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Abstract

Background: Aberrant alternative splicing plays critical role in aging and age-related diseases. Heterogeneous
nuclear ribonucleoproteins (hnRNPs) reportedly regulate RNA splicing process. Whether and how hnRNPs
contribute to age-related neurodegenerative diseases, especially Alzheimer's disease (AD), remain elusive.

Methods: Immunoblotting and immunostaining were performed to determine expression patterns and cellular/
subcellular localization of the long isoform of hnRNP D-like (L-DL), which is a hnRNP family member, in mouse
hippocampus. Downregulation of L-DL in WT mice was achieved by AAV-mediated shRNA delivery, followed by
memory-related behavioural tests. L-DL interactome was analysed by affinity-precipitation and mass spectrometry.
Alternative RNA splicing was measured by RNA-seq and analyzed by bioinformatics-based approaches.
Downregulation and upregulation of L-DL in APP/PST mice were performed using AAV-mediated transduction.

Results: We show that L-DL is specifically localized to nuclear speckles. L-DL levels are decreased in the
hippocampus of aged mouse brains and downregulation of L-DL impairs cognition in mice. L-DL serves as a
structural component to recruit other speckle proteins, and regulates cytoskeleton- and synapse-related gene
expression by altering RNA splicing. Mechanistically, these splicing changes are modulated via L-DL-mediated
interaction of SF3B3, a core component of U2 snRNP, and U2AF65, a U2 spliceosome protein that guides U2
snRNP’s binding to RNA. In addition, L-DL levels are decreased in APP/PST mouse brains. While downregulation of
L-DL deteriorates memory deficits and overexpression of L-DL improves cognitive function in AD mice, by
regulating the alternative splicing and expression of synaptic gene CAMKV.

Conclusions: Our findings define a molecular mechanism by which hnRNP L-DL regulates alternative RNA splicing,
and establish a direct role for L-DL in AD-related synaptic dysfunction and memory decline.
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Background

Alternative splicing is a process wherein specific regula-
tors modulate core splicing machinery to selectively gen-
erate various splicing variants [1]. Pre-mRNA splicing
relies on recruitment of a large ribonucleoprotein com-
plex, known as spliceosome, at 5" and 3" splice sites (5
SS and 3°SS). Typically, the 3°SS is bound by U2 auxil-
iary factors (U2AFs) in spliceosome assembly, wherein
U2AF small subunit U2AF35 binds to the 3" SS, and the
large subunit U2AF65 binds to the polypyrimidine tract
adjacent to the 3" SS [2]. U2AF65 interacts with core U2
small nuclear ribonucleoprotein (U2 snRNP) component
splicing factor 3B (SF3B), such as SF3B1, SF3B2 or
SE3B3, to promote binding of U2 snRNP to branch sites
and subsequent splicing complex formation and activa-
tion, eventually intron removal [3].

Brain aging is an irreversible physiological process, ac-
companied by decreased cognitive function and memory
loss [4]. Aging is a major risk factor for the progression
of neurodegenerative diseases [5, 6]. Mounting evidence
has shown a global change in alternative splicing during
brain aging and age-related neurodegenerative diseases
[7]. Moreover, aberrant splicing produces irregular spli-
cing products with defective or even harmful functions,
and contributes to aging or age-related diseases [8]. For
instance, exon 18 skipping of postsynaptic density pro-
tein 95 (PSD95) results in generation of a splicing vari-
ant with premature translational termination, and this
splicing variant is prone to degradation through
nonsense-mediated decay (NMD) pathway, resulting in
reduced levels of PSD95 [9]. This splicing change of
PSD95 is promoted by polypyrimidine tract binding pro-
tein 1 (PTBP1), whose levels are significantly increased
upon aging progression [10]. These findings suggest that
age-dependent RNA binding protein-mediated alterna-
tive splicing is responsible for alterations in synaptic
structure and function during aging progression. BACE1,
which encodes [-secretase 1 that catalyzes amyloid pre-
cursor protein into B-amyloid (AP), undergoes extensive
alternative splicing upon aging [11, 12]. As a result, full-
length BACE1 shows an age-dependent increase, result-
ing in a rise in BACE1 level and a consequent accumula-
tion of AP in the brain [13]. This leads to age-related
cognitive impairment and AD progression [14—16]. Not-
ably, a mutation in intron 4 of presenilin 1 (PS1) leads
to production of an aberrant transcript and a full-length
PS1 with insertion of an extra threonine, consequently
promoting AB42 production and AD pathology [17, 18].

Nuclear speckles, also known as SC35 domain, are ori-
ginally discovered as a storage site for RNA processing
factors with functions predominantly linked to the alter-
native splicing of pre-mRNA [19]. The shape and size of
nuclear speckles are in a dynamic change due to contin-
ual exchange of splicing factors between speckles and
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nucleoplasm [20]. Cellular processes such as Pol II tran-
scription and splicing are involved in dynamic changes
of nuclear speckles [21]. Heterogeneous nuclear ribonu-
cleoproteins (hnRNPs), a classic splicing regulator, are
extensively involved in alternative splicing regulation [1].
Biochemical purification and proteomic analyses have
identified the existence of multiple hnRNPs in nuclear
speckles, which may contribute to maintaining the struc-
tural and functional integrity of nuclear speckles [22,
23].

Here, we demonstrate that L-DL is predominantly
expressed in neurons and its levels are significantly de-
creased in the hippocampus of both aged and AD brains.
Particularly, deficiency of L-DL in the hippocampus im-
pairs cognitive function. We uncover that L-DL is specif-
ically localized to nuclear speckles, serving as a
structural component to maintain the structure of this
nuclear body. Moreover, L-DL regulates splicing pat-
terns of multiple cytoskeleton- and synapse-related
genes via modulating the loading of U2 snRNP-mediated
spliceosome on their pre-mRNAs. In addition, L-DL
levels are reduced in APP/PS1 (AD model) mouse
brains, and further downregulation of L-DL in these
mice deteriorates memory decline, whereas overexpres-
sion of L-DL restores synaptic protein expressions and
cognitive function in AD mice. Taken together, these
findings suggest that nuclear speckle specific L-DL regu-
lates aging- and AD-related cognitive function via
modulating alternative splicing of cytoskeleton- and
synapse-related genes.

Methods

Cell culture and plasmid transfection

Neuro-2a cells (N2a) (ATCC, CCL-131) and 293T cells
(ATCC, CRL-3216) were cultured according to standard
procedures. Cells were growing in DMEM (Gibco,
#12100061) supplemented with 10% FBS (Biological In-
dustries, #1827594) and 1% penicillin/streptomycin
(Gibco, #15070063) and incubated in 5% humidified
CO, incubator at 37 °C. Plasmid transfection was per-
formed when cells were approximately 70-80% conflu-
ent using PEI (Sigma-Aldrich, #408727).

Animals

C57BL/6] mice were purchased from GemPharmatech
and APP/PS1 mice were purchased from Shanghai
Model Organisms Center. All experimental protocols
were approved by the Animal Studies Committee at Uni-
versity of Science and Technology, Hefei, China.

Plasmid construction

To generate pcDNA 3.1 (+)-GST vector, GST sequence
was PCR amplified from pcDNA3.1+N-GST (TEV)
(GenScript) and subcloned into Nhe I / EcoR I
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restriction sites of pcDNA 3.1 (+) (Thermo Fisher Scien-
tific, #V790-20). To generate pcDNA 3.1 (+)-GST-L-DL
plasmid, the coding sequence of L-DL was PCR ampli-
fied from cDNA derived from mouse hippocampus, then
subcloned into EcoR I / Xho I restriction sites of pcDNA
3.1 (+)-GST vector. Primers for cloning are listed in
Table S1.

Splicing reporter was constructed according to previously
published [24]. Luciferase-intron-Mutant (luciferase-Mut),
which was generated by inserting an immunoglobulin in-
tron (Promega, #U47119) into firefly luciferase gene, and
wild-type firefly luciferase (luciferase-WT) with PEST
and CL1 sequence for protein destabilization were synthe-
sized (Tsingke) and subcloned into BamH I / EcoR I re-
striction sites of pcDNA 3.1 (+) vector.

For adeno-associated virus (AAV) plasmid expressing
L-DL shRNA, four H1 promoter driven L-DL shRNA se-
quences were tandemly arranged and synthesized
(Tsingke), then subcloned into BamH I / EcoR I restric-
tion sites of pAAV-EF1la-DIO-Gcamp6s vectors (Addgene,
#67526), wherein EFla promoter was substituted with
CamklIla promoter followed by zsGreen sequence for
neuron-specific visualization of the injected areas. AAV
was produced and microinjected into the hippocampus of
mouse brains for knockdown. The sequences of
luciferase-WT, luciferase-Mut and four tandemly ar-
ranged L-DL shRNA sequences are listed in Table S2.

L-DL sgRNAs were designed using online sgRNA de-
signing tools: https://sg.idtdna.com/site/order/
designtool/index/CRISPR_SEQUENCE. Four mouse
sgRNAs and four human sgRNAs were separately sub-
cloned into the BsmB I site of LentiCRISPR v2 plasmid
(Addgene, #52961) as previously described [25, 26].
These sgRNA sequences are listed in Table S3.

CRISPR-Cas9 mediated L-DL knockout in cells

Mixture of four L-DL-sgRNA on lentiCRISPR plasmid
were co-transfected into 293T cells, together with pack-
aging plasmid (pHR’8.2deltaR) and envelope plasmid
(pCMV-VSV-G). Virus-containing medium was har-
vested 48 h after the transfection. Cells were treated with
virus containing medium for 48 h. Transduced cells were
selected with 10 pg/ml of puromycin.

Protein extraction and Western blot

Cells and brain tissues were lysed in PBS plus 1% Trion
X-100 and 1% protease inhibitor cocktail (Targetmol,
#C0001), following by sonication. Protein concentration
was measured with BCA Protein Assay Kit (Thermo
Fisher Scientific, #23250) and equal amount of protein
was separated by SDS-PAGE electrophoresis. Proteins
were then transferred from gel to 0.45 um nitrocellulose
membrane (Pall Corporation, #27182369). Membranes
were blocked with 5% non-fat milk in Tris buffered
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saline containing 0.1% Tween 20 (TBST) for 1 h, follow-
ing by incubation with primary antibodies at 4 °C over-
night. The following primary antibodies were used:
rabbit anti-L-DL (Sigma-Aldrich, #HPA063147) at dilu-
tion of 1:2,000, rabbit anti-hnRNP DL (Abcepta,
#AP5352¢) at dilution of 1:1,000, mouse anti-GST (Santa
Cruz Biotechnology, #sc-138) at dilution of1:5,000,
mouse anti-RBM25 (Santa Cruz Biotechnology, #sc-
374271) at dilution of 1:500, mouse anti-NPM1 (Protein-
tech, #60096-1-Ig) at dilution of 1:2,000, mouse anti-
PML (Abcam, #ab6263) at dilution of 1:1,000, mouse
anti-SF3B1 (Santa Cruz Biotechnology, #sc-514655) at di-
lution of 1:1,000 dilution, mouse anti-U2AF65 (Santa
Cruz Biotechnology, #sc-53942) at dilution of 1:1,000,
mouse anti-U2AF35 (Proteintech, #60289-1-Ig) at dilu-
tion of 1:2,500, rabbit anti-SF3B3 (Proteintech, #14577-
1-AP) at dilution of 1:2,000, rabbit anti-PSD95 (Protein-
tech, #20665-1-AP) at dilution of1:1,000, rabbit anti-
SNAP25 (Proteintech, #14903-—1-AP) at dilution of 1:
5,000, rabbit anti-CAMKYV (Proteintech, #14788-1-AP)
at dilution of 1:1,000, rabbit anti-NR2B (Proteintech,
#21920-1-AP) at dilution of 1:2,000, rabbit anti-SC35
(Abclonal, #A3635) at dilution of 1:1,000000 dilution,
mouse anti-Lamin Bl (Proteintech, #66095-1-Ig) at dilu-
tion of 1:5,000, mouse anti-GAPDH (Proteintech,
#60004-1-Ig) at dilution of 1:5,000 , rabbit anti-Lamin
A/C (Proteintech, #10298-1-AP) at dilution of 1:5,000 .
Goat anti-mouse IgG (H+ L) (peroxidase/HRP conju-
gated) (Elabscience, #E-AB-1001) or goat anti-rabbit IgG
(H+L) (peroxidase/HRP conjugated) (Elabscience, # E-
AB-1003) secondary antibodies were used at dilution
of 1:5,000. The immunoreactive bands were detected by
Pierce ECL Western Blotting Substrate (Thermo Fisher
Scientific, #32209). For densitometric analyses, immuno-
reactive bands were quantified using Fiji software
(https://imagej.nih.gov/ij/).

Immunofluorescence staining

Cells seeded on cover slips were washed 3 times with
PBS, following by fixation in 4% PFA for 20 min. Cells
were permeabilized with PBS containing 0.4% Triton X-
100 (PBST), following by blocking with 2% BSA in PBST
for 30 min. After blocking, cells were incubated with
rabbit anti-L-DL (Sigma-Aldrich, #HPA063147) at dilu-
tion of 1:200, mouse anti-SC35 (BD Bioscience,
#556363) at dilution of a 1:200, mouse anti-SON (Santa
Cruz Biotechnology, #sc-398508) at dilution of 1:200,
mouse anti-RBM25 (Santa Cruz Biotechnology, #sc-
374271) at dilution of 1:50, mouse anti-NPM1 (Protein-
tech, #60096-1-Ig) at dilution of 1:200, mouse anti-PML
(Abcam, #ab6263) at dilution of 1:50, mouse anti-SMN
(Abcam, #ab5831) at dilution of 1:50 overnight at 4°C,
followed by incubation with Alexa Fluor 594-conjugated
Goat anti-rabbit secondary antibody (Thermo Fisher
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Scientific, #R37117), or Alexa Fluor 488-conjugated Goat
anti-mouse secondary antibody (Thermo Fisher Scien-
tific, #R37120), and 4', 6-diamidino-2-phenylindole
dihydrochloride (DAPI) (Sigma-Aldrich, #D9542).

Immunostaining for brain tissues was performed as
described previously, with modifications [27]. Mice were
anesthetized and sacrificed, then perfused with 0.9%
NaCl solution. Brains were isolated, immersed in 4%
paraformaldehyde (PFA) and cryo-preserved in 30% su-
crose for 24h at 4°C. Tissues were then embedded in
OCT compound and sectioned with microtome at
10 um thickness (Leica, CM1860). Glass slide-mounted
sections were washed with TBS (20 mM Tris, 150 mM
NaCl, pH 7.2), permeabilized with TBS containing 0.25%
Triton X-100, followed by blocking with 0.5% BSA in
TBST buffer (20 mM Tris, 150 mM NaCl, 0.1% Triton
X-100, pH7.2) for 1h. Sections were then incubated
with rabbit anti-L-DL (Sigma-Aldrich) at dilution of a 1:
400, mouse anti-GFAP (BD Bioscience, #556328) at dilu-
tion of 1:100, mouse anti-NeuN (Millipore, #MAB377)
at dilution of 1:100 at 4°C overnight. After washing,
slices were incubated with Alexa Fluor 594-conjugated
Goat anti-rabbit secondary antibody (Thermo Fisher Sci-
entific) or Alexa Fluor 488-conjugated Goat anti-mouse
secondary antibody (Thermo Fisher Scientific). Fluores-
cence signals were captured with a Leica TCSSPE con-
focal Microscope and analysed with Fiji software.

GST-L-DL co-affinity precipitation (co-AP)

293T cells were transfected with GST-control (GST-
CTRL) or GST-L-DL plasmids and cell lysates were col-
lected with GST-binding buffer (PBS buffer with 0.1 mM
EDTA, 0.1% Triton X-100 and 1% proteinase inhibitor
cocktails, pH 7.4). Cells then were sonicated until the
lysate was clear and transparent. Protein concentration
was measured with BCA Protein Assay Kit (Thermo
Fisher Scientific, #23225) and 500 pg of cell lysates were
used to incubate with 30 ul GST agarose beads (Cytiva,
#17075601) overnight at 4°C. Beads were washed 3
times with buffer A (PBS buffer with 0.1% SDS and 0.3%
deoxycholate and 0.3% NP-40, pH 7.4) and buffer B (50
mM Tris-HCI with 10 mM MgCl, and 0.5% NP-40, pH
7.4). GST-binding proteins were eluted with protein
loading buffer (10 mM Tris-HCI with 0.4% SDS and 20
mM DTT and 2% glycerol and 0.05% bromophenol blue
dye, pH 6.8). Beads were removed by centrifugation at
5,000 rpm for 1 min. The supernatant was collected for
western blot or silver staining assay.

Silver staining and Mass Spectrometry

Silver staining was performed as described previously
[28]. Briefly, gels were submerged in fixative solution
(50% ethanol, 12% acetic acid and 0.05% formalin) for 2
h, followed by washing with 20% EtOH twice for 40 min.
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0.02% sodium thiosulfate solution was used to sensitize
the gel for 2 min, followed by wash with deionized water.
Gels were then incubated with 0.2% AgNOj; containing
0.076% formalin for 20 min, followed by wash with de-
ionized water twice. Finally, gels were developed in 6%
Na,CO3 solution containing 0.0004% Na,S,05; and
0.05% formalin for 2—5min and developing was termi-
nated in 12% acetic acids. Target bands were subjected
to Mass Spectrometry (MS) analysis (PTM Biolab). Pro-
teins identified from MS are listed on Table S4. Func-
tional annotations were performed on website: http://
metascape.org/, with protein accession as previously de-
scribed [29]. Cellular component enrichment analysis
was conducted by a tool available on website: http://
geneontology.org/. Analyses on L-DL-associated protein
interactions were carried out on STRING database
(https://string-db.org/) (v.11.0, H. sapiens dataset, PPI
enrichment P-value: < 1.0e-16) according to previously
published [30].

Splicing reporter assay

Splicing reporter assay was conducted according to pro-
cedures previously described [24]. Briefly, L-DL KO and
control (CTRL) N2a cells were transfected with
luciferase-WT or luciferase-Mut for 12 h. The relative
luciferase activity was calculated based on the following
formula:

luciferase-Muty -py, ko /luciferase-WT.py, ko
luciferase-Mutcrry. /luciferase-WTcrrL,

Relative luciferase activity =

RNA extraction, reverse transcription and PCR for splicing
analysis

Total RNA was extracted from cells or tissues using TRI-
zol Reagent (Invitrogen, #15596026), according to manu-
facturer’s protocol. RNA was reverse transcribed into
¢DNA using HiScriptIIl 1st Strand cDNA Synthesis Kit
(Vazyme, #R312). For splicing analysis, specific primers
were used to amplify gene splicing isoforms using Easy
Taq DNA Polymerase (Transgen, #AP111). The PCR
products were analysed by 3% agarose TBE gel. The
qualification of PCR products was conducted by Fiji soft-
ware. Specific splicing primers are listed in Table S5.

Next generation sequencing and alternative splicing
analysis

For RNA-Sequencing (RNA-Seq), total RNA was iso-
lated from cells and mRNA was enriched by Oligo (dT)
beads, followed by fragmentation and reverse transcrip-
tion with random primers. Obtained cDNAs were puri-
fied, their 5" and 3’ ends were repaired and ligated with
adapters. Ligated cDNAs were amplified by PCR and
subjected to Illumina Novaseq system for 150 nt pair-
end sequencing (Annoroad). Reads were aligned to the
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mouse genome (Mus_musculus.GRCm38.90.chr). For al-
ternative splicing analysis, “percent spliced in” (PSI)
values, computed via rMATS (v4.1.0) software, were
used to define alternative splicing levels of exon skip-
ping, intron retention, mutually exclusive exon inclu-
sions, alternative 5" splice sites, and alternative 3" splice
sites as previously reported [31]. The positive change of
APSI (PSI; _pr, xp-PSIctrr, > 0) represents increase of in-
clusion and negative change APSI (PSI; pr xp-PSlcTrL <
0) represents decrease of inclusion.

Generation of adeno-associated virus and hippocampal
injection

Adeno-associated virus (AAV) was produced according
to procedures previously reported [32, 33]. In Brief,
AAV plasmid with target sequences, pHelper and helper
2/9 plasmid were co-transfected into 293T cells in a ra-
tio of 2:1:1 by PEI Twenty-four hours after transfection,
medium was changed to DMEM plus 2% FBS. Both cells
and medium were collected for AAV purification 72 h
after transfection.

AAV particles were released from cells with freeze/
thaw cycles, followed by treatment with 50 U/ml benzo-
nase nuclease (MKbio) and 10 U/ml RNase I (Vazyme)
at 37°C for 30 min, and incubation for another 30 min
upon adding of 0.5% sodium deoxycholate (Sigma-Al-
drich). Cell debris were removed by centrifugation at
2,500 g for 30 min, 40% PEG8000 and 2.5 M NaCl were
added to precipitate the virus. The viral pellet was re-
suspended in PBS, and contaminated proteins were re-
moved by chloroform and (NH,4),SO, extraction. Viral
titter was determined by qPCR-based approach.

Male wild-type C57BL/6] mice at 8 weeks of age were
stereotaxically injected with L-DL shRNA (0.8 ul, 2 x
10*! TU/ml) or control shRNA (0.8 ul, 8 x 10! TU/ml)
adenovirus into the bilateral CA1 areas of hippocampus
with an air pressure injector system (KDS). Male APP/
PS1 mice at 6 months of age were stereotaxically injected
with L-DL shRNA (0.8 ul, 2 x 10" TU/ml) or control
shRNA (0.8 pl, 8 x 10" TU/ml) adenovirus, with L-DL
overexpression (0.5pul, 7x10" TU/ml) or control
adenovirus (0.5pul, 8 x10™ TU/ml) into the bilateral
CA1 areas of hippocampus with an air pressure injector
system (KDS). The coordinates used for stereotaxic in-
jections were AP -2.3, ML 2.0, DV -1.5 and AP -2.3, ML
-2.0, DV --1.5. Behavioural tests were conducted 4
weeks after the injection.

Behavioural assays

The Morris water maze

To evaluate spatial learning and memory, the Morris
water maze task was performed according to previously
published [34]. Briefly, a platform (10cm) was sub-
merged in a black circular pool (diameter: 120 cm).
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During the training phase, each individual mouse re-
ceived consecutive trials for continuous 5 days. On probe
trial day, the platform was removed and mice were
allowed to swim for 90s starting from site opposite to
where the platform was located. Behavioural parameters
were recorded by a video camera set on top of the circu-
lar pool and data were analyzed using Ethovision XT 11
software (Noldus).

Novel object recognition (NOR)

The Novel object recognition task was performed as de-
scribed previously, with modifications [35, 36]. Briefly,
all mice were placed in an open field box, and allowed
to freely explore the empty open field arena for 5 min on
day 1. On day 2, each mouse was subjected to
familiarization phase with exploration of two identical
objects (A +A) for 5min. 4h after the familiarization
phase, mouse was allowed to explore the field with a fa-
miliar object (A) and a novel object (B) at the same pos-
ition for 5min. Behavioural parameters were recorded
by a video camera set on top of the arena and data were
analyzed using Ethovision XT 11 software (Noldus). The
discrimination index is calculated as the ratio of time to
explore the novel object to total exploring time on both
objects.

Y maze

Modified version of Y maze test was performed as de-
scribed previously, with modifications, in white polypro-
pylene walls with three arms (10 x 40 x 16 cm) [37, 38].
This test comprises a sample phase trial and a test phase
trial. In the sample phase trial, mice were placed in the
maze with one of 3 arms closed, and allowed to freely
explore for 6 min. Chambers were cleaned with 70%
ethanol before and after each use. 6 h after the sample
phase trial, mice were allowed to freely explore the field
of maze with 3 arms opened for 6 min in the test phase
trial. The arm previously closed in the sample phase trial
was defined as the novel arm. Behavioural parameters
were recorded by a video camera and time spent in
novel arm were analyzed using Ethovision XT 11 soft-
ware (Noldus).

Open field

The Open field task was performed as described previ-
ously in a large square chamber [39]. During the test,
mice were placed in a corner square with its head facing
the corner of the open field apparatus, and were allowed
to explore for 8 min to record its exploratory activities.
Chambers were cleaned with 70% ethanol before and
after each use. Behavioural parameters were recorded by
a video camera and data were analyzed using Ethovision
XT 11 software (Noldus).
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Quantification and statistical analysis

All quantified data represent an average of at least tripli-
cate samples. Error bars represent standard error of the
mean. Statistical significance was determined by Stu-
dent’s t-test or two-way ANOVA in GraphPad Prism
5.0. P<0.05 was considered significant (indicated by an
asterisk in the figures), P<0.01 (indicated by two aster-
isks in the figures), P < 0.001 (indicated by three asterisks
in the figures), n.s. not significant.

Results

L-DL shows an age-dependent decrease in the brain
hnRNP DL (DL) is a highly conserved nuclear RNA
binding protein located in the genomic position 4q21
[40]. Two DL transcripts have been identified previously
[41], which are translated into long- and short-isoform
of DL proteins, namely L-DL and S-DL, with molecular
weights of 53 kDa and 38 kDa respectively (Fig. Sla). To
investigate their expression patterns upon aging progres-
sion, we assessed the levels of L-DL and S-DL in the
hippocampus of 3-month-old mice (young) and 24-
month-old mice (aged). We found a significant reduc-
tion of L-DL, but not S-DL, in aged mouse hippocampus
(Fig. 1a, b). Moreover, L-DL was preferentially expressed
in neurons and its expression was almost undetectable
in astrocytes (Fig. 1c, d). This neuronal localization of L-
DL was also confirmed by immunostaining (Fig. le).
Notably, L-DL was predominantly localized to the nu-
cleus, as demonstrated by subcellular fractionation and
immunostaining (Fig. 1f, g). These findings suggest that
L-DL is predominantly localized to neuronal nuclei and
displays an age-dependent reduction in the hippocampus
of mouse brain.

Loss of L-DL in the hippocampus leads to cognitive
decline in mice

To determine the function of L-DL in cognition, we next
conducted L-DL knockdown (KD) in the CA1 region of
hippocampus of 8 weeks-old C57BL/6] wild-type (WT)
mice, using AAV delivered shRNA technology. We
injected multiple L-DL shRNA sequences into the
hippocampus of WT mouse brains, and KD efficiency
was assessed by examining the levels of L-DL in the
injected brains (Fig. 2a, b and Fig. S1b, c¢). We next con-
ducted a series of behavioural tests to assess the cogni-
tive function of these mice. In the Morris water maze
task, mice with reduced L-DL expression spent signifi-
cantly longer time to find the hidden platform compar-
ing to control mice during the training phase (Fig. 2c).
In the probe trial, these mice also showed fewer platform
crossings and spent less time in the target quadrant (Fig.
2d-f). In the novel object recognition task, L-DL KD
mice spent less time to explore the novel objects (Fig.
2g). These results indicate that L-DL KD mice show
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defective spatial and contextual memory. Notably, L-DL
KD and control mice exhibited similar spontaneous
locomotor activity and anxiety-like behaviours, as indi-
cated by the open field task, ruling out the effect of loco-
motor activity and anxiety on the readout of the Morris
water maze test (Fig. 2h, i). Taken together, these find-
ings demonstrate that L-DL is tightly associated to cog-
nitive function in mice.

L-DL is an essential component of nuclear speckle

To identify L-DL binding proteins, we next performed
affinity-precipitation (AP), followed by SDS-PAGE and
mass spectrometry (MS) (Fig. 3a). Intriguingly, gene
ontology (GO) analyses showed that L-DL associated
proteins are mostly nuclear speckle proteins (Fig. 3b).
We therefore examined the subcellular localization of L-
DL and found that L-DL was co-localized with nuclear
speckle markers SC35, SON and RBM25, demonstrating
that L-DL is specifically localized to nuclear speckles
(Fig. 3c). No associations of L-DL with NPM1, a nucle-
olar protein; with promyelocytic leukemia protein
(PML), a PML body marker; and with SMN, a Cajal
body marker, were detected by immunostaining, suggest-
ing that L-DL was not localized to those nuclear bodies
(Fig. 3d). GST-pulldown and co-AP assays confirmed
the association of L-DL with the speckle component
proteins SC35 and RBM25 (Fig. 3e, f). Our findings
demonstrate that L-DL is preferentially localized to nu-
clear speckles. We also examined the subcellular
localization of other hnRNP members by immunostain-
ing and found that hnRNP A1, hnRNP C, hnRNP K and
hnRNP U showed homogeneous distribution within the
nucleus (Fig. S2a).

Interestingly, L-DL knockout (KO) resulted in cellu-
lar expression pattern changes of SC35 and SON
from densely packed to diffusely distributed, suggest-
ing that L-DL deficiency leads to disruption of nu-
clear speckle structure (Fig. 3g, h). These findings
indicate that L-DL is an essential component and is
important for maintaining the integrity of nuclear
speckles by interacting with other key speckle pro-
teins such as SC35 and SON.

Downregulation of L-DL induces alternative splicing
changes in the brain

Nuclear speckle is highly enriched with RNA processing
factors and its functions are predominantly linked to
pre-mRNA  splicing [42]. The nuclear speckle
localization of L-DL prompted us to investigate the
function of L-DL in RNA splicing. We next assessed
the splicing activity by using an intron-containing lu-
ciferase reporter and found a significant reduction in
splicing activity in L-DL depleted N2a cells (KO) [24]
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input control. ¢, d Levels of L-DL, NeuN, a neuronal marker, and GFAP, an astrocytic marker, in cultured neurons and astrocytes, were determined
by immunoblotting (c) and densitometric analyses (n = 3) (d). e Representative immunofluorescence images of NeuN or GFAP (green), L-DL (red)
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was performed using by ANOVA or two-tailed Student’s t-test; ** P < 0.01, *** P < 0.001; error bars denote SEM

(Fig. 4a, b), suggesting that L-DL participates in RNA
splicing process.

We next investigated whether L-DL regulates cogni-
tion through modulating RNA splicing. Hippocampal
tissues from control and L-DL KD mice were subjected
to RNA sequencing and subsequent splicing analyses.
Splicing analyses demonstrated that a total of 2,181 spli-
cing events displayed significant splicing pattern changes
in L-DL KD brains, wherein exon skipping was the most
dominant event (71.94%); other splicing events included
intron retention (10.22%), mutually exclusive exon inclu-
sions, retained introns, alternative 5" splice sites, and al-
ternative 3’ splice sites (17.84%) (Fig. 4c-d). We used
“percent spliced in” (PSI) values to define the alternative
splicing levels of each gene segment by the rMATSs

software as described previously [31]. We found that
38.93% of these gene segments showed increased in-
clusion (PSI; _pr xp-PSlctrr >0, P<0.001) and 61.07%
showed increased exclusion (PSI;_p; xp-PSlcrre <O,
P <0.001) in L-DL KD brains (Fig. 4e-f). Of note, seg-
ment exclusion in L-DL KD brains occurred more
often in exon skipping, compared to intron retention
and other splicing events. Conversely, segment inclu-
sion occurred more often in intron retention and
other splicing events than exon skipping in L-DL KD
brains (Fig. 4e-f). All these findings demonstrate that
L-DL deficiency leads to significant changes in mul-
tiple alternative splicing events in the brain.

A substantial change in gene expression has been ob-
served in the brain of aged mice [43] and AD model
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mice (APP/PS1) [44, 45]. To ascertain the relationship  identified in the L-DL KD mouse brain, we next con-
between the previously identified differentially expressed  ducted overlapping analysis: DEGs were pulled out from
genes (DEGs) in aged vs young or AD vs control brains (1) RNA-seq data of young vs old mouse brains
and genes with altered alternative splicing patterns (GSE129788), (2) RNA-seq data of APP/PS1 vs WT
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mouse brains (GSE132177), and (3) proteomic data of with changed alternative splicing pattern in L-DL KD
human AD brains [45]. We found that a total of 127 mouse brains and DEGs in aged vs young mouse brains
genes (4.9%) corresponding to intersections of genes  (Fig. 4g). A total of 136 genes (5.9%) corresponding to
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intersections of genes with changed alternative splicing
pattern in L-DL KD mouse brains and DEGs in AD vs
WT mouse brains (Fig. 4h). Importantly, we uncovered a
total of 404 genes (9%) corresponding to intersections of
genes with changed alternative splicing pattern in L-DL
KD mouse brains and DEGs in AD vs control human
brains (Fig. 4i). These findings demonstrate that L-DL
downregulation-induced splicing changes likely contrib-
ute to aging and age-related diseases.

L-DL deficiency impairs U2 splicecosome-dependent RNA
splicing

GO analyses showed that L-DL associated proteins iden-
tified in MS exhibited an enriched functional annotation
related to RNA binding and RNA splicing process
(Fig. 5a, b). Network analysis on L-DL associated pro-
teins enriched in “mRNA splicing via spliceosome” term
indicated that L-DL interacts with multiple components
of U2 spliceosome complex (Fig. 5¢). U2 snRNP is a core
component of the spliceosome, and SF3B is a core com-
ponent of U2 snRNP [46]. U2AF is required for U2
snRNP binding and splicing complex assembly [3, 47],
wherein U2AF35 binds to the 3’ splice sites and
U2AF65 binds to the polypyrimidine tract of pre-
mRNAs (Fig. 5d). The association of L-DL and U2
snRNPs was validated by Co-AP (Fig. 5e). In particular,
L-DL was found to associate with U2AF35, U2AF65 and
SF3B3, but not with SF3B1 (Fig. 5e). The association of
L-DL and U2AF65 was further confirmed by Co-IP (Fig.
5f). In addition, both SF3B1 and SF3B3 are also associ-
ated with U2AF65 (Fig. 5f). Importantly, L-DL deficiency
substantially reduced the association of U2AF65 with
SF3B1 and SF3B3 (Fig. 5g, h). These findings indicate
that L-DL is an integral and essential component of U2
snRNP, and loss of L-DL may disrupt loading of U2
snRNP on pre-mRNAs. Notably, we also identified mul-
tiple hnRNPs, such as hnRNP Al, hnRNP C, hanRNP U
and hnRNP K as L-DL associated proteins in MS (Fig.
5c). Given that these identified hnRNPs are reportedly
involved in RNA splicing process [48], we next con-
ducted Co-AP to validate the association of L-DL and
these hnRNPs. We found that L-DL indeed was associ-
ated with hnRNP A1, hnRNP C, hnRNP U and hnRNP
K, further supporting the involvement of L-DL in RNA
splicing process (Fig. S2b).

L-DL regulates alternative splicing of genes involved in
synaptic function

Given that a loss of L-DL leads to cognitive decline in
WT mice (Fig. 2c-g), we postulated that L-DL regulates
cognitive function through modulating alternative spli-
cing and expression of genes that are involved in synap-
tic function. Indeed, KEGG pathway and GO analyses
revealed significant changes in alternative splicing of
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genes that were closely related to synaptic function and
cognitive process (Fig. S3a-c). In addition, cellular compo-
nent analyses revealed significant changes in alternative
splicing of genes related to multiple cellular structures of
neuronal cells, including postsynaptic density, synapse,
cytoskeleton and dendritic spine (Fig. 6a). Some of well-
defined gene-encoded productss and their cellular locali-
zations were illustrated in Fig. 6b, e.g., dendrite and syn-
apse related genes such as cell adhesion molecule 1
(CADM1), which is a synaptic cell adhesion molecule that
regulates synaptogenesis [49]; G protein-coupled receptor
kinase interacting protein 2 (GIT2), which regulates cyto-
skeletal structure and presynaptic neurotransmitter release
[50, 51]; cell adhesion molecule L1 like (CHL1), which is
accumulated in presynaptic membranes and regulates syn-
aptic activity and plasticity [52]; calcium/calmodulin-
dependent serine protein kinase (CASK), which is a syn-
apse scaffolding protein that is involved in synapse forma-
tion and function [53]; AGRIN, a heparan sulfate
proteoglycan that promotes the formation of excitatory
synapses [54]; G protein-coupled receptor kinase interact-
ing protein 1 (GIT1), which regulates microtubule assem-
bly and promotes synapse formation and maintenance
[55]; Src Substrate Cortactin (CTTN), which is involved in
actin polymerization and activity-dependent synaptic plas-
ticity [56]; PSD95, a postsynaptic scaffolding protein that
is required for activity-driven synapse stabilization [57];
Adhesion G protein-coupled receptor L1 (ADGRL1),
which is involved in synapse formation and brain develop-
ment [58]. In addition, some of the genes are highly re-
lated to cytoskeleton or microtubule formation, e.g.,
polyphosphoinositide =~ phosphatase  synaptojanin 1
(SYNJ1), which participates in actin cytoskeleton
polymerization and synaptic vesicle recycling [59];
erythrocyte membrane protein band 4.1 like 3 (EPB41L3),
which is related to actin binding and protein-protein in-
teractions at synapses [60, 61]; microtubule-associated
protein tau (MAPT) gene, which encodes tau protein that
is involved in axonal transport, synaptic plasticity and
function [62]. Of note, hippocampus-dependent memory
is tightly associated with microtubules dynamics [63].

We next verified the alternative splicing patterns of
dendrite and synapse related genes, and observed signifi-
cant decreased skipping over exon 8 of CADMI1, over
exon 15 of GIT2, significant increased skipping over
exon 24 of CHL1, over exon 19 of CASK, over exon 34
of AGRIN, over exon 8 of GIT1, over exon 11 of CTTN,
and over exon 18 of PSD95 and significant increased in-
tron retention over intron 19 of ADGRLI (Fig. 6¢). We
also assessed the alternative splicing patterns of
cytoskeleton-related genes, and found significant in-
creased skipping over exon 28 of SYNJ1, over exon 14 of
EPB41L3 and decreased skipping over exon 4A of
MAPT (Fig. 6d). Importantly, calmodulin kinase-like
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Fig. 6 L-DL regulates cytoskeleton- and synapse-related gene expressions via modulating their alternative splicing. a Cellular component terms
for genes with changed alternative splicing in the hippocampus of L-DL knockdown (KD) mice in GO analysis (n = 1,631, P < 0.001). b Diagram for
cellular localization of synapse-, dendrite- and cytoskeleton-related proteins, with their genes undergoing aberrant alternative splicing in neurons.
¢, d Alternative splicing products of CADM1, GIT2, CHL1, CASK, AGRIN, GIT1, CTTN, PSD95, ADGRL1, SYNJ1, EPB41L3 and MAPT gene, determined
by RT-PCR in the hippocampus of control and L-DL KD mice (n = 3). * indicates spliced variants, F and R denote primers used for RT-PCR. 24
cycles or 30 cycles were used to detect higher abundant and lower abundant splicing products, respectively. e, f Alternative splicing products of
CAMKV determined by RT-PCR (e) and densitometric analyses (f) in the hippocampus of control and L-DL KD mice (n = 3). 14, intron 4 retention;
Al4, intron 4 exclusion. g, h Protein levels of CAMKY, SNAP25, PSD95, NR2B in the hippocampus of control and L-DL KD mice, measured by
immunoblotting (g) and densitometric analyses (h). GAPDH was included as an input control. Statistical analysis was performed using two-tailed

Student's t-test; * P < 0.05, ** P < 0.01, *** P<0.001; error bars denote the SEM

vesicle-associated (CAMKYV) gene, whose deficiency in
CA1 pyramidal neurons impairs synaptic plasticity and
spatial memory [64], showed a significant increase in in-
tron 4 retention, leading to reduced production of
CAMKYV protein (Fig. 6e-h). We further found that the
levels of synaptic proteins SNAP25, PSD95, and NMDA
receptor subunit NR2B were significantly decreased in
the hippocampus of L-DL KD mice (Fig. 6g, h). These
findings strongly indicate that L-DL regulates cognition
via modulating the alternative splicing of genes that are
involved in synaptic function.

L-DL improves cognitive function in AD mice

Given that L-DL is decreased in aged mouse brains and
downregulation of L-DL impairs mouse memory, we
next examined the potential role of L-DL in age-related
neurodegenerative diseases, especially AD. We first ob-
served a significant reduction of L-DL in the hippocam-
pus of APP/PS1 mice (Fig. 7a, b), and therefore
conducted L-DL overexpression (OE) or knockdown
(KD) in the hippocampus of APP/PS1 mice. L-DL over-
expression was driven by CamKII promoter, and L-DL
KD was achieved by target shRNA expression driven by
H1 promoter. AAV-mediated delivery was achieved via
brain injection into the bilateral CA1 areas of the hippo-
campus in APP/PS1 mice at 6 months of age. L-DL ex-
pression was confirmed by immunoblotting 4 weeks
after the injection (Fig. 7c-f). Behavioural assays showed
that L-DL OE significantly improved contextual memory
in APP/PS1 mice, as demonstrated by increased discrim-
ination index in novel object recognition task; and in-
creased time spending in the novel arm in Y maze task,
compared to control APP/PS1 mice (Fig. 7g, i). L-DL OE
did not affect locomotor activity and anxiety in APP/PS1
mice (Fig. S4a, c). Conversely, APP/PS1 mice with L-DL
KD displayed deteriorated contextual memory, as dem-
onstrated by decreased discrimination index in novel ob-
ject recognition task and decreased time spending in
novel arm in Y maze, compared to control APP/PS1
mice (Fig. 7h, j). APP/PS1 mice with L-DL KD showed
no difference in their locomotor activity and anxiety,
when compared to control mice (Fig. S4b, d).

L-DL improves cognition in AD mice via modulating
alternative splicing and expression of synaptic genes

To investigate how L-DL OE leads to improved cogni-
tion in APP/PS1 mice, we next examined the alternative
splicing pattern of CAMKYV, and found that L-DL OE in
APP/PS1 mice led to significantly decreased intron 4 re-
tention and increased production of CAMKV protein
(Fig. 8a, b, e, f). Moreover, synaptic proteins SNAP25,
PSD95, NMDA receptor NR2B also showed significantly
increased expression in L-DL OE APP/PS1 mouse
hippocampus (Fig. 8e, f). In contrast, L-DL KD in APP/
PS1 mice resulted in significantly increased intron 4 re-
tention and consequently reduced production of
CAMKYV protein (Fig. 8c, d, g, h). Similarly, SNAP25,
PSD95 and NR2B were also significantly decreased in
the hippocampus of APP/PS1 mice with L-DL KD (Fig.
8g, h). Taken together, upregulation of L-DL improves
the cognitive function of AD mice via modulating alter-
native splicing and subsequent synaptic protein
production.

Discussion
Alternative splicing of RNAs persists across life span, af-
fecting more than a third of genes linked to neural func-
tion in human brains [7]. Mounting evidence has
shown that significant changes in alternative splicing
occur during aging progression and neurodegenerative
diseases [11]. However, how these splicing changes
affect cognition upon progression of aging and age-
related neurodegenerative diseases remains elusive.
Here we demonstrate that L-DL regulates cognition
via modulating the alternative splicing patterns of
cytoskeleton- and synapse-related genes. We first
demonstrate that L-DL expression is substantially de-
creased in the hippocampus of aged and AD mouse
brains. We also uncover that KD of L-DL in the
hippocampus deteriorates cognition in WT and APP/
PS1 mice, whereas introduction of L-DL into the
hippocampus of APP/PS1 mice significantly improves
the cognition of these mice.

Nuclear speckles are considered a storage site for spli-
cing factors and therefore are functionally involved in
splicing process [19]. Intriguingly, L-DL is specifically
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WT mice, determined by immunoblotting (a) and densiometric analysis (n = 3) (b). ¢, d Levels of L-DL in the hippocampus of APP/PST mice
administered with zsGreen-L-DL, determined by immunoblotting (c) and densiometric analysis (n=3) (d). e, f Levels of L-DL in the hippocampus
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with L-DL overexpression (OF) or knockdown (KD) were subjected to behaviour assays. g, h Discrimination index for APP/PS1 mice with L-DL OF
(g) or L-DL KD (h) in novel object recognition task (n =15 mice per group). i, j Time spending in the novel arm for APP/PST mice with L-DL OE (i)
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0.001; error bars denote SEM

J

localized to nuclear speckles and L-DL KD leads to dis-
rupted nuclear speckle structure, suggesting L-DL serves
as a structural component and may participate in RNA
splicing process. The pre-mRNA splicing process is exe-
cuted by the spliceosome, a dynamic protein and RNA
complex in eukaryotes [1]. Spliceosomes possess great
plasticity in RNA substrate recognition and this process
is mainly influenced by RNA binding proteins (RBPs).
hnRNPs represent a large family of RBPs that are exten-
sively involved in the regulation of RNA splicing. For in-
stance, polypyrimidine tract binding proteins (PTBPs)
and hnRNP K, which bind to U2AF65 with similar
binding motifs, regulate U2AF65-mediated recognition
of U2 spliceosome at the 3" splice sites and consequently
influence RNA splicing [65, 66]. Additionally, hnRNP U
directly binds to snRNAs and regulates the conversion
of 155 U2 snRNP to 17S U2 snRNP to modulate U2
snRNP maturation and RNA splicing [67]. Here, we
demonstrate that L-DL participates in RNA splicing
process via modulating the loading of U2 snRNP-
mediated  spliccosome on the target RNAs.

Consequently, the splicing activity is significantly de-
creased in L-DL deficient cells.

Regulatory role of hnRNP DL in RNA alternative spli-
cing has been demonstrated previously in tumorigenesis
[68], however, its role in the brain remains elusive. Our
results demonstrate that L-DL is highly expressed in
neurons and its expression is significantly reduced not
only in aged mouse brains, but also in AD mouse brains.
In support of these conclusions, levels of hnRNP DL are
found reduced in both aged and AD human brains [69].
We also demonstrate that multiple alternative splicing
changes occur in the hippocampus of L-DL KD mice.
Importantly, exon skipping is the most dominant type of
alternative splicing events. Moreover, among intron re-
tention events, most of the segments showed increased
inclusion (55.61%), which is consistent with splicing
changes reported previously in aging brains [7]. Neur-
onal plasticity changes are tightly associated with RNA
splicing changes during aging and age-related diseases
[7, 13, 14]. In addition, previous studies have reported
that synaptic plasticity, which is associated with
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hippocampus-dependent memory formation, is also reg-
ulated by microtubules dynamics [63]. Consistently, GO
term analysis showed that genes with exon skipping in
the hippocampus of L-DL KD mice are functionally re-
lated to cytoskeleton organization and synaptic
functions.

Importantly, introduction of L-DL into the hippocam-
pus of APP/PS1 mice significantly improves the cogni-
tive function. Mechanistically, we demonstrate that L-
DL regulates CAMKYV expression in the hippocampus of
mice by regulating CAMKYV intron 4 alternative splicing.
In support of this, previous reports have shown that
CAMKYV deficiency results in abnormal dendritic spine
density, synaptic transmission in cultural hippocampal
neurons [64]. In addition, hippocampal CAMKV knock-
down mice exhibited attenuation in late-phase long-term
potentiation (LTP) and memory deficits [64]. These find-
ings support that L-DL regulates cognitive process
through regulating the alternative splicing of CAMKV
and its expression during brain aging and neurodegener-
ative diseases. Notably, levels of multiple synaptic

proteins are down-regulated in APP/PS1 mouse brains
[70]. We uncover that introduction of L-DL promotes
expression of multiple synaptic genes in AD mouse
brains, including CAMKYV, SNAP25, PSD95 and NR2B.
We therefore speculate that L-DL regulates the expres-
sion of multiple synapse- and cytoskeleton-related genes
via modulating their RNA splicing process in AD brains
of -.CAMKYV Therefore, L-DL-mediated improvement in
cognition in APP/PS1 mice is likely due to the restor-
ation of multiple synaptic and cytoskeletal gene expres-
sion, beyond CAMKYV, via changing the alternative
splicing patterns of these genes.

Conclusions

Aberrant alternative splicing changes are tightly associ-
ated with brain aging and age-related neurodegenerative
diseases, however what triggers these aging associated
splicing abnormalities and the regulatory mechanism be-
hind it remain largely elusive. Here, we identify a RNA
binding protein hnRNP L-DL, whose expression displays
an age- and AD-dependent reduction in the brain.
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Notably, L-DL is preferentially localized to nuclear
speckles, where L-DL regulates the alternative splicing of
selected synapse- and cytoskeleton-related genes. Conse-
quently, these gene expression are altered by L-DL. Im-
portantly, L-DL introduction substantially improves
cognitive decline in AD mice. Taken together, our study
defines nuclear speckle specific protein hnRNP DL as a
critical molecule linking RNA splicing and aging/AD as-
sociated cognitive decline, shedding light on a potential
therapeutic approach for cognitive decline in aged and
AD brains via correcting aberrant RNA splicing.
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