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Abstract

Background: There is an association between repetitive head injury (RHI) and a pathologic diagnosis of chronic
traumatic encephalopathy (CTE) characterized by the aggregation of proteins including tau. The underlying
molecular events that cause these abnormal protein accumulations remain unclear. Here, we hypothesized that
identifying the human brain proteome from serial CTE stages (CTE I-IV) would provide critical new insights into CTE
pathogenesis. Brain samples from frontotemporal lobar degeneration due to microtubule associated protein tau
(FTLD-MAPT) mutations were also included as a distinct tauopathy phenotype for comparison.

Methods: Isobaric tandem mass tagged labeling and mass spectrometry (TMT-MS) followed by integrated
differential and co-expression analysis (i.e., weighted gene co-expression network analysis (WGCNA)) was used to
define modules of highly correlated proteins associated with clinical and pathological phenotypes in control (n =
23), CTE (n = 43), and FTLD-MAPT (n = 12) post-mortem cortical tissues. We also compared these findings to
network analysis of AD brain.

Results: We identified over 6000 unique proteins across all four CTE stages which sorted into 28 WGCNA modules.
Consistent with Alzheimer’s disease, specific modules demonstrated reduced neuronal protein levels, suggesting a
neurodegeneration phenotype, while other modules were increased, including proteins associated with
inflammation and glial cell proliferation. Notably, unique CTE-specific modules demonstrated prominent enrichment
of immunoglobulins, including IGHM and IGLL5, and extracellular matrix (ECM) proteins as well as progressive
protein changes with increasing CTE pathologic stage. Finally, aggregate cell subtype (i.e., neurons, microglia,
astrocytes) protein abundance levels in CTE cases were similar in expression to AD, but at intermediate levels
between controls and the more exaggerated phenotype of FTLD-MAPT, especially in astrocytes.

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: cmhales@emory.edu
Laura Gutierrez-Quiceno and Eric B. Dammer are Co-first author.
1Center for Neurodegenerative Disease, Emory University School of Medicine,
615 Michael Street, Office 505H, Atlanta, GA 30322, USA
2Department of Neurology, Emory University School of Medicine, Atlanta, GA
30329, USA
Full list of author information is available at the end of the article

Gutierrez-Quiceno et al. Molecular Neurodegeneration           (2021) 16:40 
https://doi.org/10.1186/s13024-021-00462-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13024-021-00462-3&domain=pdf
http://orcid.org/0000-0002-8757-7325
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:cmhales@emory.edu


Conclusions: Overall, we identified thousands of protein changes in CTE postmortem brain and demonstrated that
CTE has a pattern of neurodegeneration in neuronal-synaptic and inflammation modules similar to AD. We also
identified unique CTE progressive changes, including the enrichment of immunoglobulins and ECM proteins even
in early CTE stages. Early and sustained changes in astrocyte modules were also observed. Overall, the prominent
overlap with FTLD-MAPT cases confirmed that CTE is on the tauopathy continuum and identified CTE stage specific
molecular phenotypes that provide novel insights into disease pathogenesis.

Keywords: Chronic traumatic encephalopathy (CTE), Tandem mass tagged (TMT), Proteomics, Frontotemporal
dementia (FTD), Immunoglobulin, Weighted gene co-expression network analysis (WGCNA), Astrocyte

Background
Although age is the greatest risk factor for neurodegen-
erative disorders like Alzheimer’s disease (AD), there are
other possible environmental contributors including
prior exposure to traumatic brain injury (TBI) [1–4].
Unfortunately, we do not understand the basic mecha-
nisms that link TBI to neurodegeneration. Studies are
often complicated by a heterogenous mix of head injur-
ies as well as a prolonged time period between head in-
jury and the onset of cognitive symptoms, and these
challenges have impacted our ability to identify bio-
markers and potential therapeutic targets [4, 5]. One
form of TBI, repetitive concussive and sub-concussive
head impacts (RHI), is associated with postmortem
neuropathological changes of chronic traumatic enceph-
alopathy (CTE) [3, 6, 7]. Since CTE involves increasing
pathological burden associated with greater RHI and in-
creased age and because we previously identified novel
protein changes in neurodegenerative disorders [8–12],
including CTE [13], we hypothesized that quantitative
proteomics and bioinformatics analysis of molecular
changes in CTE brain could provide critical new insights
into disease pathogenesis.
Neuropathological studies previously identified import-

ant CTE-related changes, including the prominent aggre-
gation of hyperphosphorylated tau around vasculature and
deep within the sulci [3, 6, 14]. Tau aggregations are found
in both neurons and glial cells, while other pathologic ac-
cumulations including TAR DNA binding protein 43
(TDP43), Lewy bodies, and occasionally beta amyloid are
also found. Staging criteria for the p-tau pathologic bur-
den in CTE has also been proposed (CTE I-IV), suggesting
that there is an orderly progression to the spread of p-tau
and potentially other biomarkers of disease [3, 6, 15].
Similarly, there is an association with years of RHI expos-
ure and age with the CTE stages (i.e., CTE I cases are
younger and with increasing RHI and age, there is an in-
crease in the CTE stage) [16]. There is also increased risk
for CTE with early play and injury, even prior to adult-
hood [17]. Understanding the molecular changes that
occur with increasing CTE stage is feasible since patho-
logical hallmarks, like tau, demonstrate a progressive
phenotype [15].

We recently described changes in the CTE insoluble
brain proteome in CTE cases with increasing stage [13].
The insoluble proteome contains a smaller subset of
proteins prone to aggregate within the brain in neurode-
generative diseases. When compared to controls, we
identified differentially expressed proteins in CTE in-
cluding NADPH quinone oxidoreductase (NQO1), a
protein involved in managing reactive oxygen species in
the brain and localized to glial cells, including astrocytes
with hyperphosphorylated tau. Higher levels of NQO1
also correlated with higher CTE stage, and concordantly,
p-tau pathological burden. Similarly, proteomics on a
small cohort of CTE cases recently identified downregu-
lation of axonal proteins in stage IV CTE cases, suggest-
ing that specific effects on axons may contribute to the
disease process [18]. In an orthogonal approach, ribo-
nucleic acid (RNA) sequencing of CTE cases also dem-
onstrated disease related changes, including alterations
in kinases, phosphatases and calcium signaling pathways
that may impact tau hyperphosphorylation and disease
pathogenesis [19, 20]. Although the proteomic and
RNA-seq studies utilized brain samples from a cross-
sectional retrospective cohort, the results suggested that
a larger proteome study might afford novel insights into
CTE pathogenesis.
To provide a more comprehensive characterization of

the CTE brain proteome and to identify additional novel
biomarkers of disease, therapeutic targets and potential
molecular underpinnings, we performed quantitative
mass spectrometry utilizing isobaric tandem mass tags
(TMT) and off-line fractionation to identify proteins that
associated with increasing CTE stage. Integrated differ-
ential expression and weighted co-expression network
analysis (WGCNA) was then used to identify CTE-
specific modules of co-expressed proteins related to bio-
logical pathways and cell-type. We also correlated results
with other neurodegenerative diseases, including AD
and a related tauopathy, frontotemporal lobar degener-
ation with microtubule associated protein tau mutations
(FTLD-MAPT), to identify neurodegenerative disease-
related changes.
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Methods
Collection of human postmortem brain
Brain tissues were obtained from the Emory Goizueta
Alzheimer’s Disease Research Center Neuropathology
Brain Bank in Atlanta, Georgia, and from the Veterans
Affairs-Boston University Concussion Legacy Founda-
tion (VA-BU-CLF) brain bank in Boston, Massachusetts.
Brains were collected from deceased subjects after
obtaining consent from family under Institutional Re-
view Board (IRB)-approved protocols. Brains were di-
vided into hemispheres to allow for one hemisphere to
be coronally sectioned and stored at -80C while the
other hemisphere was fixed for immunohistochemistry.
Samples of lateral prefrontal and temporal lobe cortex
from fresh frozen brain were collected for the current
proteomics study. The research subjects used in this
study were selected based on demographics and
underlying neuropathological diagnosis, which was pre-
viously determined with detailed neuropathological
characterization to assess for neurodegenerative disease-
associated pathologies (Table S1). This included stand-
ard immunohistochemistry methods with hematoxylin
and eosin as well as silver stain. More targeted immuno-
histochemistry included labeling for amyloid beta 42,
hyperphosphorylated tau, alpha-synuclein, and phos-
phorylated TDP43 was also used. Evaluations were per-
formed by board-certified neuropathologists. CTE cases
were staged using the McKee staging scheme [3, 15].
FTLD-MAPT cases were identified through genetic se-
quencing of the MAPT gene or characteristic pathology.
A demographic summary is also provided in Table S1.
CTE cases were all male based on the samples available
at the time the project was initiated. The average age of
early stage CTE cases was also younger, as noted previ-
ously [21].

Preparation of brain homogenates
Brain homogenates were prepared from lateral pre-
frontal and temporal lobe cortex as previously described
[22]. Briefly, ~ 100 mg of frozen brain was homogenized
in 500 μl of 8M urea lysis buffer with protease inhibitors
(8M urea, 100 mM NaHPO4, pH 8.5; HALT phosphat-
ase/protease inhibitor (Thermo Fisher, Catalog #78440)).
A Bullet Blender (Next Advance) was used to
homogenize the tissues in 1.5 ml Rhino Tubes with
stainless steel beads (2 × 5min at 4C). Samples were
transferred to clean 1.5 ml Eppendorf tubes, sonicated
3–4 times 15 s with 5 s between, and centrifuged at
1000×g. Protein assay (bicinchonic acid; BCA) was con-
ducted and 25 μg was loaded on a sodium dodecyl sul-
fate polyacrylamide gel electrophoresis (SDS-PAGE) to
check integrity of the samples. One hundred micrograms
protein was digested with lysyl-endopeptidase and tryp-
sin followed by TMT labeling as previously described. A

global internal standard (GIS) was also generated by
mixing a small amount from each sample, and the GIS
was used to normalize abundances. Samples were first
randomized into groups of 9 for TMT labeling and each
group also contained two GIS samples to flank the 9
samples in each batch during the proteomic run. TMT
labeling kits were made for 11 samples, hence the 9 sam-
ples plus 2 GIS. A total of 10 TMT kits were used to
generate 10 batches in preparation for liquid chromatog-
raphy and mass spectrometry.

Liquid chromatography
ERLIC fractionation was performed as previously de-
scribed [23]. Briefly, TMT-labeled peptides were dis-
solved in 100 μL of 80% (v/v) loading buffer (10 mM
NH4Ac, 85% ACN/1% acetic acid), injected completely
with an auto-sampler, and fractionated using a Poly-
WAX LP anion-exchange column (200 × 3.2 mm, 5 μm,
300 Å; PolyLC, Columbia, MD) on an Agilent 1100
HPLC system monitored at 280 nm. Forty fractions were
collected with a 66-min gradient of 100% mobile phase
A (90% ACN/0.1% acetic acid) for 3 min, 0–20% mobile
phase B (30% ACN/0.1% FA) for 50 min, 20–100% B for
5 min, followed by 8 min at 100% B at a flow rate of 0.3
ml/min. The 40 fractions were pooled into 20 fractions.

Tandem mass spectrometry (LC-MS/MS)

Tandem mass spectrometry (LC-MS/MS) Lumos
Batches Peptide fractions were reconstituted in 50ul of
loading buffer (0.1% formic acid and 0.03% trifluoroacetic
acid in water) and 2ul (~2μg) was loaded onto in-house
packed 70 cm long 75 um ID column and eluted using a
Water’s NanoAcquity operating at a rate of 200 nl per min
over 190 mins (load time included). The gradient started
from 1% B (0.1% formic acid in acetonitrile) to 35% B over
165 mins. This was followed by a 10 wash at 99% B and fi-
nally an equilibration for 15 mins back at 1% B. The Fu-
sion Lumos mass spectrometer was set to collect at top
speed for 3 s cycles. Each cycle consisted of 1 full survey
scan (120,000 resolution, scan range 380–1500, automatic
gain control (AGC) at 200,000 and 50ms maximum injec-
tion time) followed by ion trap CID tandem scan (0.7m/z
isolation window, 35% collision energy, 10,000 AGC and
50ms maximum injection time) and paired Orbitrap syn-
chronous precursor selection MS3 scans (50,000 reso-
lution, 65% collision energy, 100,000 AGC and 105ms
maximum injection time).

Tandem mass spectrometry (LC-MS/MS) Fusion
Batches Peptide fractions were reconstituted in 50ul of
loading buffer (0.1% formic acid and 0.03% trifluoroace-
tic acid in water) and 2ul (~2μg) was loaded onto in-
house packed 70 cm long 75 um ID column and eluted
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using a Dionex RSLCnano operating at a rate of 250 nl
per min over 160 mins (load time not included). The
gradient started from 1% B (0.1% formic acid in aceto-
nitrile) to 35% B over 165 mins. This was followed by a 10
wash at 99% B and finally an equilibration for 15 mins
back at 1% B. The Fusion mass spectrometer was set to
collect at top speed for 5 s cycles. Each cycle consisted of 1
full survey scan (120,000 resolution, scan range 380–1500,
automatic gain control (AGC) at 200,000 and 50ms max-
imum injection time) followed by ion trap CID tandem
scan (0.7m/z isolation window, 35% collision energy, 10,
000 AGC and 50ms maximum injection time) and paired
Orbitrap synchronous precursor selection MS3 scans (60,
000 resolution, 65% collision energy, 100,000 AGC and
120ms maximum injection time).

Proteomic data analysis
Raw data files from the Orbitrap Fusion and Lumos
were processed as previously described using Proteome
Discoverer [22]. Briefly, Proteome Discoverer (Thermo-
Fisher Scientific version 2.2.0.388) was used to search all
rawfiles (Synapse ID: syn11612204; ProteomeXchange
ID: PXD024724). The spectra were searched against a
human database (90,304 target sequences) downloaded
April 2015. Search parameters included 20 ppm precur-
sor ion tolerance, 0.6 Da fragment ion tolerance, static
modification for carbamidomethyl cysteines (+ 57.021
Da) and TMT-labeled peptide n-terminals and lysines
(+ 229.163 Da), dynamic modifications for oxidized me-
thionines (+ 15.995 Da) and deamidated asparagine and
glutamine (+ 0.984 Da). PSM and Peptide level data were
filtered to 0.01% FDR. Strict parsimony was applied for
protein grouping. TMT reporter ions were matched with
a 20 ppm tolerance window and only razor and unique
peptides were considered for quantitation. The Uni-
ProtKB Human proteome database was used to identify
the MS/MS spectra. Peptides were then assembled into
proteins to determine abundances based on extracted
ion intensities and gene symbol redundancy was man-
aged as previously described (Table S5) [22]. Data was
normalized using the GIS samples and only proteins
identified all of the 10 batches were included.
ComBat (R sva package) was utilized to remove variability

due to batch, due to the two mass spectrometer platforms
utilized, and due to the two different brain regions of case
samples and ultimately increased the power of our analysis
as described here. First, only 6713 well-quantified proteins
with no missingness across all 10 TMT batches were con-
sidered. Specifically, this process began with removal of
WGCNA network connectivity outliers (|Z.k| > 2 SD from
mean) within abundance data collected on each of the two
LC-MS/MS platforms separately. Then, the matrix of
Proteome Discoverer normalized abundance of TMT re-
porters was split to arrive at 2 input matrices of data, one

per LC-MS/MS platform. ComBat was first run separately
on each of these two platform-specific matrices to remove
TMT batch effects modeling explicitly diagnosis and region;
then, the two platform data were combined and, using the
same model, ComBat was used to address platform effects
(batch was specified as MS/MS platform 1 or 2). Then GIS
samples, which were technical replicates of all representa-
tive samples across batches and which were strong anchors
for ComBat elimination of cross-batch variance were re-
moved. A fourth and final ComBat pass was run, explicitly
modeling only sex, and the two brain regions of samples
(temporal or frontal) were considered as the desired batch
effect to remove in order to arrive at region-agnostic pro-
files of protein abundance. The use of ComBat for removal
of region specific effects in proteomic data was previously
used by our group [11], and doing so increases power to
discern differences agnostic to region. We used the varian-
cePartition package in R to determine and visualize the im-
provement in covariance with unwanted factors (Fig. S1).
Following this, nonparametric bootstrap regression re-

moved age and PMI covariance according to a linear
mixed model that also included (protected) diagnosis or
CTE stage. Fully covariate and regressed abundances were
used for all downstream analyses including differential ex-
pression and WGCNA. Differential abundance was calcu-
lated by subtracting average control protein abundance
from disease protein abundance, with one-way ANOVA
plus Tukey’s honestly significant difference (Tukey HSD)
to determine statistical significance (Table S2). Gene-
ontology pathway analysis was run on module-level collec-
tions of gene products (Fig. S6), and as there are far fewer
modules than genes, we accepted the terms determined
with a Z-score greater than 1.96 (p < 0.05). Enrichment
was calculated with a hypergeometric test and FDR was
calculated with Benjamini-Hochberg procedure for mul-
tiple comparisons using GO-Elite and string-db.org.
WGCNA was performed as previously described [11]
using protein abundances to generate modules and iden-
tify kME values for module membership of proteins
(Table S4). Briefly, the power at which approximate scale
free topology was determined at the elbow of the curve of
power vs. R-squared approaching an asymptote, ideally
above R2 = 0.8 and with overall network connectivity re-
duced to around 100; this power was 7.0 for the regressed
data. Processing all data in a single block, modules were
merged conservatively in the blockwiseModules function
using a mergeCutHeight of 0.07 and reassignThresh =
0.05 (instead of the default 1e-6); other parameters in-
cluded PAMstage = TRUE, pamRespectsDendro = TRUE,
replaceMissing = TRUE, a minimum module size of 17
(per [11] deepSplit = 2, corType = “bicor”, and network-
Type = “signed”, in addition to TOMDenom= “mean”.
Cell subtype analysis was performed as previously de-

scribed [22] to identify specific WGCNA modules
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enriched with marker proteins of specific cell types in the
brain using both a reference cell subtype proteome [24]
and transcriptome [25]. The biomaRt package (www.
biomart.org) and getLDS function was used to convert
gene symbols between human and mouse using a compre-
hensive ensemble database lookup. The digital sorting al-
gorithm (DSA)::EstimateWeight R package and function,
with method parameter set to “LM” (i.e., linear modeling),
were used to calculate sample-wise five proteome-derived
[24] cell type weights or proportions of each sample [26].
Significance of changes across diagnosis-defined groups
for modules and cell subtype analyses, independent of age,
sex, and PMI effects, was then calculated as a Kruskal-
Wallis p-value using the R pf function applied to F-
statistics. These were arrived at by summarization of the
linear model of weights across samples after explicitly
considering diagnosis group, age, sex, and PMI.
We also generated a synthetic eigenprotein for AD

proteins within the CTE modules to provide a visual
comparison between the two data sets (i.e. CTE and AD
[22]). Briefly, protein module members in the AD net-
work with a kME in the top 10th percentile were assem-
bled into a synthetic module within the CTE network.
Synthetic modules with at least 4 members were used to
calculate synthetic weighted eigengenes representing the
variance of all members in the target network across
case samples via the WGCNA::moduleEigengenes()
function. Boxplots of the AD synthetic eigengenes were
generated and plotted adjacent to the CTE eigengenes
and Kruskal-Wallis p-values were calculated.

Protein blotting and quantitation
To validate select proteomic targets, we utilized standard
protein electrophoresis and blotting techniques as previ-
ously described [8]. Briefly, 10-20 μg of brain homogenate
was combined with 4x sample buffer (ThermoFisher) and
loaded in precast 17-well SDS 4–20% gels. Following elec-
trophoresis, proteins were transferred from the gel to a
nitrocellulose membrane using the ThermoFisher iBlot sys-
tem. Membranes were blocked, incubated with primary
antibody (against IGHM, IGLL5, GFAP, HEPACAM,
GAPDH), fluorescent secondary antibody and then imaged
on a LI-COR Odyssey Scanner. Standard washes (3x) in
TBS were utilized between incubation steps. ImageJ, Image
Studio Lite and Prism was utilized to quantify densitometry
of bands and for statistics. Values were normalized to
GAPDH. Student’s T test or one-way ANOVA was utilized.

Results
TMT labeling and LC-MS/MS provide deep CTE proteomic
quantification
We previously utilized LC-MS/MS to identify significantly
enriched proteins in the CTE insoluble proteome [13]. This
allowed us to find proteins that were prone to aggregation.

Since that study, our group has utilized TMT labeling with
off-line fractionation to increase the proteome depth in the
human brain [22, 27]. TMT labeling was used to compare
controls to symptomatic and asymptomatic AD (AsymAD)
in order to identify changes that might be involved in AD
progression [22]. Along these same lines, we hypothesized
that this technique would generate deep coverage of the
CTE total proteome and provide insights into proteins that
change with CTE progression compared to controls. Fur-
thermore, we compared CTE to other tauopathies, includ-
ing frontotemporal lobar degeneration due to MAPT
mutations (FTLD-MAPT), progressive supranuclear palsy
(PSP), and corticobasal degeneration (CBD). We utilized
control (n = 22), CTE1 (n = 6), CTEII (n = 11), CTEIII (n =
11), CTEIV (n = 15), FTLD-MAPT (n = 12), PSP (n = 7)
and CBD (n = 2) samples for this proteomic study (Table
S1). From a total of 87 samples across 10 TMT batches,
LC-MS/MS identified over 10,000 unique proteins (Table
S5). When restricted to proteins without any missing values
across all 10 batches and after outlier removal, this number
dropped to 83 samples and 6713 unique proteins identified
across the CTE stages and other tauopathies, nearly double
that found in previous studies [22]. Based on differential ex-
pression and ANOVA-Tukey HSD significance (p < 0.05),
we identified 7 (I), 223 (II), 66 (III), and 1260 (IV) differen-
tially expressed proteins across the CTE stages, respectively
compared to controls (Table S2, Fig. S2). For comparison,
we likewise identified 1694 differentially expressed proteins
in FTLD-MAPT, 77 in PSP, 41 in CBD and 725 in AD [22]
compared to controls. We also determined the number of
significant proteins present in both CTE and AD, given the
previously described neuropathological overlap [14], as well
as CTE and FTD (Fig. 1) to understand overlap with related
tauopathies. Overlap with CTE I-III and AD or FTD was
limited, however we identified 226 significant proteins com-
mon to CTE IV and AD and interestingly, we identified
632 common to CTE IV and FTD. Gene ontology analysis
defined biological processes, molecular function and cell
components in the group of 167 proteins common to CTE
IV, AD and FTD (Fig. 1), including proteins associated with
vesical mediated transport, cytoskeletal organization, syn-
apse and other neuronal components.

Cortex of CTE neuropathologic stages sits on a
continuum between control and FTLD-MAPT as observed
with weighted co-expression network analysis
Correlational network analysis (WGCNA) has previously
been used to characterize systems biology changes in
both transcriptomic and proteomic studies of neurode-
generative disorders [11, 12, 28–30]. This approach gen-
erates modules or groups of genes/proteins with
correlated abundance levels in the samples. These re-
lated proteins may be associated with specific cell sub-
types, biological processes or other novel associations.
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Indeed, some proteins can even be identified as drivers
or hubs of the modules due to increased connectivity
with the module members. Modules may also form due
to specific traits within the samples like disease, stage or
other clinical characteristics. Although network analysis
was recently performed on the CTE transcriptome [19,
20], we hypothesized that additional findings may be
identified in the CTE proteome, especially when examin-
ing CTE cases across the CTE stages I-IV. We included
proteins without missing data across the batches, and
corrected for covariance with age, region, platform, and
batch with ComBat. WGCNA identified 28 modules
with clustering via dendrogram tree cutting and the
eigengene network presented in Fig. S3. Since PSP and

CBD cases were included in the mass spectrometry and
the raw data, they were included in the WGCNA to im-
prove power of the analysis. PSP and CBD cases were
not however included in the box plots or further analysis
because the eigenprotein values for PSP were similar to
controls and the number of CBD cases were ultimately
too small to draw conclusions. For the control, CTE,
and FTLD-MAPT cases, some modules did not associate
with any disease related changes (M13-salmon); Fig. 2)
whereas others contained interesting co-expression pat-
terns for the eigenprotein values. Representative mod-
ules from the 28 modules (Fig. S4) are highlighted in
Fig. 2. M10-purple demonstrated increases in the eigen-
protein value in CTE cases with a stark elevation in the

Fig. 1 Overlap of significant differentially expressed proteins in CTE, FTLD-MAPT, and AD as compared to controls. Proteins were
grouped within disease state and sorted based on p-value< 0.05 (ANOVA). Venn diagrams showing 5 way overlap between A. AD or B. FTD and
CTE I-IV. C. Venn diagram showing 3 way overlap between CTE IV, AD, and FTLD-MAPT. D. Gene ontology showing Biological Process, Molecular
Function and Cellular component for 167 proteins significantly enriched in all 3 neurodegenerative disorders as compared to controls
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FTLD-MAPT cases as compared to controls. Interest-
ingly, the CTE stages did not appear to show a linear in-
crease from stage I to stage IV (i.e., stage III
demonstrated a slight dip as compared to CTE II). The
cause of this is unclear but may be related to sampling
variability. Other modules, including M1-turquoise,
demonstrated a steady drop in the eigenprotein value
across CTE stages. The M28-skyblue module showed
higher values in the early CTE cases (II and III) but then
tapered off in CTE IV and FTLD-MAPT. Finally, mod-
ules like M20-royalblue demonstrated an early increase
in the eigenprotein value that persisted, with again a
notable increase in the FTLD-MAPT cases. The top 8
proteins (represented by gene symbol) contributing the
most to the first principal component of each module
(i.e., module eigenprotein) are listed under the modules
(Fig. 2).
Of these modules, M28-skyblue demonstrated a CTE

specific phenotype and this module was enriched with
immunoglobulin fragments. Therefore, we used protein
blotting to validate two of the top targets (IGHM and
IGLL5) and these findings confirmed the increase of

immunoglobulin fragments as observed in the module
level data (Fig. 2). Similarly, the M23-darkturquoise
module was also more specific for CTE, demonstrating
increased eigenprotein values across the CTE cases, even
CTE I. Gene ontology analysis identified prominent en-
richment of collagens and other extracellular matrix pro-
teins in the M23-darkturquoise module (Fig. S6). Finally,
modules like M10-purple and M1-turquoise are repre-
sentative of 17 out of the 28 modules (57.8%; 3884/6713
proteins) that demonstrated that the CTE stages sit on a
co-expression continuum between control and FTLD-
MAPT cases (Fig. S4). Findings suggest that some as-
pects of FTLD-MAPT systems biology may serve as an
exaggerated phenotype that would be useful for model-
ing similar disease-related changes in CTE.

Proteomic neurodegeneration-associated modules are
preserved in CTE cases, including significant changes in
cell subtype-specific modules
Since previous studies demonstrated neuropathological
and transcriptomic overlap between CTE and AD [19,
20], we hypothesized that WGCNA would identify

Fig. 2 WGCNA modules demonstrated significant disease-related changes, including enrichment of immunoglobulins in CTE. We
generated 28 WGCNA modules from the control, CTE, and FTLD-MAPT proteomic data. A. Representative modules are shown with the top 8
module hub proteins (based on kME value; Table S4) listed below each box plot. Kruskal-Wallis p-values for nonparametric ANOVA following
linear modeling of covariates and diagnostic groups are shown in above the box plots along with the number (n) of proteins in each module
(module sizes also shown in Table S6). B. (Top): Protein blot of IGHM and IGLL5, key hub proteins in the M28-skyblue module, in control and CTE
I-IV as a validation of the proteomic data. GAPDH shown as a loading control. B. (Bottom): Box plots of protein blot densitometry for IGHM and
IGLL5. *designates p-value < 0.05 for CTE II cases using ANOVA (IGHM: CTE II significant compared to control, CTE I and CTEIV; IGLL5: CTE II
significant compared to control and CTE IV). CTE III cases were borderline significant for both IGHM and IGLL5 in pairwise comparison
versus control
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modules that were well preserved across the two neuro-
degenerative diseases. We performed hypergeometric
overlap and correlational analysis between this CTE
proteomic data set (which included control, CTE and
other tauopathies) and the recently published dataset
examining AD [22] (which included control, AsymAD
and AD; Fig. 3). This AD proteomic dataset was selected
as a direct comparator because it was generated using
similar methods including TMT labeling and fraction-
ation/liquid chromatography prior to mass spectrometry.
There was strong overlap and correlation between the
turquoise module members (AD-M1 and CTE-M1), and
this module demonstrated steady reduction in the eigen-
protein value across serial CTE stages. Cell subtype
overlap of CTE network modules using the Sharma ref-
erence proteome [24] (Fig. 4) identified prominent en-
richment of neuronal components in M1-turquoise,
suggesting that the M1-turquoise module is a measure
of the neurodegeneration that occurs in CTE, AD,
FTLD-MAPT and other neurodegenerative disorders.
There was also significant overlap and preservation of
modules enriched with glial cells (Figs. 3, 4). These in-
cluded microglia (AD-M4-yellow mapping to CTE M10-

purple, astrocytes (ADM7-black and M8-pink mapping
to CTE-M6-red; AD-M35-lightbrown mapping to CTE-
M20-royalblue), and oligodendrocytes (AD-M2-blue)
mapping to CTE-M2-blue). As in the AD data set (M4-
yellow, M7-black and M8-pink) [22], several modules
were enriched with multiple cell types in the CTE data
set (M6-red, M10-purple, M12-tan, and M14-cyan).
Interestingly, comparison of this CTE data set to tran-
scriptome level cell subtype data [25] identified similar
cell subtype enrichment in specific modules (neuron for
M1-turquoise, microglia for M10-purple, astrocyte for
M2-royalblue, oligodendrocyte for M2-blue), as well as
additional cell subtype enrichment findings (endothelial
for M6-red and M12-tan; oligodendrocyte precursor
cells for M23-darkturquoise). When examining individ-
ual protein expression levels within the modules, there
was a strong correlation between AD and CTE as well as
AD and FTLD-MAPT (Fig. 3B) particularly within the
M1-turquoise, M14-cyan, M6-red, M10-purple and
M12-tan modules. This confirmed that both CTE and
FTD were independently contributing to the observed
neurodegeneration phenotype (decrease in neuronal ex-
pression; increase in glial expression). To provide further

Fig. 3 CTE/FTLD-MAPT TMT WGCNA modules map to AD-TMT modules and demonstrate strong overlap at the individual protein
expression level. A. WGCNA module membership was compared between the CTE/FTD TMT proteomic data and recently publish AD TMT
dataset. Although module color varied, many of the modules were well preserved between the two datasets. log10 (p-values) are shown in the
red and blue boxes which highlight the intersection of modules with statistically significant overlap (red) or depletion (blue). B. Correlation at the
protein level of log2 expression values demonstrated strong overlap between both AD and CTE IV (left) as well as AD and FTD-MAP (right).
Individual proteins are plotted in their respective module colors. Correlation constants and p-values are designated within each plot. C. We
calculated synthetic eigengenes within the CTE dataset for proteins from the AD dataset. 5 modules identified in Fig. 3B are shown. The vertical
line on each box plot separates the two data sets (CTE eigengenes on the left, AD synthetic eigengenes on the right). Control or disease state is
listed on the x-axis. Kruskal-Wallis p-values are shown for each group

Gutierrez-Quiceno et al. Molecular Neurodegeneration           (2021) 16:40 Page 8 of 14



clarity on module overlap between the CTE and AD
datasets, we also generated synthetic eigengenes for the
AD proteins within the CTE modules (Fig. 3C). The
eigengene direction of change is comparable (i.e. track-
ing down in M1-turquoise or up in M10-purple with

increasing disease stage) and statistically significant for
the AD proteins in 4 of the 5 CTE modules that demon-
strated strong correlational overlap in Fig. 3B. There
were modules, like the M6-red, in which the AD syn-
thetic eigengenes were not significant.

Fig. 4 CTE/FTLD-MAPT TMT modules are enriched with specific cell subtype proteins. We compared the CTE/FTD TMT proteome to the
well-known Sharma cell subtype proteome [24]. Fisher’s exact test with Benjamini Hochberg correction was utilized. Module number and colors
are shown across the bottom of the figure and cell subtype on the left. p-values are shown in the red boxes on the heat map. Darker red color
indicates a stronger level of significance for a module to be enriched with a particular cell subtype from the brain

Fig. 5 Cell subtype abundance demonstrated enriched glial proteins with a prominent increase of astrocyte proteins in FTLD-MAPT
over that of other tauopathies. We utilized proteomic protein level data and the Sharma [24] cell type marker classification in combination
with the digital sorting algorithm [26] to determine the aggregate abundance of each cell subtype. The CTE/FTD and AD TMT datasets were kept
separate, with p-values (Kruskall-Wallis ANOVA) shown for each cell, however relative abundance was normalized via z-score to allow for
comparison across datasets. A. Box plots of astrocyte, microglia and neuron abundances across control, CTE I-IV and FTLD-MAPT as well as
control, asymptomatic AD and AD are shown. Protein blot and densitometry was performed for B. GFAP and C. HEPACAM, two astrocyte
associated proteins. *designates p-value less than 0.05 (GFAP: FTD-MAPT was significant compared to control and CTE IV; HEPACAM: FTD-MAPT
was significant compared to control, AD and CTE IV). As noted in A., astrocyte abundance is greatest in FTLD-MAPT and significantly higher than
AD and CTE IV
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Relative cell subtype abundance levels were similar
between CTE and AD, with FTLD-MAPT representing an
extreme phenotype for astrocyte abundance
In addition to the cell subtype analysis in Fig. 4 and Fig.
S5, we also determined the relative abundance of cell
subtypes across disease states to identify disease-specific
findings (Fig. 5). As above, we compared cell type
marker-based relative abundance estimates in our CTE
proteomic data set to a recently published AD data set
which included overlapping controls, asymptomatic AD
((AsymAD) cases with pathology but absent clinical
symptoms) and symptomatic AD [22]. Adjacent box
plots with z-score normalized abundance levels are dis-
played (Fig. 5). As observed in the module level-data
(Fig. 2) CTE I-IV cases were on the continuum between
control and FTD cases for all of the cell subtypes and
similar in expression to AD cases. Neuronal loss seems
equivalent and slightly greater in CTE IV cases as com-
pared to FTD and AD. Interestingly, CTE II demon-
strated similar astrocyte abundance levels to later stages
CTE III and IV, suggesting that astrocyte changes occur
early in the pathologic cascade and are sustained with
increasing neuropathology. This is different from the
AsymAD (asymptomatic AD; AD pathology but absent
clinical symptoms) to AD comparison, where astrocyte
abundance does not seem to increase early. In FTLD-
MAPT cases, astrocyte abundance was almost two-fold
higher than late stage CTE IV and AD. To confirm this
finding, we used protein blotting for two astrocyte-
associated proteins: glial fibrillary acidic protein (GFAP)
and hepatic and glial cell adhesion molecule (HEPA
CAM) (Fig. 5B). Both proteins demonstrated significant
enrichment in FTLD-MAPT cases as compared to AD
and CTE IV, which is consistent with both the aggregate
astrocyte abundance (Fig. 5A) and module level data
(Fig. 2B; M20-royalblue). Findings suggest that FTLD-
MAPT has an extreme astrocyte phenotype, although it
is unclear if this represents a nonspecific inflammatory
signature of FTD, a protective mechanism, or a driver of
disease pathogenesis.

Discussion
In this study, mass spectrometry and bioinformatics was
used to provide novel insights across the progressive
stages of CTE neuropathology in human brain. CTE
disease-related changes were compared to other tauopa-
thies, including FTLD-MAPT and AD. There was strong
module preservation between CTE and other neurode-
generative diseases, including modules indicating neuro-
degeneration, inflammation and glial cell activation/
proliferation. The CTE proteome also sits on the tauopa-
thy continuum between control and FTLD-MAPT while
increasing CTE stages demonstrated progressive mo-
lecular phenotypes in multiple WGCNA modules.

Interestingly, the M28-skyblue module and M23-
darkturquoise modules were specific for CTE and dem-
onstrated early enrichment of immunoglobulins and
extracellular matrix proteins, respectively, suggesting
that immunoglobulins and ECM proteins may play roles
in early disease pathogenesis. Similarly, astrocyte protein
modules also demonstrated early enrichment, highlight-
ing that glial cells are involved early and are sustained in
the disease cascade and not just a late-stage epiphenom-
enon. Overall, this study demonstrated that LC/MS-MS
of human brain from increasing stages of CTE can pro-
vide novel insights into CTE and identify overlapping
changes of CTE with other tauopathies.
A significant finding from this study is that the CTE

proteome maintained a neurodegeneration phenotype as
previously observed in AD and other neurodegenerative
disorders [12, 22, 27]. WGCNA profiling identified mul-
tiple overlapping modules with similar directions of
change. The M1-turquoise module, which contained
multiple neuronal proteins, showed a clear decline in
protein expression with increasing CTE stage. In fact,
CTE IV cases had similar average expression to that of
FTLD-MAPT (Fig. 2), indicating that the neurodegener-
ation is likely quite prominent in late stage CTE. Mul-
tiple glial modules (M10-purple, M20-royalblue, M6-red,
M14-cyan, M12-tan) were also identified and demon-
strated increased expression profiles, suggesting activa-
tion or increased inflammation as a component of CTE
disease pathogenesis. Comparison to AD demonstrated
prominent module preservation between CTE and AD
with respect to module membership and function as well
as similar cell subtype abundance. However, when look-
ing at the tauopathy continuum, the CTE stages, includ-
ing late stage CTE IV, fell below the increases seen for
FTLD-MAPT levels in multiple modules and cell sub-
type abundance, especially with astrocytes, suggesting
that FTLD-MAPT has a more prominent glial compo-
nent. When compared to other published findings, this
neurodegeneration phenotype was also observed in the
CTE transcriptome [19], confirming some preservation
of and consistency among the transcriptome and prote-
ome, a relationship that is not always observed. Finally,
multiple modules demonstrated that the eigenprotein
values of CTE cases sit between control and FTLD-
MAPT. Since these are static time points of convenience
from a cross-sectional cohort, CTE on this continuum
does not imply a clear linear association between the
tauopathies. Similarly, FTLD-MAPT is not an outright
model for CTE disease pathogenesis, however, some of
the systems biology findings could be useful for studying
aspects of CTE. This may be especially applicable in
modules where the eigenprotein has increasing values
with increasing CTE stage where FTLD-MAPT also has
a similar direction of change.
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In addition to WGCNA, differential expression versus
control was used to identify individual proteins and
pathways. This approach was limited in CTE I-III due to
lower numbers of significant proteins, but in CTE IV
well over 1000 differentially expressed proteins were
identified. Comparison to AD and FTLD-MAPT demon-
strated more prominent overlap of CTE IV with FTLD
which is an interesting finding. Although co-pathologies
have been described in CTE IV cases (i.e., TDP-43,
amyloid), this significant overlap with the FTLD-MAPT
continues to highlight the close relationship between the
two pure tauopathies. Furthermore, 167 proteins dem-
onstrated significant expression across all 3 disease
states (CTE IV, AD, and FTLD-MAPT). Gene ontology
suggested that this group contained a mix of cytoskel-
eton, transport, and cell projection proteins as well as
neuronal markers. Of note, a previous study evaluating
the proteome of a small sample of CTE IV cases identi-
fied changes in axonal guidance, thus showing some val-
idation and similarity with the cell projection proteins in
this dataset [18]. Interestingly, the overlap between that
study and the CTE IV cases in this study was quite lim-
ited with only 244 proteins out of the 1371 significant
proteins that were identified. In addition, the direction
of change was also not consistent between the overlap-
ping 244 proteins. Almost 10% were increased in our
dataset but decreased in the other, whereas 25% were
decreased in our dataset but increased in the other.
These variances may be accounted for by sample vari-
ability and preparation, case and control selection, and
brain regional differences.
We also compared the CTE total proteome to our pre-

viously published CTE insoluble proteome. Over 4600
proteins were common to both data sets with only 45
demonstrating statistical significance in both. 16/45 lo-
calized to the M1-turquoise module with 29/45 spread
across multiple other modules. The most prominent of
the proteins included ITM2B, NQO1, CRYZ, C4A and
SQSTM1, which have all been described in some context
with neurodegenerative disorders. The NQO1 finding is
especially interesting given the prominent association
with tau pathology and astrocytes and that astrocyte
changes are up early and sustained in the CTE neuro-
pathological cascade. The increase in NQO1 in the total
proteome suggests a protective response by the brain to
manage reactive oxygen species, whereas an increase in
the insoluble proteome could be deleterious (i.e. working
under the assumption that insoluble proteins may be less
functional due to their insoluble/aggregated state).
The CTE proteome, like CTE neuropathological sta-

ging, appears to have unique molecular profiles that
evolve over time. In most cases, CTE stage I had protein
expression levels nearly identical to controls (Figs. 2, 3,
5, S2), which is not surprising given the relatively paucity

of p-tau pathology. One exception to this however was
in the M23-darkturquoise module where CTE stage I
had similar aggregate expression to the other CTE stages
(Fig. 2). The M23-darkturquoise module is significantly
enriched with ECM proteins, suggesting that early
disease-related changes occur in CTE I prior to evidence
for neurodegeneration and glial upregulation and/or
proliferation. CTE II-IV, however, demonstrated neur-
onal loss and increased expression of glial proteins. Al-
though a linear decrease or increase (depending on the
module; neuronal or glial respectively) across the CTE
stages was expected, CTE stage III demonstrated a slight
decrease in the eigenprotein value as compared to CTE
stages II and IV. The cause for this is unclear but might
be due to sampling variability, which like in CTE I, may
still be present even in later stage cases (i.e., despite
more widespread p-tau, there could still be areas of
brain that were sampled with lower levels of pathology
given the patchy nature of CTE).
In addition to identifying progression across the CTE

stages in modules, there were also modules uniquely as-
sociated with CTE, like the M28-skyblue module. This
module demonstrated little change in CTE stage I but a
sharp increase with CTE stage II followed by a slow de-
cline through CTE stages III and IV. Interestingly, this
module contained numerous immunoglobulins, both
heavy and light chains, which was confirmed by im-
munoblotting (Fig. 2). These findings suggest that im-
munoglobulins breach the blood brain barrier in early
CTE stages, a finding supported by neuropathological
evidence of microvascular disruption [31]. It is unclear if
this represents an indirect measure of endothelial dis-
function, as we also observed changes in endothelial cells
in the red module, and/or if these immunoglobulins may
actually be contributing to the disease process. Mecha-
nisms could include either autoimmunity or microvascu-
lar disruptions of the blood brain barrier due to
repetitive traumatic injury [32]. Autoimmune antibody-
mediated encephalopathies may also be associated with
brain injury [33, 34]. Future studies are needed to under-
stand the contribution of immunoglobulins to CTE
pathogenesis.
One surprising finding is that we did not identify en-

richment of expected CTE neuropathology associated
proteins. Given the robust nature of tau pathology in
both CTE IV and FTLD-MAPT cases, we expected that
MAPT would serve as a positive control for the experi-
ment based on previous findings of MAPT enrichment
in the CTE insoluble proteome. MAPT was identified
and localized to neuronal modules (M1-turquoise and
M9-magenta), but did not demonstrate significant en-
richment with differential expression or high kME
values. Indeed as noted above, the eigengene in those
modules actually goes down and not up. This was
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similar for TARDBP (gene symbol for TDP43) which is
another protein that can abnormally accumulate in CTE.
It localized to the M7-black module which is enriched
with RNA binding and nuclear proteins and has an
eigenprotein value that goes up with disease, but
TARDBP did not demonstrate significant enrichment
based on differential expression. Of note, we have ob-
served this issue in other proteomic datasets, including
with AD where proteins that aggregate are significant in
the insoluble proteomes but not the total proteomes.
Amyloid pathology has also been described in later stage
CTE cases [14], however, the CTE cases selected for this
study did not have a significant amyloid pathology
burden.
Finally, the prominent FTLD-MAPT astrocyte abun-

dance was an unexpected finding. Although both CTE
and AD demonstrated similar increased abundance of
both astrocyte and microglia proteins, FTLD-MAPT
astrocyte expression was notably further elevated. Astro-
cytes play multiple roles in the brain, including mainten-
ance of the ECM, synapses, connection to vasculature
and the glymphatic system. Although this could be sec-
ondary to a more robust inflammatory response in
FTLD-MAPT, astrocytes in many tauopathies, including
CTE, FTD, AD, PSP, CBD, and others [35–40], accumu-
late tau pathology. Given that FTLD-MAPT is a pure
tauopathy with underlying genetic mutations in MAPT,
the robust astrocyte phenotype and pathological accu-
mulation of tau in astrocytes might suggest additional
mechanisms are contributing to disease pathogenesis.
There were several limitations to this study including

limited tissue samples of individual brains, low case
number and the cross-sectional nature of sample collec-
tion. Bayesian inference (ComBat) and regression ana-
lysis were used to remove possible confounders,
however, as with any human brain study, there is always
heterogeneity that may limit our ability to detect certain
disease related changes in one cohort versus another.
Comparison to other data sets, either transcriptomic or
proteomic, can also be challenging given that multiple
variables are likely different (case samples, machines,
biochemical isolation techniques). Additional prospect-
ive studies as well as in vivo biomarkers (i.e., plasma,
cerebrospinal fluid) will help refine correlational analyses
as new tools become available in the future.

Conclusions
These novel findings broaden our understanding of pro-
tein and molecular changes that occur in early CTE and
across the CTE progression, including CTE specific
changes in the M23-darkturquoise ECM and M28-
skyblue immunoglobulin modules. The strong overlap of
CTE proteomic changes with those in FTLD-MAPT
suggests that FTLD-MAPT and model systems may be

useful for studying some aspects of CTE pathogenesis,
particularly in those modules where the CTE eigenpro-
tein is on a continuum between control and FTLD-
MAPT. Finally, this TMT proteomic dataset will serve as
an outstanding resource for future studies into CTE,
FTD, AD and other tauopathies.
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Additional file 1 Fig. S1. Violin plots to visualize covariance before (left)
and after (right) Combat. Plots were generated using the
variancePartition package in R. Region, Batch and Platform covarying
distribution tail proteins are indeed improved. Fig. S2. Volcano plots of
proteomic data for tauopathies versus control. -log10 (p-value) is plotted
against the log2 abundance of CTE I, CTE II, CTEIII, CTE IV, FTLD-MAPT
and AD minus control abundance. Red dots are below the p < 0.05 cutoff
(significant) whereas black dots are above the cutoff (not significant). p-
values determined by ANOVA with post-hoc Tukey’s HSD with built-in
correction for multiple comparisons. Fig. S3. Cluster dendrogram and
Eigengene Network for CTE/FTD TMT WGCNA network. Traits are listed
under the Cluster dendrogram and module colors following regression.
The Eigengene network demonstrates a high-level view of relatedness
between the different modules. For example, the M10-purple and M14-
cyan as well as M6-red and M12-tan modules are strongly related as
demonstrated in the hierarchical tree and in the correlational heat map
below. Fig. S4. Box plots for modules from CTE/FTD TMT WGCNA net-
work. Kruskal Wallis p-values and number of proteins (n) are shown for
each of the modules. * designates modules that are both significant with
p-value < 0.05 and demonstrated either increase or decrease in the
eigengene between controls and FTLD-MAPT with CTE cases demonstrat-
ing an intermediate phenotype on the continuum. Fig. S5. CTE/FTLD-
MAPT TMT modules are enriched with specific cell subtype proteins. We
compared the CTE/FTD TMT proteome to the Barres cell subtype mouse
transcriptome database. Fisher’s exact test with Benjamini-Hochberg cor-
rection was utilized. Module number and colors are shown across the
bottom of the figure and cell subtype on the left. p-values are shown in
the red boxes on the heat map. Darker red color indicates a stronger
level of significance for a module to be enriched with a particular cell
subtype from the brain. Comparison to the rodent transcriptome identi-
fied additional neuronal modules and also highlighted modules with
other possible cell types including endothelial cells (M6-red and M12-tan
modules) and oligodendrocyte precursor cells (M23-darkturquoise). Fig.
S6. Gene ontology graphs for all 28 modules. (PPTX 9669 kb)
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Additional file 2. Table S1. Demographics and traits: Cases are grouped
according to diagnosis. Case number is either Emory (letter followed by
numbers) or Boston University (4-digit number). Age, Sex, PMI
(postmortem interval), and brain region are shown for each case. Batch
indicates the TMT batch numbers (1–10). Channel within batch is listed in
2 columns, both as a single number and as a 3-digit number with letter.
Platform designates which mass spectrometer was utilized, either the Fu-
sion 1 or Lumos. Demographic summary chart is also included. Table S2.
ANOVA output for CTE/FTLD-MAPT dataset: ANOVA data for 6713 pro-
teins without missing values across 10 batches. All combinations are
shown between control and neurodegenerative diseases including p-
values and differential expression. Corresponding data from the AD TMT
dataset for each of the proteins is also included in columns BK and BJ.
Table S3. Significantly enriched proteins identified in AD, CTE 4 and FTLD-
MAPT and Gene Ontology for Biological Process, Molecular Function and
Cellular Component. Table S4. kME Values for proteins within each mod-
ule following WGCNA of the CTE/FTLD-MAPT TMT dataset. Table S5. Raw
abundance data from CTE/FTLD-MAPT TMT Proteome. Table S6. WGCNA
module number, color and size.
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