting evidence confirms that apoE plays a key role 
in the pathogenesis of AD. ApoE4 conveys risk by a 
combination of gain of toxic functions and loss of pro-
tective functions, while apoE2 is protective against 
AD with overlapping and distinct mechanisms. ApoE 
impacts amyloid, tau, and additional neuropatholo-
gies, while also influencing neurodegeneration and the 
immune responses to those insults. The role of apoE as 
an upstream mediator in complex pathways underly-
ing neurodegeneration and cognitive decline makes it an 
ideal therapeutic target for AD and related dementias. 
As we gain an enhanced understanding of the structure-
function relationship of apoE, as well as the mechanistic 
relationships between apoE and neuropathologies, we 
will be able to use therapeutic tools to modulate apoE 
levels, structure, lipidation, oligomerization, and related 
outcomes to alter pathological progression. Further 
studies exploring systematic changes via multi-omics 
analysis, cell type-specific functions, and novel APOE 
variants may further yield critical insights in the future 
of AD therapeutic development. In addition, adopting 
new techniques for research and therapeutic delivery will 
prove vital in the development of novel treatment options 
for AD.
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APOE  Apolipoprotein E
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DLB  dementia with Lewy bodies.
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