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Abstract

Since its discovery as a primary component in cytoplasmic aggregates in post-mortem tissue of patients with
Amyotrophic Lateral Sclerosis (ALS), TAR DNA Binding Protein 43 kDa (TDP-43) has remained a central focus to
understand the disease. TDP-43 links both familial and sporadic forms of ALS as mutations are causative for disease and
cytoplasmic aggregates are a hallmark of nearly all cases, regardless of TDP-43 mutational status. Research has focused
on the formation and consequences of cytosolic protein aggregates as drivers of ALS pathology through both gain-
and loss-of-function mechanisms. Not only does aggregation sequester the normal function of TDP-43, but these
aggregates also actively block normal cellular processes inevitably leading to cellular demise in a short time span.
Although there may be some benefit to therapeutically targeting TDP-43 aggregation, this step may be too late in
disease development to have substantial therapeutic benefit. However, TDP-43 pathology appears to be tightly linked
with its mislocalization from the nucleus to the cytoplasm, making it difficult to decouple the consequences of nuclear-
to-cytoplasmic mislocalization from protein aggregation. Studies focusing on the effects of TDP-43 mislocalization have
demonstrated both gain- and loss-of-function consequences including altered splicing regulation, over responsiveness
to cellular stressors, increases in DNA damage, and transcriptome-wide changes. Additionally, mutations in TARDBP
confer a baseline increase in cytoplasmic TDP-43 thus suggesting that small changes in the subcellular localization of
TDP-43 could in fact drive early pathology. In this review, we bring forth the theme of protein mislocalization as a key
mechanism underlying ALS, by highlighting the importance of maintaining subcellular proteostasis along with the
gain- and loss-of-functional consequences when TDP-43 localization is dysregulated. Additional research, focusing on
early events in TDP-43 pathogenesis (i.e. to the protein mislocalization stage) will provide insight into disease
mechanisms, therapeutic targets, and novel biomarkers for ALS.
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Background
TDP-43, a central player in amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a fatal neurode-
generative disease characterized by the selective loss of
motor neurons resulting in mortality within an average
of 2-5 years [1]. Though most cases of ALS are sporadic
(sALS), approximately 10% are familial (fALS) in origin.
The identification of these familial cases, now spanning

over 20 genes (reviewed by Nguyen et al. [2]) has
highlighted the importance of various cellular processes
in the pathogenesis of ALS [3]. Indeed, some rare
genetic cases – such as the identification of mutations in
TAR DNA Binding Protein 43 kDa (TARDBP, encoding
TDP-43) have provided crucial insight into common
pathogenic themes in ALS [4–7].
TDP-43 bridges the divide between sporadic and

familial ALS and remains a dominant protein of
interest to understand disease pathogenesis. TDP-43
was identified as a primary component of ubiquiti-
nated and hyper-phosphorylated cytosolic aggregates
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observed from post-mortem tissue of patients with
ALS [8, 9]. This pathological phenomena is considered a
hallmark of ALS as it is observed in approximately 97% of
all ALS patients regardless of the mechanisms of disease
onset, with the notable exceptions of familial ALS (fALS)
caused by mutations in Zn/Cu Superoxide Dismutase 1
(SOD1) and Fused in Sarcoma (FUS) [1, 10–15]. Further-
more, since the first report in 2008, over 50 mutations in
TARDBP have been linked to ALS, further supporting
TDP-43 dysfunction as a critical component in ALS [4–6,
16–18]. Therefore, TDP-43 dysfunction provides common
ground in an otherwise convoluted disease, thus gaining
notoriety and attention from researchers aiming to un-
cover the mechanisms causing TDP-43 aggregation. It is
also important to note that mutations in TARDBP can
also cause frontotemporal lobar dementia (FTLD), which
itself shares some clinical parallels with ALS and displays
TDP-43 pathology in ~ 45% of cases [8, 9, 19–21]. Here,
however, we will focus on TDP-43 dysfunction as a central
mechanism connecting multiple pathways in the context
of ALS.

Main text
TDP-43 function, dysfunction, and aggregation
TDP-43 is a highly conserved and essential DNA/RNA
binding protein belonging to the heterogenous ribonucleo-
protein family that preferentially recognizes UG-rich and
TG-rich motifs of RNA and DNA, respectively [22–26].
TDP-43 is ubiquitously expressed in all cell types and is
predominantly localized to the nucleus, but is also present
in the cytoplasm and mitochondria [27–29]. Importantly,
TDP-43 is highly regulated, particularly by autoregulation
through cryptic exon repression within the 3’UTR of
TARDBP mRNA [30–32]. Deletion of TDP-43 results in
embryonically lethality in mice, and its depletion or overex-
pression causes toxicity or cell death in cell and animal
models [33–48]. Structurally, TDP-43 has a bipartite NLS
sequence in the N-terminal domain upstream of the first
RNA recognition motif (RRM), a nuclear export signal
(NES) within the second RRM, and 5 putative mitochondria
localization signals (M1-M5) of which 3 (M1, M3, and M5)
are functionally characterized [14, 24, 28, 29]. The NLS and
NES are important for shuttling TDP-43 between the
nucleus and cytoplasm, however the involvement of the
NES remains controversial as some studies suggest the NES
is non-functional [27, 49–51]. These motifs reside within
the N-terminal portion of TDP-43 forming a globular
tertiary structure [22, 52, 53]. The C-terminal domain
(CTD) – sometimes referred to as the low-complexity
domain (LCD), glycine-rich region, intrinsically disordered
region (IDR), or prion-like domain (PrLD) – remains rela-
tively unstructured and is thought to be critically important
for TDP-43 toxicity in disease [4, 53, 54]. Not only is the
unstructured nature of the CTD aggregation-prone, but

nearly all ALS-causing mutations on TDP-43 cluster within
this domain [4, 6, 7].
In ALS, truncated forms of TDP-43 are found in ALS

aggregates, more predominantly in the cortex but also to
a lesser extent in the spinal cord [55–59]. The N-
terminally truncated, C-terminal fragments 35 kDa
(CTF35) and 25 kDa (CTF25) are the most notable
“species” of TDP-43 [8, 60–62]. Several species of TDP-
43 exist and are produced through translation of alterna-
tively spliced isoforms or through proteolytic cleavage at
the post-translational level (Fig. 1). CTF35 and CTF25
can be generated through proteolytic cleavage via
Caspases 3 and 7 after asparagine-89, and Caspase 4
after asparagine-174, respectively, and caspase activity is
also modulated by the ALS-linked protein Progranulin
(PGRN) [63–69]. Alternative splicing also contributes to
short forms of TDP-43 where a second splice isoform
was identified through cDNA sequencing encoding an
N-Terminally truncated, ~ 32 kDa isoform of TDP-43
[70]. Additionally, CTF35 fragment can also be gener-
ated through non-canonical splicing in exon 2 and
alternative translational initiation at methionine-85 [59].
C-terminally truncated species can also be generated
through proteolytic cleavage. δ-secretase cleaves TDP-43
after asparagine-291 and -306 to generate a ~ 32 kDa
and ~ 35 kDa species, respectively [71]. The calcium-
dependant cysteine proteases, calpains, also play a role
in TDP-43 cleavage generating ~ 35 kDa and ~ 25 kDa
species associated with cell toxicity [72, 73]. As many of
the truncated species of TDP-43 are of similar molecular
weights many studies simply nest them as “CTF35” or
“CTF25” based on molecular weight without investiga-
tion to the exact species observed which may limit the
understanding of TDP-43 species contribution to ALS as
different species display distinctive properties [59, 63, 74,
75]. The exact functions of these truncated species
remain unclear and are generally thought to be toxic,
but have also been proposed to serve a protective role in
the cell to promote TDP-43 clearance [59, 63, 73, 75–80].
It is important to recognize that other species of TDP-43
CTFs have been identified at 15-16 kDa, 22-25 kDa, and
33-37 kDa in ALS/ALS-FTLD, however due to low levels
of reporting their prevalence in disease remains elusive
[56, 74, 75, 81–85].
There are several features that commonly define aggre-

gates of TDP-43 in ALS. These include the accumulation
of post translational modifications such as ubiquitination,
poly-ubiquitination, and aberrant phosphorylation (some-
times referred to as hyperphosphorylation) of full length
TDP-43; specifically phosphorylation of TDP-43 at serine
409 and 410 (S409/410) is widely used as an indicator of
aggregated TDP-43 [8, 9, 56, 58, 61]. TDP-43 aggregates
in ALS also accumulate full length and lower molecular
weight species of TDP-43 and stain positive for the ALS-
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linked ubiquitin-binding autophagic adaptor Sequesto-
some 1 (SQSTM1, also known as p62) [8, 55–60, 82,
86–89].
The exact mechanisms mediating the formation of

TDP-43 aggregates remain elusive. In ALS aggregates,
TDP-43 was found to colocalize with important markers
of stress granules (SGs) [90–95]. SGs are membraneless
organelles that form in the cytoplasm comprised primarily
of ribonuclear proteins and mRNA stalled in translation
(Reviewed by Wolozin & Ivanov [96]). The formation of
SGs occurs through a process called liquid-liquid phase
separation (LLPS) where SG proteins and associated
mRNA will de-mix into a liquid phase distinct from the
cytosol [97, 98]. Two prominent proteins that are indica-
tive of a SG are Ras GTPase-activating protein-binding
protein 1 (G3BP1) and TIA1 cytotoxic granule-associated
RNA binding protein (TIA1, [99–102]). Interestingly,
mutations in the LCD of TIA1 – a domain that plays a
key role in LLPS – cause ALS, further supporting the in-
volvement of the cellular stress response in disease [103].
TDP-43 plays an important role in regulating the

dynamics of SG formation and disassembly where loss of
TDP-43 reduces SG formation [104, 105]. Treatment of
cells with cell stressors used to study the formation of
SGs, such as oxidative stressors (e.g. Sodium Arsenite),
osmotic stressors (e.g. D-Sorbitol) or heat shock, results
in the formation of phase-separated TDP-43 structures
in the cytoplasm. Nevertheless, there remains a debate

in the field as to whether cytoplasmic TDP-43 structures
indeed colocalize as a component of SGs or are mostly dis-
tinct from these bodies [90, 91, 93, 94, 103, 104, 106–109].
Under prolonged stress conditions, phase-separated TDP-
43 transitions from a liquid-like droplet to form gel-like
inclusions inhibiting their ability to dissociate [110–112].
These gel-like inclusions eventually accumulate
several hallmarks the TDP-43 inclusions seen in ALS
[61, 108, 109, 111].
Clearance of TDP-43 remains an important biological

process tightly coupled with cytotoxicity. The ubiquitin-
proteasome system is disrupted by ALS-linked mutations
in Ubiquilin-2 (UBQLN2), and is important for degrading
full-length TDP-43 in addition to CTF-35 and CTF-25
[113–120]. Inhibiting this mode of clearance in primary
neurons results in a greater accumulation of cytoplasmic
TDP-43 aggregates compared to other cell stressors [113,
121, 122]. Recently a gain-of-function mutation in CYLD
Lysine 63 Deubiquitinase (CYLD) was identified to cause
ALS and FTLD [123]. The authors demonstrated in
mouse primary neurons that this mutation increased deu-
biquitinase activity, decreased autophagy function and
caused TDP-43 mislocalization, along with TDP-43 aggre-
gation in the human brain. Autophagy also plays a role in
clearing aggregated forms of TDP-43 and is linked to ALS
through mutations in autophagy-related proteins SQST
M1, TANK Binding Kinase 1 (TBK1) and Optineurin
(OPTN) [87, 113, 124–128]. Of particular importance, the

Fig. 1 Structure of TDP-43 including functional domains and identified short-species. M1,M3,M5 (Red): Mitochondria Localization Sequences; NLS
(Turquoise): Bipartite Nuclear Localization Sequence; RRM1,RRM2 (Blue): RNA Recognition Motif; NES (Light Purple): Controversial Nuclear Export
Signal; NES (Dark Purple): Nuclear Export Signal; CTD (Grey): C-Terminal Domain; Yellow Box: Alternate Amino Acid Sequence (N-Terminus of
“Isoform 2” and C-Terminus of “Short TDP-43”); Dashed Lines: Cleavage Sites
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sequestration of SQTSM1 into TDP-43 aggregates, one of
the aforementioned hallmarks of ALS aggregates, leads to
the inhibition of proteasome function in addition to
autophagy, further promoting the accumulation of toxic,
misfolded proteins in cells [129, 130].
The reduced clearance of aggregates can lead to

another toxic gain-of-function mechanism: blocking
intracellular transport. Aggregates are observed through-
out the cytoplasm, often in the soma, but are also
observed in the axons and dendrites [131, 132]. Inhibit-
ing axonal transport is a common feature in ALS and
particularly relevant as mutations in genes involved in
cellular transport, namely KIF5A or DCTN1, cause ALS
[133–139]. This may provide some insight into selective
neuron vulnerability in ALS as motor neuron axons are
particularly long and susceptible to changes in trafficking
dynamics [139]. Additionally, TDP-43 plays an important
role in axonal trafficking of mRNA granules, a function
lost when it is mutated or aggregated [131, 132, 140–142].

Additional avenues of TDP-43 toxicity
Studies have suggested that not all aggregates are equal
in their ability to cause toxicity. Similar to other neuro-
degenerative diseases, large protein aggregates such as
amyloid-like structures may not be as toxic as smaller
ones that preceded them such as oligomers [143–147].
However, describing aggregates simply as “large” or
“small” is a gross oversimplification as there are thought
to be multiple species of aggregates based on the proper-
ties of protein misfolding which may mediate altered
toxicity at different stages [53, 147–150]. Although
TDP-43 aggregation is apparent in various modes of
cellular dysfunction, critics argue that TDP-43 aggre-
gates may simply be an artifact of neuronal degeneration
observed at the time of post-mortem analyses [14, 151].
In cell and animal models, TDP-43 aggregation is not ne-
cessarily essential to cause cellular toxicity [14, 152–157].
This would suggest that TDP-43 aggregates may act as a
bystander alongside a cell death pathway or work in parallel
with an alternate mechanism to promote toxicity. Further-
more, TDP-43 aggregates are not exclusive to motor
neurons, they can also be observed in glia and muscle tissue
of ALS patients and are observed to spread in a prion-like
manner throughout the brain [8, 9, 15, 57, 158–162]. Yet in
ALS, motor neurons selectively degenerate suggesting that
the presence of TDP-43 aggregates may not necessarily
drive cell-death. Clearly, TDP-43 aggregation is not the only
feature at play.
In the presence of ALS-causing mutations, TDP-43 often

demonstrates an altered nucleocytoplasmic distribution
(increased cytosolic, decreased nuclear) in comparison to
its wild-type counterpart [153, 163]. This may suggest that
TDP-43 dysfunction can promote cytoplasmic accumula-
tion. However, it remains difficult to differentiate whether

cellular phenotypes may be caused by mislocalization or
the mutation itself. Studies have exploited the NLS
sequence on TDP-43 through genetic manipulation to
shed light on the consequences of mislocalization inde-
pendent of mutations or aggregate formation as in the cell
stress models. In cellular models, expression of TDP-
43ΔNLS resulted in depletion of endogenous TDP-43WT

from the nucleus and promoted the formation of insoluble
inclusions in the cytoplasm [29]. In a transgenic mouse
model expressing human TDP-43ΔNLS under a neurofila-
ment heavy chain promoter for brain and spinal cord
expression, mice displayed a rapidly progressive motor
phenotype, loss of body mass, neuromuscular denervation,
and spinal motor neuron loss [155]. These mice also exhib-
ited high levels of phosphorylated TDP-43 aggregates
throughout the brain and spinal cord. Interestingly, the
authors of this study describe progressive endogenous
nuclear TDP-43 depletion followed by aggregate formation
in the brain and to a lesser extent the spinal cord. This
infers that TDP-43 mislocalization can promote nuclear
depletion and is likely upstream of aggregation. Much
of the toxicity, however, was attributed to the high level
of transgene expression in the animal model which can
function to exacerbate the effect of induced TDP-43
mislocalization by inducing cellular stress from TDP-43
overexpression.
The cellular stress model, particularly oxidative stress

(e.g. via sodium arsenite treatment), to induce SGs and
TDP-43 inclusions is a widely used model to study TDP-
43 mislocalization and aggregation [96, 164]. Yet systemic
stress makes it difficult to differentiate phenotypes associ-
ated with TDP-43 mislocalization and accumulation to
general cellular stress responses. To overcome this limita-
tion, a novel model expressed TDP-43 fused with an
Arabidopsis thaliana-derived Cryptochrome 2 (CRY2)
protein to allow for optogenetic instigation of LLPS [108,
109, 111, 165]. In contrast to prolonged sodium arsenite
treatment, prolonged LLPS through optogenetic stimula-
tion in wild-type conditions results in TDP-43 inclusions
within the nucleus absent of ALS hallmarks including
hyperphosphorylation and SQSTM1 sequestration [108].
However, prolonged induction of LLPS on TDP-43ΔNLS or
mildly stressed cells inducing a mild mislocalization
resulted in cytoplasmic inclusions positive for ALS-like
hallmarks. Additionally this model demonstrated in vitro
that there is a relatively short time course between initial
induction of LLPS to aggregate formation (within hours)
and inevitable cell death in less than 6 weeks [108, 111].
This suggests a slippery slope between aggregate forma-
tion and neurodegeneration, thereby inferring that thera-
peutically targeting the aggregation step may be too late to
have substantial impact on disease progression (Fig. 2).
Increasingly, the field is focusing on mechanisms outside
of TDP-43 aggregation to identify early drivers of disease.
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The contribution of TDP-43 mislocalization to cellular
toxicity in ALS
Increasing evidence suggests that nuclear-to-cytoplasmic
mislocalization of TDP-43 induces toxicity through both
loss- and gain-of-function mechanisms. Classic roles for
TDP-43 pertain to mRNA maturation in the nucleus,
specifically acting as a repressor of alternate splicing,
cryptic exon splicing, and alternate polyadenylation [25,
166–173]. Loss of these functions through mislocaliza-
tion or depletion have widespread deleterious effects on
the cell [170, 173]. For example, recently it was discov-
ered that loss-of-TDP-43 decreases microtubule out-
growth specifically in motor neurons through premature
polyadenylation of the Stathmin2 (STMN2) transcript
[167, 174]. TDP-43 is also involved in mRNA transport,
a mechanism that is dysregulated within ALS, as well as
local translational regulation [131, 175]. Disruption of ei-
ther of these mechanisms may effectively trap TDP-43
in the cytoplasm, inhibiting its normal functions. This
hypothesis is substantiated by transcriptomic evidence
showing that diseased neurons and mouse models of
ALS demonstrate increases in alternative splicing events,
cryptic exon inclusion and alternate polyadenylated
sequences [168, 176–178]. Recently, the CTD of TDP-43
was found to mediate its recognition of G-quadruplex
structures on RNA, facilitating subcellular transport to
neurites for local translation and nucleocytoplasmic
trafficking [179, 180]. Interestingly, C9ORF72 hexanu-
cleotide repeat expansion results in G-quadruplex
formation, however the relationship between TDP-43
and C9ORF72 in the context of these structures has not
yet been explored [181–183]. Additionally, RNA binding

abilities of TDP-43 have been linked to TDP-43 toxicity,
though some studies suggest that RNA binding is a
protective mechanism [111, 184–189]. An important
finding suggests that TDP-43 RNA binding regulates its
solubility and lack of RNA promotes aberrant inclusions
in the cytoplasm [111, 189]. Mislocalization of TDP-43
may inhibit proper RNA trafficking to the cytoplasm
and subsequently promote an environment where TDP-
43 is less soluble.
The nuclear functions of TDP-43 are not limited to its

RNA binding functions; TDP-43 also binds DNA at TG-
rich regions to regulate gene expression and exon
skipping [25, 190]. For example, TDP-43 normally binds
to the promoter of Vacuolar Protein Sorting 4B (VPS4B)
to repress its transcription [191]. Loss of function due to
mislocalization results in a loss of VPS4B repression
leading to an increased interaction with the ALS-linked
protein Charged Multivesicular Body Protein 2B (CHMP2B)
thereby disrupting dendritic recycling-endosome trafficking
and reducing ALS-linked ERB-B2 Receptor Tyrosine Kinase
4 (ERBB4) surface expression [191–193]. Another nuclear
role for TDP-43 is in its response to genomic double
stranded breaks (DSBs) which accumulate in ALS patients
[163, 194–200]. Mislocalization of TDP-43 through an
ALS-causing mutation impair the nuclear localization
of DSB-repair proteins and result in the accumulation
of DNA damage promoting cell death [163, 194, 201,
202]. Loss of nuclear TDP-43 can also affect chromatin
accessibility leading to altered gene expression [203, 204].
Not all consequences of TDP-43 mislocalization are

attributed to nuclear loss-of-function as TDP-43 has
defined roles in the cytoplasm including stress granule

Fig. 2 TDP-43 (Red) mislocalizes (partially or completely) from the nucleus to the cytoplasm due to genetic and/or environmental factors causing
deleterious effects to the cell. Prolonged mislocalization promotes aggregation. Under physiological conditions the cell can clear small TDP-43
aggregates through proteasomal, endosomal, or autophagic degradation. Prolonged The accumulation of TDP-43 aggregates disrupts
physiological functioning (e.g. sequestration of SQSTM1) thereby exacerbating pathology and promoting neuronal degeneration. Early
interventions normalizing TDP-43 localization hold the potential to prevent cellular demise
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regulation, mRNA stability, translational regulation, local
synaptic RNA regulation, mRNA trafficking, microRNA
regulation, and regulation of autophagy (extensively
reviewed by Birsa et al. [205]). The exact consequences
of increased cytoplasmic TDP-43 on these cellular func-
tions remains largely unknown as most studies focus on
protein aggregation resulting in an effective loss-of-
TDP-43 function. TDP-43 is cleared through both the
ubiquitin-proteasome system and lysosomal degradation
pathways (highlighted above) [206–208]. Interestingly,
TDP-43 mislocalization through overexpression or
pathogenic mutations causes vacuole fragmentation,
causing cellular disruption in addition to altering its own
clearance [206]. Additionally, mislocalization may prime
cells to respond abnormally in certain circumstances. As
TDP-43 can readily undergo phase separation, the
increase in cytoplasmic density biophysically promotes
LLPS to occur (reviewed by Boeynaems et al. [98]). This
is apparent in models of cellular stress when TDP-43 is
mislocalized as there is a significant increase in the
cellular stress response including rapid formation of
stress granules and TDP-43 granules [109, 111, 165].
Therefore, mislocalization may sensitize the cell to re-
spond disproportionately to a cellular stress than it may
normally be less responsive to. This was recently exem-
plified in a study where induced pluripotent stem cell
(iPSC)-derived motor neurons, but not astrocytes, with
mislocalized TDP-43 showed an increase level of cell
death when seeded with TDP-43 aggregates from patient
tissue [209].
Although we have focused strictly on nuclear and

cytoplasmic TDP-43, it is important to highlight a role
for TDP-43 at mitochondria. TDP-43 misregulation
through genetic manipulation of the NLS, presence of
an ALS-causing mutation, or overexpression result in an
increased localization to mitochondria [28]. Within the
mitochondrion, mutant TDP-43 also preferentially binds
mitochondria-resident mRNA, presumably causing
Complex 1 disassembly through altered expression of its
components [28]. Nevertheless, this finding has been
debated, as studies in cell and animal models of ALS
suggest that mitochondrial energetics and metabolism
are unaltered [210]. The important contribution of
mitochondria in ALS however remains a focus due to
mutations in the mitochondrial protein SOD1 as a
primary genetic cause of fALS [11]. However, it is inter-
esting to consider that fALS caused by mutations in
SOD1 rarely present with TDP-43 pathology [15].
Together, these data suggest that both loss- and gain-

of-TDP-43 function mediated by nuclear-to-cytoplasmic
mislocalization cause systemic cellular dysfunction in
ALS. This recognition calls for a better understanding of
the native subcellular functions of TDP-43 and the con-
sequences of mislocalization independent of aggregation.

Potential mechanisms driving TDP-43 Mislocalization
It is apparent that TDP-43 mislocalization on its own is
toxic and can contribute to many of the cellular charac-
teristics observed in ALS. However, the mechanisms
governing TDP-43 localization remain largely elusive.
Identifying the mechanisms driving mislocalization will
be crucial to identify key mechanisms that are misregu-
lated early in disease and can be therapeutically targeted
to prevent TDP-43 pathology all together (Fig. 2). These
mechanisms can cover a range of biological aspects
intrinsic to TDP-43 function as well as systemic cellular
function [202].
As previously described, TDP-43 contains several

subcellular-regulatory sequences including an NLS, the
controversial NES, and mitochondrial localization
sequences M1, M3, and M5. ALS-causing mutations how-
ever rarely reside within these motifs (with the exceptions
of A90V in the NLS, and mutations between amino acids
294-300 in M5), and TDP-43 mislocalization exists outside
of TARDBP mutations, suggesting extrinsic factors from
TDP-43 govern its subcellular localization [4, 6, 28, 151,
211–222]. Understanding the contribution of these
domains to TDP-43 biology remains an important step to
understand disease. To this end, targeted mutagenesis of
TDP-43 NLS sequence suggests that TDP-43 is actively
transported into the nucleus [49]. Furthermore, knock-
down of nuclear import machinery (e.g. Importin-β) impair
TDP-43 nuclear localization, increasing the cytoplasmic
abundance of TDP-43 [223]. Mutagenesis of the NES does
not alter TDP-43 localization suggesting the NES is non-
functional, however manipulation of export machinery (e.g.
Exportin 1) yields conflicting results; thus there may be
overlapping mechanisms of TDP-43 export [49–51].
Nevertheless, nuclear pore trafficking is important to some
extent for normal TDP-43 localization. Perhaps unsurpris-
ingly, in ALS, nuclear pore trafficking is disrupted, espe-
cially in cases of patients bearing mutations in TARDBP or
C9ORF72 [223–228]. Aggregates of TDP-43 sequester
nuclear pore proteins which would likely exacerbate TDP-
43 mislocalization and accumulation into the protein
aggregates [224]. In cases of C9ORF72 repeat expansion,
dipeptide repeats (DPRs) generated through repeat-
associated non-AUG (RAN) translation of the expanded
hexanucleotide (CCCCGG) repeat blocks and disrupts the
nuclear pores leading to TDP-43 pathology [229–235].
TDP-43 mislocalization was also shown to exacerbate
RAN translation of C9ORF72 DPRs and could contribute
to nuclear pore defects in conjunction or independently
from DPRs [235]. This study suggests that C9ORF72
neurotoxicity may be mediated by TDP-43, and that TDP-
43 mislocalization independent of C9ORF72 DPRs can dis-
rupt nuclear pore function. Thus, nuclear pore complex
disruption is an important part of TDP-43 pathogenesis,
however, this mechanism may not always precede TDP-43
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mislocalization. These studies warrant further investigation
into mechanisms that may hinder TDP-43 translocation
into the nucleus as potential aggravators of disease.
It is clear that regulation of TDP-43 is crucial for

proper function, yet relatively little is known about how
TDP-43 is regulated. Post translational modifications
play an important role in regulating protein function
(Reviewed by Buratti [236]). Along with phosphorylation
at S409/410, toxic TDP-43 generally displays an over-
abundance of phosphate modifications leading to the
general consensus that phosphorylation of TDP-43 is
toxic [58, 61, 237–245]. However, phosphorylation may
play a protective role and promote normal function
within the cell [246]. For example, phosphorylation of
TDP-43 at T153 and T155 by Mitogen Activated Protein
Kinase Kinase (MEK) regulates TDP-43 localization to
the nucleolus after heat shock, suggesting a normal
maintenance role for phosphorylation in TDP-43 biology
[247]. Roles for other post translational modifications
such as acetylation, poly-ADP ribosylation (PARylation),
oxidation, and ubiquitination have been described sug-
gesting that post translational modifications are likely
important for normal TDP-43 function and may have
unappreciated roles regulating subcellular localization
[112, 236, 248–250].
The role of TDP-43 cleavage into CTF35 and CTF25 is

gaining traction as potential contributors of normal and
toxic TDP-43 function. CTF35 for example assembles into
SGs and plays roles in RNA processing, however, CTF25
does not localize to SGs and remains diffuse throughout
the cell [251]. Cytoplasmic localization of CTF35 and
CTF25 may be due to the partial and full loss of the
bipartite NLS upon cleavage, respectively [59, 63, 252].
Additionally, mutations in TDP-43 and CTF35 also in-
crease mitochondrial localization to the mitochondrial
matrix and intermembrane space, respectively [252]. This
study highlights that full length TDP-43, not CTF35, may
cause oxidative stress, in turn increasing TDP-43 cleavage
and promoting mislocalization and aggregation. As these
fragments are observed in TDP-43 aggregates, increased
in disease, and may induce neuronal toxicity, they remain
an interesting mechanism that may provide insight into
TDP-43 biology and ALS [64, 77, 251–253]. Several stud-
ies have identified alternative spliced isoforms of TDP-43,
yet few have been functionally characterized [22, 30, 254].
Recently, a C-terminally truncated alternatively spliced
isoform of TDP-43 (“short TDP-43” or sTDP-43) was
characterized and found to encode a functional NES
within the alternative C-terminus (Fig. 1) resulting in a
more cytoplasmic localization compared to TDP-43 [255].
Interestingly, sTDP-43 was upregulated in response to
increased neuronal activity, induced mislocalization of en-
dogenous TDP-43, and caused neurotoxicity. Additionally,
the sTDP-43 isoform was abundant in TDP-43 aggregates

from ALS patients’ spinal cord and tissue samples. Clearly,
focusing exclusively on full length TDP-43 is not encom-
passing to understand its contribution to ALS. Further
understanding the biological roles and consequences of
cleaved and alternately spliced forms of TDP-43 will
provide novel insight into ALS pathogenesis and aid our
interpretations of TDP-43 contributions to disease.

Approaches to study TDP-43 Mislocalization to better
understand ALS
As with TDP-43 aggregates, interpreting the extent of
TDP-43 mislocalization in patient tissue remains
challenging as observations are made post-mortem at
the late stage of disease. It may be implied that mislocali-
zation of TDP-43 has occurred where there are cytoplas-
mic TDP-43 aggregates, however the mechanism(s) of
biogenesis of this pathogenic hallmark remain(s) elusive.
Future studies should systematically analyze the extent of
TDP-43 mislocalization in addition to aggregation in hu-
man tissue to gain a better understanding of TDP-43
pathogenesis. Relying on key late-stage hallmarks such as
phosphorylation of TDP-43 or SQSTM1 sequestration
may limit the understanding of early pathogenesis and
may lead to the dismissal of models that do not recapitu-
late late-stage pathology. Though studies have not system-
atically analyzed the extent of TDP-43 mislocalization
throughout the central nervous system, data suggest that
TDP-43 mislocalization correlates with aging in the vul-
nerable motor neurons of mouse spinal cord tissue [256].
Further understanding the basic biology and general
extent of TDP-43 mislocalization throughout the central
nervous system will help gain insight into the cell-type
specific vulnerabilities to key stages of TDP-43 pathology.
There is a need for developing better models that re-

capitulate important aspects of ALS, including behav-
ioural, pathological, and molecular phenotypes to further
understanding of disease. Although most cases of ALS
display TDP-43 proteinopathy, only some transgenic
mouse models, and fewer endogenous mouse models,
recapitulate TDP-43 pathology and ALS-like phenotypes
(ALS mouse models recently reviewed by De Giorgio
et al. [257]). An interesting exception is in mice bearing
mutations in Senataxin (SETX), a poorly understood
protein thought to act as a DNA/RNA helicase which
cause a rare juvenile-onset form of fALS and sALS
[258–260]. Both mouse models bearing transgenic and
endogenous mutations in SETX recapitulate TDP-43
mislocalization, aggregation, and ALS-like phenotypes
observed in patients [258]. Within TARDBP models,
many models that display TDP-43 proteinopathy rely on
overexpression approaches. With the advent of genome
engineering (e.g. via CRISPR/Cas9) in animals and
iPSCs, models have pushed towards studying endogen-
ous TDP-43, moving away from the heavy reliance on
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transgenic and toxic overexpression models. Several
knock-in mouse models expressing mutant TDP-43 dis-
play a range of phenotypes depending on the mutation,
but most behavioural phenotypes are quite subtle and
occur at a very-late stage [254, 257, 261, 262]. For
example, the TDP-43Q331K knock-in mouse model does
not display significant motor phenotype whereas the
TDP-43Q331K transgenic mouse display some, but not
robust, motor deficits [31, 263]. This difference may be
due to synergistic effects of the TDP-43 mutation and
overexpression in the transgenic model. There are sev-
eral iPSC models for ALS (recently reviewed by Hawrot
et al. [264]) however many of them do not recapitulate
key hallmarks of ALS pathology. Neurons derived from
TDP-43A90V patient iPSCs display TDP-43 mislocaliza-
tion (likely due to disruption of the NLS), TDP-43M337V

results in slight cytoplasmic granular staining of TDP-43
in iPSC-derived motor neurons, and mislocalization of
TDP-43 is observed in TDP-43M337V patient iPSC-derived
astrocytes [265–267]. The difficulty in recapitulating
TDP-43 pathology may suggest that there are additional
mechanisms contributing to ALS in conjunction with
TDP-43 mutations, such as changes associated with
human aging or chronic stress on the cell. Attempts to
exacerbate ALS pathology or behaviour deficits in physio-
logically relevant models may help to elucidate more
complex mechanisms driving disease.
Although protein aggregation has gained the most

attention to understand ALS and identify novel thera-
peutic targets, studying the earlier components of TDP-
43 mislocalization may provide an important level of
insight into the disease onset and progression. However,
studying subcellular localization comes with its own
challenges ranging from limitations in technology to
convoluted interpretations. TDP-43 mislocalization is
primarily studied using cellular fractionation methods or
microscopy-based methods. Developing and optimizing
more reliable methods to quantitatively analyze TDP-43
subcellular localization will enhance our understanding
of critical regulators of TDP-43. For example, identifying
nuclear-, mitochondrial-, and cytosol-specific post trans-
lational modifications will allow for the generation of
antibodies facilitating more rapid and quantifiable detec-
tion of mislocalized TDP-43. These would parallel the
antibodies raised against phospho-S409/410 TDP-43
which function as a gold-standard for detection of TDP-
43 aggregates through microscopy [61]. The generation
of reliable tools will help to resolve potential issues with
subjectivity and enhance reproducibility to understand
and characterize the consequences of TDP-43 mislocali-
zation. Although much weight is placed on DNA se-
quencing for modern diagnosis, this technique offers
relatively little diagnostic ability in the cases of complex
diseases such as ALS. Additionally, DNA sequencing is

generally limited to germline mutations and does not
account for potential mosaicism which may arise during
an individual’s lifetime which could lead to ALS [268].
For example, an ALS patient was reported to express
TDP-43 bearing the ALS-causing Q331K mutation spe-
cifically in spinal cord neurons, but not in the occipital
lobe suggesting this ALS-causing mutation is somatic
and thus not likely identified through germline genome
sequencing [163]. Biomarkers serve as a potential diag-
nostic feature in addition to providing insight into dis-
ease progression. Current biomarker candidates such as
Neurofilament Light Chain are increased in ALS patients
and may provide insight into disease progression, but is
non-specific to ALS and only provides foresight by about
12 months before symptoms occur [269–273]. As TDP-
43 mislocalization is a central feature in ALS and
biomarkers based on phenotypes associated with mislo-
calization may provide the specificity and foreshadowing
required for early diagnosis.
Integrative “omic” approaches will be important to

identify robust biomarkers capable of diagnosis and pro-
viding early insight into disease progression. Determin-
ing the direct consequences of TDP-43 mislocalization
as they pertain to ALS remains a challenge due to the
incomplete understanding of TDP-43 function and
general dysfunction associated with disease. Therefore
unbiased, systems-based approaches will be important to
understand TDP-43 biology surrounding mislocalization.
Bulk RNA sequencing has provided great insight into
transcriptomic changes in ALS mediated by TDP-43.
This technology, however, has limited abilities to detect
subtle biologically significant changes that may be cell-
type specific. Incorporating single cell RNA sequencing
or methods of enriching populations of interest (i.e. flow
cytometry, spatial transcriptomics) will help target cell-
type specific changes affected by TDP-43 mislocalization
in animal and cell models that can translate to human
disease [274, 275]. As TDP-43 plays important roles in
regulating alternative splicing, alternate polyadenylation,
and cryptic exon inclusion, deep RNA sequencing will
help identify rare toxic species of RNA that can give
insight into ALS progression or lead to biomarker for
early disease [276, 277]. Interestingly, mislocalization of
FUS was recently identified in iPSCs derived from pa-
tients bearing mutations in Vasolin Containing Protein
(VCP) in addition to spinal cords from sALS patients
[278]. FUS mislocalization was suggested to occur due
to binding of aberrantly retained introns, namely in the
SFPQ gene. The authors further suggest FUS mislocaliza-
tion may be a more common hallmark of ALS than previ-
ously recognized however more evidence is required.
Proteomic approaches such as immunoprecipitation-mass
spectrometry or proximity-labeling mass spectrometry
(e.g. APEX Proteomics or BioID) comparing wild-type to
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mislocalized TDP-43 will provide insight into locale-
specific interactors [224, 279, 280]. Additionally, cross
analysis with proteomic data from ALS tissue may provide
insight into potential toxic protein-protein interactions as
a result of TDP-43 mislocalization serving as early
therapeutic targets. New technologies are also focusing on
the subcellular localization of RNA such as APEXseq
[281–283]. Enhancing this technology with datasets that
monitor Protein-RNA binding (e.g. CLIP-seq), could
greatly enhance our understanding of which transcripts
are bound by TDP-43 in various subcellular compart-
ments by comparing nuclear, cytoplasmic, and mitochon-
dria TDP-43-RNA interactions [284]. Integrating these
systems-based approaches will help to uncover novel
markers of TDP-43 mislocalization and elucidate path-
ways leading to cellular demise in ALS.

Conclusions
Increasing evidence suggests that TDP-43 aggregation is
not a single driver of pathology in ALS. TDP-43 mislo-
calization plays significant roles in cellular dysfunction
independently and in parallel to aggregation. Increas-
ingly the field has begun to focus on understanding the
regulatory mechanisms of TDP-43 mislocalization. To
this end, as protein mislocalization is likely more readily
reversible than protein aggregation, understanding the
mechanisms regulating TDP-43 subcellular localization
will be critical for therapy development. Specifically, a
better understanding of TDP-43 localization regulators
will surely shed light on novel therapeutics that have the
potential to be more effective earlier in disease, more
generalizable to most ALS cases, and more informative
biomarkers for diagnosis and analysis of progression for
ALS. Lastly, given that TDP-43 pathology can also coexist
with other aggregate-prone proteins, such as C9ORF72
DPRs, Tau, α-Synuclein, and poly-Q expanded Hunting-
tin, insight into the role of TDP-43 mislocalization in its
pathogenic function will serve to better understand path-
ology and modes of degeneration across a spectrum of
neurodegenerative diseases [184, 285–288].
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