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Pineal gland dysfunction in Alzheimer’s
disease: relationship with the immune-
pineal axis, sleep disturbance, and
neurogenesis
Juhyun Song

Abstract

Alzheimer’s disease (AD) is a globally common neurodegenerative disease, which is accompanied by alterations to
various lifestyle patterns, such as sleep disturbance. The pineal gland is the primary endocrine organ that secretes
hormones, such as melatonin, and controls the circadian rhythms. The decrease in pineal gland volume and pineal
calcification leads to the reduction of melatonin production. Melatonin has been reported to have multiple roles in
the central nervous system (CNS), including improving neurogenesis and synaptic plasticity, suppressing
neuroinflammation, enhancing memory function, and protecting against oxidative stress. Recently, reduced pineal
gland volume and pineal calcification, accompanied by cognitive decline and sleep disturbances have been
observed in AD patients. Here, I review current significant evidence of the contribution of pineal dysfunction in AD
to the progress of AD neuropathology. I suggest new insights to understanding the relationship between AD
pathogenesis and pineal gland function.
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Background
Alzheimer’s disease (AD) is the most common neurode-
generative disease and is characterized by progressive
loss of memory function and other neurobehavioral
manifestations [1, 2]. The pathological hallmarks of AD
have been reported, including extracellular senile pla-
ques, which are mainly composed of β-amyloid (Aβ) and
intracellular neurofibrillary tangles (NFTs) [1]. Current
research reported that at present there are more than 47
million AD patients globally, and that this number will
be projected to triple to nearly 150 million by 2050 [3].
The development of AD is accompanied by changes in
lifestyle factors, such as sleep disturbance [3]. Unlike
other neurodegenerative diseases, AD patients show
sleep disturbances from an early phase [4]. Several stud-
ies suggest that the sleep disturbance in AD is an im-
portant diagnostic indicator for predicting AD progress

[5, 6]. Due to this evidence, the relationship between
pineal gland dysfunction and AD neuropathology is
emerging as a new concept in understanding AD path-
ology, and suggests that circadian rhythms that control
sleep disturbances are regulated by the pineal gland [7].
The pineal gland is a circumventricular organ that is

derived from the embryonic forebrain, and it is the
major part of the epithalamus, along with the habenular
nuclei [7]. The pineal gland has been reported to secrete
melatonin and directly control circadian rhythms in
humans [8]. Melatonin is the main hormone produced
by pineal gland, and is known to involved in antioxidant
defense, immune responses, neuroprotective effects,
anti-amyloid effects, and anti-apoptotic activity [9, 10].
Recently, studies have found lower levels of melatonin in
AD, and noted that the decreased melatonin secretion
triggers cognitive impairment [8, 11, 12]. The secretory
capacity of the pineal gland is directly proportional to
the pineal parenchymal volume and pineal gland func-
tion [13, 14]. Pineal calcification, also referred to as
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“brain sand”, is caused by hydroxyapatite deposition in
the pineal gland [15, 16]. Certain studies have reported
the reduced pineal volume and have found calcification
in AD [17, 18]. Even though these relationship between
pineal gland function and AD neuropathology were
markedly found through various researches, the import-
ance about that has not been highlighted until recent
years.
Here, I review the recent evidences that how pineal

dysfunction, by pineal volume reduction and pineal cal-
cification, is involved in the AD pathogenesis.

Pineal gland dysfunction in Alzheimer’s disease
Pineal gland is an endocrine organ localized in the hu-
man brain, and is present in a variety of weights and
sizes among individuals [19]. Several studies demon-
strated that the morphology and function of pineal gland
are influenced by various physiological conditions [20].
Generally, the pineal gland has been reported to
synthesize and secrete melatonin as a neuroendocrine
hormone, which can regulate circadian rhythms in
humans [21, 22]. In order to produce melatonin, the
transcription of aralkylamine N-acetyltransferase (Aanat)
and phosphorylation of AANAT are controlled on a daily
basis by the pineal gland, and its activity is modulated by
photoperiod seasonal change [23]. Furthermore, the
phosphorylation of AANAT by protein kinase A (PKA)
is mediated by the stimulation of pinealocytes, and ul-
timately, contributes to the production of melatonin
[24]. The pineal gland consists primarily of pinealocytes,
a few microglia, and astrocytes [25]. A portion of the
pineal gland is exposed into the cerebrospinal fluid
(CSF) of the third ventricle [26]. A large number of can-
aliculi of the pineal gland open directly into the CSF of
the third ventricle, resulting in high melatonin level in
the CSF of the third ventricle [27, 28].
Melatonin production is directly controlled by the in-

ternal circadian timer, which is located in the suprachi-
asmatic nucleus (SCN) [29] and also known as the
“pacemaker” [30]. Membrane receptors of melatonin
have been identified in the SCN [31, 32], and the signal
transduction pathways through melatonin receptor 1
and 2 (MT1 and MT2) increase the expression of clock
genes, including Period circadian regulator 1 (Per1) [33,
34]. Therefore, the melatonin action through melatonin
receptors contributes to the circadian rhythms. The vol-
ume of the pineal gland is correlated with the function
of the pineal gland, because pinealocytes which produce
melatonin mainly compose pineal gland. One study
demonstrated that the volume of the pineal gland is also
significantly reduced in patients with insomnia, and
noted that lower pineal gland volumes contribute to
sleep disorders [18].

In AD patients, the level of melatonin in CSF and
blood serum was decreased compared to normal sub-
jects and decreased level of melatonin finally leads to
the aberrant diurnal rhythm [35–37]. Some studies dem-
onstrated that reduced level of melatonin in AD brain
contributes to the cognitive decline in AD patients and
also is linked to the pineal gland volume [35, 37, 38].
Furthermore, the expression of melatonin receptor such
as MT2 was decreased in the hippocampus of AD pa-
tients [39, 40]. The level of melatonin was observed the
reduction of it in compared with normal subjects and
also the aberrant size of pineal gland was found in AD
patients. As mentioned, the reduction of melatonin level
is important feature in AD patients. Some actions of
melatonin in AD have been reported by various re-
searchers. In AD, melatonin could efficiently inhibit tau
hyperphosphorylation [41] and attenuate levels of se-
creted soluble amyloid beta precursor protein (APP)
from neurons [42]. Melatonin administration attenuated
Aβ generation and deposition in AD mice [43, 44].
Moreover, melatonin suppressed the peroxynitrite-
induced inhibition of choline transport in neuronal pro-
teins from synaptosomes and synaptic vesicles [45]. In
AD, melatonin attenuated the accumulation of Aβ pla-
ques that trigger pro-inflammatory responses and oxida-
tive stress in the brain, causing cognitive impairment
[46, 47]. Therefore, melatonin action may be critical to
improve neuropathogenesis in AD based on upper
findings.
Even though melatonin is secreted in pineal glands,

the amount of melatonin synthesized by extrapineal or-
gans was greater than the amount of melatonin secreted
by the pineal gland [48]. However, the melatonin synthe-
sized by extrapineal organs could not replace the func-
tion of melatonin produced by pineal gland, such as the
regulation of circadian rhythms [49], the neuroprotec-
tion, and anti-inflammatory responses [50, 51]. There-
fore, the melatonin produced by the pineal gland is
important and irreplaceable in suppressing neuropatho-
genesis in AD brains. Regarding previous consequences,
the dysfunction of pineal gland on neuropathology is an
important issue to be investigated in AD brain.
Pineal calcification is calcium deposition in pineal

gland, which has long been reported in humans [52, 53].
The occurrence of pineal calcification depends on envir-
onmental factors, such as sunlight exposure [54], and re-
sults in the decrease of melatonin production [55, 56].
Pineal calcification occurs when calcareous deposits
form within the connective tissue of the pineal gland
stroma, and it is similar to calcification observed in the
habenular commissure and choroid plexus [57]. Unlike
kidney stones, the main component of pineal calcifica-
tion is hydroxyapatite [Ca10(PO4)6(OH)2], and the Ca/P
molar ratio in pineal calcification is similar to that found
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in the enamel and dentine of teeth [58]. Morphological
changes associated with pineal calcification include
changes in the production of melatonin, due to the de-
creased function in the pineal gland parenchyma, and re-
sults in decreased pineal volume, reduced melatonin
production in humans [14], and altered sleep patterns
[59]. A few studies reported that pineal calcification [13,
14] and pineal cysts [60] trigger severe sleep disorders by
disturbing melatonin secretion in the pineal gland. In clin-
ical studies, patients with primary insomnia showed re-
duced plasma melatonin levels during the daytime [61].
Considering some studies, pineal calcification contrib-

utes to the reduction of melatonin production in
humans that is directly associated with the development
of neurodegenerative diseases, such as AD [54, 56, 62].
Previous researches demonstrated that the reduction of
melatonin levels in CSF and serum leads to the aggrava-
tion of AD neuropathology [37, 38, 63]. In AD, reduced
pineal size, pineal gland dysfunction, and pineal calcifi-
cation have been reported [38], and decreased melatonin
levels have been detected in serum [64] and urine [65].
A recent computed tomography study clearly observed
pineal calcification in AD patients [56].

Regarding these observations, pineal dysfunction re-
duces melatonin production, and, ultimately, contributes
to diverse AD neuropathologies (Fig. 1a). However, the
detailed mechanisms on pineal gland calcification and
pineal gland dysfunction in AD are not fully understood
yet. The mechanism related with pineal gland dysfunc-
tion in AD should be investigated to find therapeutic so-
lution to cure AD pathologies, given that the pineal
gland dysfunction is strongly linked to the AD
pathologies.

Impaired immune-pineal axis by pineal gland dysfunction
and AD
The pineal gland, as part of the circumventricular organ,
interacts with various molecules present in the blood
and CSF [66]. Inflammatory mediators, such as cyto-
kines, regulate the function of the pineal gland, leading
to the suppression (i.e., secretion of proinflammatory cy-
tokines) or potentiation (i.e., secretion of glucocorti-
coids) of melatonin synthesis [67]. Melatonin, derived
from serotonin (5-HT), is synthesized in a rhythmic
manner by the pineal gland [67]. Melatonin acts as an
antioxidant to protect cells, and it exerts chronobiotic

Fig. 1 The schematic diagram of pineal gland dysfunction in AD, immune-pineal axis, and the role of melatonin in neurogenesis. a Pineal
calcification and reduced pineal volume causes pineal dysfunction, which are commonly observed in AD brain. The pineal dysfunction leads to
the reduction of melatonin level, subsequently results in sleep deficit. b Immune cells could regulate NF-κB activation and promote the
production of melatonin in pinealocytes through CREB-AANAT signaling. c The decreased melatonin level leads to the impairment of
neurogenesis in AD, because reduced melatonin level contributes the reduction of BDNF and GDNF expression, which are known as boosters
in neurogenesis
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functions [22]. Moreover, melatonin is an important free
radical scavenger that suppresses deleterious oxidant ac-
tivities and contributes to the control of the redox state
of cells [68].
Induced extrapineal synthesis of melatonin does not

contribute to pineal diurnal rhythms [67]. Extrapineal
synthesis of melatonin is responsible for the circulation
of the endocrine and paracrine-produced melatonin
[67]. Several neurotransmitters, including glutamate,
acetylcholine, vasoactive intestinal peptide, substance P,
and pituitary adenylate cyclase-activating peptide are as-
sociated with direct central modulation of the melatonin
synthesis process [21]. Melatonin synthesized in the
gastrointestinal tract in a nonrhythmic manner has a
protective role in the gastric mucosa against stress con-
ditions [69].
With regard to one research, the regulatory role of

melatonin contributes the immune defense response
[70]. In addition, the synthesis of melatonin by extrapi-
neal tissues has been clearly shown to be related to
defense responses, such as activation of polymorpho-
nuclear and mononuclear cells in the blood [71],
peritoneum [72], and colostrum [73]. The immune-
competent cells, such as phagocytes, are activated to
produce melatonin upon injury stimuli [74, 75]. Acti-
vated mononuclear and polymorphonuclear cells
synthesize melatonin, and subsequently contribute to
the recovery process by suppressing oxidative stress and
by boosting macrophage phagocytic activity [73]. In
summary, immune cells could produce melatonin in
blood and this melatonin could regulate immune re-
sponses against stress condition.
Innate immune responses require the recruitment of

leukocytes to the site of the lesion. Moreover, the main-
tenance of circulating leukocytes and the termination of
migration during the resolution of the immune response
is an important process [76]. Melatonin contributes to
the regulation of leukocyte migration to injury sites [76,
77]. Therefore, melatonin is able to control immune re-
sponses by inhibiting the activation of inflammatory sig-
naling and by regulating the proliferation and activation
of immune competent cells [78, 79]. Recent study re-
ported that melatonin synthesized by macrophages and
microglia could suppress their immune activity and in-
crease their phagocytic capacity, characteristics associ-
ated with an anti-inflammatory, the M2-like phenotype
[80]. As mentioned, melatonin may be an important
anti- inflammatory mediator in inflammatory responses
and immune actions.
Furthermore, melatonin inhibits the activation of nu-

clear factor kappa B (NF-κB) as a key transcription fac-
tor that mediates the inflammatory response [81]. In the
central nervous system (CNS), NF-κB is associated with
both innate and acquired immune responses, and it is

necessary for neuronal survival [82]. NF-κB modulates
neurite outgrowth [83], determines cell fate [84], circuit
formation, and brain tissue homeostasis [85]. In the pin-
eal gland, NF-κB is translocated into the nucleus of cells
during the daytime [86]. The nocturnal production of
melatonin is regulated by several cytokines that interfere
with the NF-κB pathway [67]. Melatonin suppresses NF-
κB activation in macrophages [87], T cells [88], and
neuronal cells [89].
Additionally, some studies have shown that melatonin

plays an anti-inflammatory role that is mediated by the
inhibition of NF-κB nuclear translocation [90, 91]. Mela-
tonin boosts the phagocytic activity of mononuclear
cells, and the expression of the interleukin 2 (IL-2)
through MT1 and MT2 membrane receptors [92]. Con-
sidering one study, the promoter of the gene that codes
for AANAT includes κB sequences [67]. A current study
demonstrated that the immune-pineal axis orchestrates
the timing of leukocyte migration and alters monocyte
phenotype through the NF-κB pathway [93]. The mecha-
nisms of melatonin synthesis in the rat pineal gland has
been known to be related with AANAT activation by
regulating pCREB [94, 95], and by activating NF-κB [96].
There are some researches proving that the NF-κB tran-
scription factor could modulate a phosphorylation of
CREB in cellular mechanism [97, 98]. According to these
evidences, the activation of NF-kB in pinealocytes
through immune cells at AD brain results in the activa-
tion of Aanat gene, leading to the production of mela-
tonin (Fig. 1b).
Melatonin reduces the rolling and adherence of leuko-

cytes and neutrophils to the endothelial layer, decreasing
vascular permeability [77, 99]. Melatonin is known to in-
hibit endothelial nitric oxide synthase activation in blood
vessels and, subsequently, reduces vascular inflammation
[100]. The adhesiveness of neutrophils to endothelial cells
inversely correlates with the melatonin concentration in
blood [101]. Endothelial cells decreased the expression of
adhesion molecules, including platelet endothelial cell
adhesion molecular-1 (PECAM-1) and intercellular cell
adhesion molecular-1 (ICAM-1), when melatonin levels
were increased at night [101]. One study demonstrated
that the reduced expression of pro-inflammatory proteins
and the increase in anti-inflammatory proteins, such as
CD180, in endothelial cells was caused by the increased
melatonin production at night [102]. In terms of chrono-
biotic pattern, melatonin also has chrobiotic antioxidant
and anti-apoptotic properties [103]. Therefore, melatonin
also could control the vascular homeostasis related with
immune responses.
The melatonin synthesized by both pineal gland and

extrapineal glands coordinate with each other to regulate
immune molecules, including pathogen-associated mo-
lecular patterns (PAMPs), danger-associated molecular
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patterns (DAMPs), toxic Aβ, heat-shock proteins, and
tissue debris [67]. Several studies described this bidirec-
tional communication process between the pineal gland
and the immune response as “the immune-pineal axis”
[67, 104, 105].
In AD, pineal dysfunction leads to decreased mela-

tonin production [37, 38], suggesting that melatonin
production is positively linked to promoting neuropro-
tection [106, 107]. A current study reported that Aβ was
observed to interact with toll like receptor (TLRs) in the
pineal gland of AD patients, and that the interaction
subsequently triggers the synthesis of pro-inflammatory
cytokines, and inhibits the expression of Aanat and syn-
thesis of melatonin through the NF-κB pathway [108].
The increase of the pro-inflammatory cytokine tumor
necrosis factor (TNF), caused by reduced melatonin pro-
duction is considered as biomarker of AD progression
[109]. In AD, pineal gland calcification leads to reduced
total melatonin excretion [54], and the resulting mela-
tonin deficit aggravates the progress of AD [110].
Ultimately, the production of melatonin in immune cells

is organically linked to neuropathogenesis organically the
melatonin secreted from pineal gland. To sum up, pineal
gland dysfunction triggers the reduction of melatonin, and
leads to the aggravation of inflammation, the abnormal
immune response, and the impairment of vascular
homeostasis, involving in the neuropathology in AD.

Sleep disturbance by pineal gland dysfunction and AD
The effect of sleep in human has been reported to be
beneficial in many aspects, such as tissue repair, im-
provement of memory consolidation, and the preserva-
tion of neuroimmune-endocrine integrity [111, 112].
Sleep is a vital phenomenon that is generally divided into
two phases, sleep with rapid eye movements (REM) and
sleep without rapid eye movements (non-REM) [113].
REM sleep is known to be important in memory func-
tion, neurogenesis, and the regulation of blood-brain
barrier homeostasis [114], whereas non-REM sleep is as-
sociated with the release of diverse hormones and is
characterized by decreased blood pressure [115].
Sleep disorders occur in 25–66% of AD patients [116].

Current studies showed that sleep disturbance leads to
cognitive decline [117, 118], and increases the risk of
AD by increasing Aβ burden. [119, 120]. Previous re-
searches demonstrated that the increase of inflammation
in the brain with chronic sleep deprivation could boost
the risk of neurodegenerative disease onset [121, 122].
Other studies demonstrated that aggravated inflamma-
tion caused by sleep disturbance triggers cognitive de-
cline and promotes the onset of AD [123, 124]. Further,
sleep quality in AD patients worsens with AD progres-
sion [125]. The association between cognitive decline
and impaired sleep quality has been reported in AD

models with increased Aβ deposition [126, 127]. One
brain positron-emission tomography (PET) study men-
tioned that sleep impairment was related with increased
Aβ load in healthy subjects [128]. Furthermore, several
studies found that lower sleep quality was associated
with an increased brain Aβ load in normal brains [129,
130].
Several studies suggested that sleep dysfunction worsens

AD pathology and increases the risk of developing demen-
tia [119, 131]. Furthermore, a recent study demonstrated
that reduced glucose uptake in the hypothalamus leads to
sleep impairment and can be used as a CSF biomarker of
AD [132]. Another study reported that transgenic amyloid
precursor protein/presenilin 1 (APP/PS1) mouse model of
AD showed significant hypothalamic abnormalities prior
to memory loss [133]. In AD, sleep disturbance is linked
to physiological changes in the suprachiasmatic nucleus
(SCN) and pineal gland [12]. Considering previous re-
ports, the sleep impairment is commonly observed in AD
patients and is regarded as the strong booster related with
the aggravation of AD pathologies.
Recently, reduced melatonin due to lower pineal gland

volume has been observed in AD brains, establishing the
relationship between lower pineal gland volume and
cognitive impairment in AD patients [134]. Several stud-
ies suggested that reduced pineal volume results in in-
somnia, and is significantly associated with sleep
disturbances in AD [18, 134, 135]. Therefore, the pineal
gland dysfunction by lower pineal gland volume contrib-
utes directly to the sleep deficit in AD patients. Taken
together, the decrease in melatonin secretion due to pin-
eal gland dysfunction triggers insomnia, sleep disturb-
ance, and poor sleep quality, and ultimately, results in
memory loss in AD.

Impaired neurogenesis by pineal gland dysfunction and
AD
Neural plasticity is an important feature of brain func-
tion, because continuous adaptation in changing condi-
tions is essential to preserve homeostasis [136].
Neurogenesis is a major component of plasticity in re-
sponse to CNS damage and occurs at sites of brain
injury [136]. Neural stem cells (NSCs) are multipotent
and are present in the sub-ventricular zone (SVZ) of
the forebrain and the subgranular zone (SGZ) of the
hippocampus [137]. Neurogenesis in the hippocampus
is important for the maintenance and recovery of
cognitive function [138], suggesting that the circuitry
of the hippocampal dendrite gyrus outputs to the dor-
sal CA3, is associated with the encoding of time in
new memories [139].
The latest study reported that melatonin contributes

to structural plasticity in axons of the hippocampal
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dentate gyrus [140]. Judging from some studies, mela-
tonin induces the proliferation and survival of NSCs in
the midbrain and the hippocampus [141, 142]. A couple
of studies also reported that melatonin promotes neuro-
genesis in the hippocampus of C57BL/6 mice [143, 144].
It was also assumed that the melatonin effect on NSCs
was mediated by neurotrophic factors, such as brain-
derived neurotrophic factor (BDNF) and glial cell-
derived neurotrophic factor (GDNF) [145]. In brief,
melatonin has a cardinal effect in the improvement of
neurogenesis and synaptic plasticity (Fig. 1c).
Recent research demonstrated that the thalamus, in-

cluding the pineal gland, has emerged as a host site for
such a neurogenic niche [146, 147]. A number of studies
report that the hypothalamus has the ability for neuro-
genesis [148, 149]. Latest studies suggest that NSC pro-
liferation and neurogenesis in the thalamus are
increased when the day length decreases [150, 151]. It
was found that hypothalamic neurogenesis is more acti-
vated depending on the day length [147], and neurogen-
esis is related to daylight and melatonin secretion [151].
NSC proliferation in the SVZ was independent of sea-
sons and was shown to be influenced by reduced mela-
tonin secretion through pinealectomy in animal models
of AD [152].
In AD brains, neurogenesis in hippocampal areas is at-

tenuated compared to the normal brains [153]. De-
creased neurogenesis and neuronal loss was observed in
the hippocampus and cortex areas of AD mice [154,
155], and the positive correlation between memory loss
and level of neurogenesis in AD has been reported [155,
156]. Additionally, the impaired neurogenesis in the den-
tate gyrus of AD mice has been reported by decreased
numbers of doublecortin, a new neuronal marker, posi-
tive cells [155, 157]. Neurogenesis is impaired by re-
duced melatonin secretion in AD. Therefore, the pineal
gland dysfunction is related with the impaired neurogen-
esis, leading to memory loss in AD brain.
Ultimately, pineal gland dysfunction, which reduces

melatonin secretion, may be one of the crucial factors
that causes impaired neurogenesis in AD. Finding the
way to improve pineal dysfunction may be a key to cir-
cumvent impaired neurogenesis in AD brain.

Conclusion
The progression and onset of AD is complicated, as the
disease is related with other organs and is affected by
various factors. Here, I have summarized the recent find-
ings of pineal dysfunction in AD pathogenesis.
I highlight three points in this review (Fig. 1). First,

pineal dysfunction involving reduced pineal volume and
pineal calcification in AD contributes to the impaired
immune-pineal axis. Melatonin secreted from the pineal
gland and extrapineal organs are important mediators of

communication between pineal gland and the immune
system in AD. Second, pineal dysfunction in AD results
in reduced melatonin production, which finally triggers
sleep disturbance and poor sleep quality in AD.
Third, pineal dysfunction in AD is a critical factor in
the inhibition of neurogenesis in AD brains. Pineal
dysfunction leads to the reduced hippocampal neuro-
genesis and hypothalamic neurogenesis. Finally, that
these alterations due to pineal dysfunction are linked
to memory loss in AD.
Recently, there are some interesting approaches to

overcome pineal gland dysfunction. Epigenetic trial may
be a solution to solve the pineal dysfunction in AD, sug-
gesting from recent study that the function of pineal
gland could be epigenetically regulated by valproic acid
(VPA) that up-regulates the expression of melatonin re-
ceptor in brain [158]. Moreover, the regulation of non-
coding RNAs such as miR-325-3p may be a solution to
control the secretion of melatonin by modulating the ex-
pression of Aanat genes in pineal gland, suggesting that
the interaction between miR-325-3p and the 3’UTR of
Aanat mRNA 3′-UTR control the activation of Aanat
gene expression in pinealocytes [159].
Based on the significant consequences stated above, I

highlight the need for the further study of pineal gland
function in AD and to find more effective solution to
overcome pineal gland dysfunction in AD with various
points. Hence, I assume that this review may provide
new concepts in understanding the importance of pineal
gland function on diverse AD neuropathology.
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