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Abstract

Currently, over five million Americans suffer with Alzheimer’s disease (AD). In the absence of a cure, this number
could increase to 13.8 million by 2050. A critical goal of biomedical research is to establish indicators of AD during
the preclinical stage (i.e. biomarkers) allowing for early diagnosis and intervention. Numerous advances have been
made in developing biomarkers for AD using neuroimaging approaches. These approaches offer tremendous
versatility in terms of targeting distinct age-related and pathophysiological mechanisms such as structural decline
(e.g. volumetry, cortical thinning), functional decline (e.g. fMRI activity, network correlations), connectivity decline
(e.g. diffusion anisotropy), and pathological aggregates (e.g. amyloid and tau PET). In this review, we survey the
state of the literature on neuroimaging approaches to developing novel biomarkers for the amnestic form of AD,
with an emphasis on combining approaches into multimodal biomarkers. We also discuss emerging methods
including imaging epigenetics, neuroinflammation, and synaptic integrity using PET tracers. Finally, we review the
complementary information that neuroimaging biomarkers provide, which highlights the potential utility of composite
biomarkers as suitable outcome measures for proof-of-concept clinical trials with experimental therapeutics.

Alzheimer’s disease and the need for biomarkers
Alzheimer’s disease (AD) is the most common cause for
dementia [1]. Although there are various subtypes, the
most common form is amnestic and severely impacts epi-
sodic memory [2]. With the exception of AD cases caused
by genetic mutations (i.e. familial AD), age is the greatest
risk factor. Currently, one in ten people 65 years of age or
older have AD. In less than 60 years, life expectancy in the
United States has increased by 9 years and the population
of people 65 years of age and above has increased by 34
million people (16 million to 50 million). An estimated 5.5
million Americans currently suffer with AD and in the
absence of effective treatment or a cure, this number
could increase to 13.8 million by 2050 [1].
A critical goal of biomedical research is to establish indi-

cators of AD during the preclinical stage (i.e. biomarkers)
allowing for early diagnosis and intervention. These
biomarkers are quantifiable characteristics of biological
processes related to Alzheimer’s disease that are linked to
clinical endpoints and thus can be used as surrogates for
the disease process. Over the last decade, numerous

advances have been made in developing biomarkers for
AD using neuroimaging approaches. These approaches
offer tremendous versatility in terms of understanding and
targeting pathophysiological mechanisms such as structural
decline (e.g. loss in volume, cortical thinning), functional
decline (e.g. fMRI hyperactivity, altered network connectiv-
ity), white matter decline (e.g. diffusion anisotropy reduc-
tion, white matter pathology), and pathology aggregation
(e.g. amyloid and tau PET).
In this review, we survey the state of the literature on

neuroimaging approaches to developing novel biomarkers
for AD, focusing on amnestic, late-onset (LOAD). We
discuss advantages and limitations of each method and
suggest that combining imaging modalities to create “com-
posite biomarkers” may be a productive approach. These
biomarkers may provide utility as potential outcomes
for proof-of-concept clinical trials with experimental
therapeutics.

Pathology and spatiotemporal spread
Neuropathological staging criteria of AD-related changes
originally indicated that although the distribution of beta-
amyloid (Aβ) neuritic plaques varies widely, neurofibrillary
tangles and neuropil threads show a distribution pattern
that allow for the differentiation of six stages [3]. Stages I-
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II show alterations that are confined to the transentorhinal
region, which spread to limbic (Stage III-IV), and finally
to isocortical regions (Stage V-VI).
More recently, pathology studies have indicated that

intraneuronal aggregations of the protein tau seem to pre-
cede the extracellular deposition of Aβ by approximately a
decade [4, 5]. Notably, non-argyrophillic tau lesions are
thought to first appear in the locus coeruleus prior to the
appearance of argyrophillic tau lesions caused by neurofib-
rillary tangles (NFTs) within the transentorhinal region of
the cerebral cortex [6]. Intraneuronal inclusions consisting
of aggregated protein tau appear in selectively vulnerable
cell types that appear to spread in a regionally and tem-
porally specific manner that is independent of proximity
to affected area [7].
A key advantage of using brain imaging techniques is

that they operate at a higher level of spatiotemporal sensi-
tivity than fluid biomarkers, thereby offering an opportun-
ity to stage progression of the disease. Thus far, imaging
using combinations of in vivo PET and MRI techniques
have shown progression patterns that largely recapitulate
staging based on post-mortem histology [8].

Biomarker-based staging of preclinical
Alzheimer’s disease
Identifying early biomarkers prior to the onset of disease
symptoms is of critical importance to the field. It is thought
that early intervention (i.e. during the pre-symptomatic
stage) will be far more effective than later intervention,
once the neurodegenerative cascade has set in. Historically,
AD has been viewed as a disease of clinical symptoms in
the clinical setting. By classifying AD in this manner, its
diagnosis would likely include a considerable amount of
non-AD cases as defined by its pathological characteristics.
In 2011, the National Institute on Aging and the Alzhei-
mer’s Association (NIA-AA) Working Group put forth
staging criteria that incorporate neuroimaging biomarkers
[9]. The authors presented a conceptual framework and
operational research criteria for preclinical AD where Stage
1 is characterized by the presence of asymptomatic β-
amyloidosis, or increased amyloid burden. Stage 2 includes
neuronal injury and evidence of neurodegenerative change.
Lastly, stage 3 additionally includes evidence of subtle cog-
nitive decline, which is not yet sufficient for clinical diagno-
sis. The new research framework proposed by the NIA-AA
defines AD pathologically with the use of biomarkers,
which could potentially differentiate cases that clinically re-
semble AD such as hippocampal sclerosis. This framework
additionally allows for staging using either fluid or neuro-
imaging biomarkers. However, certain features, which may
be critical for the pathophysiology of the disease, could
only be detected using imaging techniques. Hippocampal
hyperactivity on task-activated functional MRI is one such
example. Ewers et al. [10] and Leal and Yassa [11] include

this feature in staging the disease and highlight that it
seems to appear within a temporally constrained window.
Jack and Holtzman [12] proposed several time-

dependent models of AD that take into consideration
varying age of onset as well as co-morbid pathologies. Out
of the five biomarkers proposed, three were imaging bio-
markers (amyloid PET, structural MRI, and FDG PET).
Importantly, anatomical information from imaging bio-
markers provides crucial disease-staging information. This
implies an advantage for imaging biomarkers over fluid
biomarkers, because imaging can distinguish the different
phases of the disease both temporally and anatomically.
The NIA-AA research framework has since been

updated [13, 14] to focus on A/T/N criteria, first proposed
by Jack and colleagues [15] and pave the path to more per-
sonalized diagnosis and treatment. The new framework
highlights the value of positive amyloid biomarkers (A) to
specifically indicate AD-related processes. Pathological tau
(T) is only taken to indicate an AD-related process in the
presence of amyloid positivity. Finally, (N) biomarkers are
thought to provide nonspecific information about neur-
onal injury and neurodegenerative change.
The combination of amyloid with other biomarkers

can then be used to stage AD progression. Additionally,
according to this new framework, the presence of tau
and neurodegeneration in the absence of amyloidosis is
considered evidence for non-AD pathological processes.
An important aspect of the 2018 NIA-AA working
group framework is the flexibility to include additional
biomarkers in future iterations. In our survey of neuro-
imaging methods, we will make the case that there are
several methods for measuring A, T, and N pathologies,
but also discuss new approaches to imaging additional
biomarkers which may be integrated in biomarker
models in the future (e.g. neuroinflammation).

Imaging Amyloid Burden
Given the critical importance of identifying amyloid path-
ology in the brain as an early stage of AD progression,
positron emission tomography (PET) scans with radiola-
beled tracers specific to Aβ have become fairly common-
place in the research setting. The pathological Aβ peptide
is generated by abnormal proteolytic processing of a
physiological constituent of the nerve cell membrane, the
amyloid precursor protein (APP). PET scans operate on
the principle that positron-emitting radioligands accumu-
late in a region of interest. The positively-charged posi-
trons encounter negatively-charged electrons, which
results in annihilation releasing gamma photons that are
detected by scintillation detectors [16]. This method can
be used to image Aβ in vivo via radiolabeled tracers, which
are injected via a bolus injection, followed by a waiting
period to allow for uptake by brain tissue.
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Amyloid tracers were developed via the modification of
the histological dye, thioflavin-T, which has a high affinity
to fibrillar and cerebrovascular amyloid, is cleared rapidly
from normal brain tissue, and crosses the blood-brain bar-
rier in sufficient amounts to be imaged in vivo [17]. Amyl-
oid burden imaging was first explored with carbon-based
tracers [11C] such as Pittsburgh Compound B (PiB), but the
development of fluorine-based tracers [18F] has allowed for
a wider availability of these longer lasting tracers facilitating
widespread use. These tracers include florbetapir, florbeta-
ben, and flutmetamol, which have an extended half-life
(~110 minutes) as compared to [11C] tracers (20 minutes).
Most amyloid imaging studies point to the parietal corti-

ces as the earliest sites of amyloid deposition [18]. Notably,
these regions (posterior cingulate, restrosplenial cortex,
precuneus) are heavily interconnected with the medial
temporal lobes (MTL) [19], which are sites for early aggre-
gation of tau pathology. Thus, the progression of the dis-
ease may be influenced by the anatomical and functional
connectivity between the posterior cortices and the MTL.
Amyloid tracers additionally bind to cerebrovascular amyl-
oid. Cerebral Amyloid Angiopathy (CAA) is a feature of
AD, is characterized by cortical vascular amyloid deposits,
and is associated with cortical tissue loss, vascular dysfunc-
tion and cognitive decline [20, 21]. CAA severity is also as-
sociated with allocortical microinfarcts located in the
hippocampal CA1 subfield [21]. Therefore, combining
amyloid-PET with other imaging modalities may provide
clues into the pathological sequence of events.
While amyloid tracers have produced similar qualitative

findings across studies, institutions, and tracers, they vary
in quantitative outcome measures of tracer retention. In
an effort to standardize quantitative amyloid imaging mea-
sures, the Centiloid Project Working Group was formed
in 2012 during the Alzheimer’s Imaging Consortium pre-
meeting to the Alzheimer’s Association International Con-
ference. The group works to harmonize across [11C] PiB
and [18F] tracers using a percentile-based normalized
system to address the variability of the method and tracer
of each analysis (scales the outcome to a 0 to 100 scale).
Despite these efforts, there still remain differences among
tracers and in their sensitivity. Other factors that differ
across studies include acquisition duration, target and ref-
erence region choice, partial volume correction, scanner
differences, as well as differences in reconstruction algo-
rithms and methods of attenuation correction.
A major limitation to amyloid imaging and studies of

amyloid burden in general is a poorly understood relation-
ship with cognition. It has been argued that since changes
in amyloid may occur earlier than cognitive symptoms,
such a relationship may not be expected. However, in the
absence of a strong relationship, it remains unclear
whether amyloid burden, in and of itself, is pathological or
whether it is a sentinel for another pathology that may

have more severe consequence on neural integrity. Under-
standing the latter is critical, especially as numerous clin-
ical trials have targeted amyloid pathology as an attempt
to modify the disease process.
Several studies have recently attempted to shed light on

the relationship between amyloid and cognitive impair-
ment [22–24]. These studies have found evidence for a link
between Aβ accumulation and cognitive outcomes that ap-
pears to be mediated by neurodegenerative changes (e.g.
cortical thinning and hippocampal volume loss). However,
Aβ accumulation does not appear to be a precondition for
neurodegenerative decline. For example, Wirth et al. [25]
demonstrated that neurodegenerative changes could
significantly predict cognitive performance in the absence
of Aβ pathology. Most recently, it has been shown that
subthreshold amyloid deposition predicts tau deposition in
aging [26] suggesting that amyloid binding varies on a con-
tinuum. Despite its limitations, amyloid PET has been a
tremendously informative tool in AD biomarker research,
not only for staging disease progression, but additionally to
select individuals for participation in biomarker-based clin-
ical trials during the asymptomatic phase (secondary pre-
vention trials), such as the A4 trial [27].

Imaging Tau Burden
Tau is a neuronal protein that is produced throughout the
nervous system and promotes self-assembly of axonal mi-
crotubules and stabilizes them [28]. Homeostatic shifts be-
tween a less highly phosphorylated state, where tau is
bound to axonal microtubules, and a more highly phos-
phorylated state, where tau is soluble in the axoplasm, are
enabled by axonal kinases and phosphates [29]. Changes
in the equilibrium can give rise to conformational changes
that lead to aggregation and changes in solubility that al-
ters the functional role of tau and allowing for it to be-
come resistant to autophagy and other mechanisms that
regulate the removal of tau [30, 31].
Soluble hyperphosphorylated tau aggregates into spher-

ical units of nucleation that then assembles linearly and
forms ribbons of protofibrils with a β-sheet core. The ab-
sence or recurrence of twists enables classification of
hyperphosphorylated tau into straight filaments, paired
helical filaments (PHF) with regular twists, or irregularly
twisted filaments. Recent evidence also suggests that tau
pathology may spread trans-synaptically, in a prion-like
fashion [32, 33] and that a critical component of the
pathological cascade may be the conversion of tau mono-
mers from an inert to a seed-competent form [34].
Development of selective tau PET tracers started as early

as 2002 with quinolone and benzimidazole derivatives for
their affinity to bind to PHFs. The cooccurrence of PHFs
with Aβ provided an additional challenge as Aβ has the po-
tential to also bind to the ligand, but a 25 fold selectivity
for PHF over Aβ has been achieved [35]. Notably, the
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presence of other tauopathies have been described [36].
Although the 3R/4R isoform of tau that these tracers
binds to overlaps with other tauopathies, the spatial
distribution of tracer binding may help discriminate
between pathologies [35].
Unlike Aβ plaque deposition, human post-mortem stud-

ies indicate that NFT density correlates with neurodegener-
ation and cognitive impairment [37, 38]. Several tau PET
studies have shown a close relationship between patterns
of tau deposition and atrophy measures [39–41] and recent
work has shown memory scores to be strongly correlated
with medial temporal tau tracer uptake, whereas whole-
brain measures showed weak associations with memory
and MTL atrophy, supporting the notion that regional tau
measures have greater sensitivity to early neurodegenera-
tion and memory decline compared to global measures of
tau [39, 42]. Older age is also associated with binding in
the medial temporal lobe (MTL), the extent of which is as-
sociated with memory deficits [43]. Consistent with prior
histopathological reports, PET detection of tau outside the
MTL is associated with the presence of cortical Aβ binding
even at a subthreshold level [26, 44]. Overall, tau imaging
appears capable of detecting regionally specific patterns of
tau deposition that follow Braak and Braak staging of NFT
pathology [8, 39, 42]. However, disentangling primary age-
related tauopathy (PART) and AD will be challenging since
there is considerable overlap in the medial temporal lobe.
Of the available tracers, [18F]-1451 (or T-807) has been

characterized the most extensively and has demonstrated
increased uptake and signal detection in patients with
prodromal AD [35].
While tau PET’s reliability is still under investigation, test-

retest reliability of the tracer was recently examined in a
sample of 21 subjects (including MCI and AD patients) and
showed low variability within subject. Intra-class correlation
of SUVR’s was above 0.92 across all regions tested, which
indicates high test-retest reliability and suggests that this
method can be used to detect changes in tau burden over
time [45]. Despite its many advantages, [18F]-1451 and simi-
lar tracers appear to bind to some dense core plaques [46],
melanin-containing structures [47, 48], and minimal bind-
ing to TDP-43 [47]. This has called into question the utility
of these first-generation tracers to specifically bind to tau
pathology. Second generation tracers, such as [18F] MK-
6240 fare better in terms of off-target binding, but large-
scale studies with these tracers are still lacking [49].
A major strength of tau PET imaging is the ability to re-

capitulate histology-based Braak and Braak staging of tau
pathology. While longitudinal studies remain necessary to
validate the approach, initial cross-sectional data suggest a
medial temporal to isocortical progression [50]. Limita-
tions of tau PET imaging are largely similar to amyloid
PET imaging and include issues with harmonization
across studies and tracers and choice of reference region.

Imaging Neural Injury and Neurodegeneration
Synaptic Integrity and Circuit Connectivity – Resting state
fMRI
Functional MRI techniques are based on blood-
oxygenation-level-dependent (BOLD) contrast which is
associated with neural activity at the population level.
Resting-state functional magnetic resonance imaging (rs-
fMRI) studies examine the temporal correlation of the
BOLD signal between the regions of interest (or functional
connectivity) by analyzing task-independent spontaneous
fluctuations in brain networks [51, 52]. An emerging
systems-based model of AD considers the large-scale dis-
ruptions across the course of AD. In preclinical AD, stud-
ies have generally noted that resting state fMRI (rsfMRI) is
linked to metabolic changes (indexed by PET imaging)
and precedes neurodegeneration (review by [53]). Most
analyses have focused on the default mode network
(DMN) [54, 55] - a network that involves the medial pre-
frontal cortex, posterior cingulate cortex, precuneus, an-
terior cingulate cortex, parietal cortex, and the medial
temporal lobe, including the hippocampus [56, 57]. As re-
gions within the DMN are highly overlapping with the
spatial distribution of both amyloid and tau pathology
[57], resting state fMRI can offer important information
on the integrity of these circuits and the degree to which
their synaptic connectivity may be affected by the disease
process. While some studies have found that alterations to
DMN connectivity become more dramatic with disease
progression, others have found dynamic changes that re-
late to Aß and tau-specific profiles [40, 58–63].
In addition to changes in the DMN, some studies have

suggested that connectivity within the MTL is also dis-
rupted with aging and AD. For example, Yassa et al. [64]
showed an age-related decrease in connectivity between
the entorhinal cortex and the dentate and CA3 regions of
the hippocampus, the extent of which was correlated with
memory deficits. Connectivity changes in other networks
have also been reported [65]. For example, the interaction
between the DMN and the salience network, which con-
sists of anterior insula, dorsal anterior cingulate cortex, is
associated with increased connectivity in amyloid-positive
individuals with low neocortical tau, and decreased con-
nectivity as a function of elevated Tau-PET signal [62].
Functional connectivity is thought to be an early marker
of synaptic pathology that may be associated with isolation
of the hippocampus from its cortical input.

Reduced Inhibition and Hippocampal Hyperactivity – Task
activated fMRI
Numerous studies have used task-activated fMRI to exam-
ine functional changes in MCI and early AD. Dickerson
and colleagues [66] found increased hippocampal activity
during learning in individuals with MCI compared to nor-
mal controls and individuals with AD. Another study [67]
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using an independent component analysis found that less
impaired MCI patients showed this increase, while more
impaired MCI patients showed a decrease in activity simi-
lar to mild AD cases [66, 68]. These results suggested that
hippocampal hyperactivation was temporally constrained.
Additional data from [69] showed that the extent of hip-
pocampal hyperactivation at baseline predicted cognitive
decline as measured by the CDR-SB scores over four years
after scanning. High-resolution fMRI studies have shown
that this hippocampal hyperactivity is specific to the den-
tate and CA3 subregions of the hippocampus [70]. Recent
work has also shown that this effect is noted in cognitively
intact APOE ε4 carriers [71]. Studies in aged rodents with
memory deficits suggest that CA3 hyperactivity may be
due, at least in part, to the loss of GABAergic drive in hilar
inhibitory interneurons, particularly somatostatin-positive
(SOM+) interneurons [72].
Using domain-selective tasks that differentially engage

the anterolateral (aLEC) and posteromedial entorhinal
cortex (pMEC), Reagh et al. [73] found an age-related
imbalance in the aLEC-DG/CA3 circuit characterized by
reduced signaling in the aLEC that is coupled with in-
creased signaling in DG/CA3 in the absence of structural
thinning of the regions. These findings suggest that hyper-
activity in the DG/CA3 region may, in part, be due to dis-
ruptions in the aLEC-DG/CA3 circuit via degeneration of
the perforant path. Recent evidence also suggests that hip-
pocampal activation is associated with longitudinal amyl-
oid accumulation and cognitive decline [74].
This elevation in hippocampal activity can be targeted

with pharmacological manipulations such as low-dose leve-
tiracetam (LEV; an antiepileptic), which has shown positive
results in a proof-of-concept trial. The drug successfully
reduced hyperactivity in the hippocampus and reduced
memory deficits in patients with amnestic MCI [75]. Later
work showed that this effect was limited to the lower dos-
age of the drug and disappeared when higher doses were
used [76] suggesting an alternative mechanism at higher
doses. Interestingly, LEV targets synaptic vesicle protein
SV2A which can now be imaged using a novel PET tracer
(see last section on new approaches). Additionally, low
dose LEV fully restores hilar SOM expression in aged,
memory-impaired rats [72], suggesting that restoring
inhibition may be a critical therapeutic path and that high-
resolution functional MRI may be a suitable method to
assess target engagement and therapeutic efficacy in
clinical trials.

Reduced white matter integrity – Diffusion MRI
Diffusion tensor imaging (DTI) has been used to investi-
gate the microstructural features of white matter [77]. The
majority of DTI studies assess white matter integrity using
voxel-wise values such as fractional anisotropy (FA), which
is a scalar quantity that measures the anisotropy (i.e.

directionality) of the diffusion signal in any given voxel.
There are many factors that affect FA including axonal de-
generation, demyelination, disorganization, packing dens-
ity, and other microstructural features, but it is often
measured as an indirect proxy to white matter integrity.
Although the neural basis of anisotropy is still not com-
pletely understood, it has been used as an index of white
matter integrity in thousands of studies across humans
and animals. Typically the higher the FA value, the more
intact a fiber pathway is thought to be.
A number of DTI studies have shown white matter loss

with aging (see review by Chua et al. [78]), most likely due
to thin myelinated fiber degeneration [79–82]. DTI studies
of MCI and AD show widespread declines in white matter
integrity throughout the brain with the most reliable
changes reported in the temporal lobes [78, 83–86].
Investigations of white matter connectivity changes in

aging and AD have focused on the fornix and the cingu-
lum, as they are the major links between the limbic sys-
tem and the rest of the brain. The fornix is the largest
input/output fiber bundle of the hippocampus and con-
nects it to the hypothalamus, while the cingulum con-
nects the cingulate and the parahippocampal gyri to the
septal cortex. Damage to the fornix has been found to
reproduce learning and memory deficits resulting from
hippocampal lesions in rats [87, 88] and in monkeys
[89–91]. DTI fiber tracking studies show reduced frac-
tional anisotropy in the fornix in AD [92, 93]. Several
studies have found white matter changes in the cingu-
lum in MCI and mild AD cases [94–96].
The perforant path connects EC layer II neurons to

the hippocampal DG and CA3 [97] and is critical for
normal hippocampal function [98]. This pathway’s integ-
rity is reduced in aged rats with memory loss [99, 100].
Perforant path lesions also result in EC layer II neuronal
loss [101], one of the earliest hallmark features of AD.
Thus, attempts to evaluate perforant path alterations are
critical to understanding early AD pathophysiology.
Numerous studies have shown changes in parahippo-

campal white matter in aging and MCI using structural
MRI and diffusion tensor imaging (DTI) [102–105].
However, since there are many crossing fibers in the re-
gion and the perforant path is only ~ 2-3 mm thick fiber
sheet, it was not possible to uniquely ascribe these
changes to the perforant path itself. More recent work
used an ultrahigh resolution (submillimeter) DTI tech-
nique to assess the perforant path [106, 107], which was
validated against post-mortem data [108]. This method
more specifically allowed for imaging the perforant path
and documented loss of integrity with aging in a manner
that was related to the extent of memory deficits.
Traditional DTI approaches are limited by the inability

to resolve intra-voxel complexities such as fiber bending,
crossing, and twisting [109]. High angular resolution
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diffusion imaging (HARDI) addresses this limitation by
sampling the diffusion signal along many more gradient
directions and providing adequate information to model
diffusion with an orientation distribution function
(ODF), a more versatile diffusion representation that
captures multiple orientations in a voxel [110]. Given
the complexity of white matter and the specific patterns
of atrophy related to AD, HARDI may offer an improved
approach to biomarker discovery.

Cortical thinning and volume loss – Structural MRI
Compared with images from other modalities, MR im-
ages provide excellent anatomical detail and additionally
provide a strong grey/white matter contrast. Processes
believed to be pathological in nature are often described
in terms of anatomical location, cortical thickness, volu-
metry, and morphological characteristics.
Coronal T1-weighted, three dimensional, high reso-

lution images are often used in cross-sectional and lon-
gitudinal studies to measure the hippocampal volume
and to assess changes in hippocampal volume over time
in AD [111, 112]. They have also been used to reveal
many age-related changes in the brain. There is a de-
crease in total brain volume resultant from cortical thin-
ning and gyral atrophy [113]. Specifically, the prefrontal
cortex and the hippocampal formation display volume
loss in advanced aging that significantly accelerates from
normal aging to MCI to AD [114, 115].
Volume and shape changes in the hippocampus have

been shown with healthy aging and preclinical AD [115–
118]. Some MRI studies have also shown that the extent of
hippocampal and entorhinal volume decline with increas-
ing age predicted performance on memory tasks [119,
120]. Despite these studies, it is not clear whether any of
these changes are actually the result of frank cell loss with
age, or perhaps are secondary to synaptic and dendritic
loss. Studies in aged rodents and non-human primates
have reliably demonstrated the absence of frank cell loss in
the hippocampus with age [121–123], but regions in the
prefrontal cortex are found to undergo cell loss [124–126].
Although dramatic neuronal loss is not observed in

preclinical AD or MCI, several studies have shown mild
hippocampal atrophy during these stages. Hippocampal
atrophy has been linked to cognitive impairment sug-
gestive of AD [127–129]. Several human structural MRI
studies have used very-high-dimension transformation
techniques to observe changes in the shape of the hippo-
campus associated with AD. Consistent with the histo-
logical data, changes in the area of the CA1 fields in the
hippocampus have been reported [130, 131]. Notably, in
one of these studies, the same region of CA1 identified
as differing in shape between non-demented and mildly
demented patients also varied in the non-demented
patients as a function of whether or not they later

converted to a CDR (Clinical Dementia Rating) of 0.5
[130]. More recent work by the same group suggests
that surface deflections across all hippocampal subfields
(CA1 lateral zone, dentate gyrus/CA2-4 superior zone,
and subiculum inferior medial zone) differentiate non-
demented controls from early AD patients [132].
Recent high-resolution structural imaging studies in

MCI patients where subfields of the hippocampus were
manually segmented have suggested that specific subfields
are more vulnerable than others. Yassa et al. [70] found
that the CA1 and CA3/dentate gyrus regions both show
volumetric loss, with left-lateralized changes in both
subregions. The subiculum and other medial temporal
regions were no different in MCI patients and controls.
Similar techniques showed that the subiculum, CA1, and
entorhinal cortex are further affected in AD [133, 134].
Mueller and Weiner [133] also found that APOE ε4 status
was associated with volumetric decline in the CA3/dentate
subregions, suggesting that early risk for AD may select-
ively affect this region, and is consistent with the loss of
synaptic input reported in animal studies.
Subfield-specific patterns of atrophy are complex and

require improved segmentation of hippocampal subfields
that are both reliable and histologically validated. Current
efforts by the Hippocampal Subfield Group (HSG: http://
hippocampalsubfields.com) is making advances in this dir-
ection [135, 136]. Higher resolution scans at increased
MRI strength (7T) have also shown promise in examining
changes in particular layers of the hippocampal region
that may be vulnerable at early stages of the disease. The
apical dendrites of hippocampal CA1 pyramidal neurons,
in the stratum radiatum/stratum lacunosum-moleculare
(SRLM), are targeted by tau pathology early in the course
of disease. Several studies have shown that using high-
resolution (~200 micron) T2-weighted scans at 7T allows
for identification and assessment of SRLM and demon-
strate AD-related atrophy [137]. Similar changes have also
been noted in nondemented older adults [138, 139] and in
APOE ε4 carriers [140].
In recent years, cortical thinning in the entorhinal cor-

tex (EC) has been identified as a highly sensitive measure
of structural change both in MCI and AD [141]. EC thick-
ness diminishes prior to, and predicts, hippocampal atro-
phy [142–145]. Several recent studies using the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data
have shown evidence of EC thinning in older adults with
CSF pathological markers of AD (Aβ and p-Tau) [144,
146]. Another recent study by Ewers et al. [147] suggested
that EC loss was one of the best predictors of MCI conver-
sion to AD, even surpassing multimarker models.
Thus, results from structural MRI studies have gener-

ally shown that both the entorhinal cortex and the
hippocampus show robust volumetric declines in MCI
and AD (with the entorhinal change occurring earlier)
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and may be used as an early diagnostic feature. Limita-
tions of the methods include differences in spatial reso-
lution across scans, susceptibility to movement, and
difficulties in determining the neural source of volume
or thickness loss (cell loss vs. dendritic and synaptic loss)
without exceptionally high-resolution scanning that is
not feasible for most institutions.

Cerebral glucose hypometabolism – FDG-PET
PET methods have been used for over three decades to
examine alterations in brain glucose metabolism in aging,
MCI and AD [148]. Regional cerebral metabolism can be
assessed with 18F-2fluoro-2-deoxy-D-glucose (FDG) as a
metabolic marker. In particular, findings of reduced hip-
pocampal metabolism in MCI and AD have been reported
[149]. Cerebral glucose hypometabolism on FDG-PET ap-
pears to be a downstream marker of neuronal injury and
neurodegeneration. In particular, it appears reliably in
temporal, parietal (and possibly frontal) lobes but spares
sensorimotor cortices, visual cortices, basal ganglia, thal-
amic nuclei and the cerebellum [150].
Importantly, age-related patterns of cerebral glucose

metabolism differ substantially from patterns observed
in AD, which has led to the utility of this technique in
aiding clinical diagnosis. While classic studies (e.g. [151])
have shown that average cerebral glucose metabolism
decreases with age, the regions showing the least age-re-
lated change include the medial temporal lobes, the pos-
terior cingulate cortex and the precuneus. Those are the
same regions expressing significant hypometabolism in
AD. Thus, FDG-PET can be used to determine if the
pattern of cerebral hypometabolism is normal or abnor-
mal. Mosconi et al. [152] showed that it can be used to
differentiate AD patients from healthy subjects with 99%
sensitivity and 98% specificity.
Studies have also suggested that FDG-PET can be quite

accurate at differentially diagnosing AD from other demen-
tias and has a high concordance rate with clinical diagnosis
[153]. That said, recent results have also suggested that
hypometabolism in one of the key regions implicated in
AD, the posterior cingulate cortex, cannot be used in isola-
tion for differential diagnosis, as a subset of patients with
the behavioral variant of frontotemporal dementia also
show this pattern of hypometabolism [154].
While it has been suggested that structural MRI and

FDG-PET can be used interchangeably to index neuro-
degenerative processes, more recent data suggest that
they offer complementary and non-overlapping informa-
tion. For example, Benvenutto et al. [155] showed that
the extent of glucose hypometabolism can be used to
track clinical severity, whereas structural MRI markers
had higher associations with higher educational attain-
ment (higher cognitive reserve). Other work has also

shown that FDG-PET can be used to predict conversion
from MCI to AD (odds ratio of 84.9%) [156].
Recent work by the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) 2 PET Core have examined the com-
bined utility of FDG-PET and amyloid PET at tracking
progression of the disease. For example, they demonstrate
that amyloid PET (using florbetapir uptake) is negatively
associated with temporoparietal metabolism [157]. In
healthy controls, florbetapir was associated with cognitive
change, whereas in MCI patients FDG-PET metabolism
was associated with cognitive change [158]. This is con-
sistent with the biomarker model in which amyloid aggre-
gation precedes neurodegeneration.
Limitations of FDG-PET include all of the limitations

previously discussed for other PET-based approaches
including harmonization of procedures and analyses.
However, given the long history of FDG-PET scanning,
these methods are far more standardized than amyloid
or tau imaging.

Emerging Methods
The final section discusses some of the most exciting
emerging methods that may potentially allow us to add
new and informative biomarkers to the AT(N) criteria. In
addition to protein aggregation and cellular injury/neuro-
degeneration, AD is characterized by increased inflamma-
tion, epigenetic dysfunction, and synaptic loss. The three
emerging methods we discuss below attempt to break new
ground in imaging and tracking these pathologies in vivo.

Imaging Neuroinflammation (TSPO-PET)
Translocator protein (TSPO) is an outer mitochondrial
membrane protein that is expressed in many tissues
throughout the body [159]. In the healthy brain, TSPO is
only expressed at low levels and its expression is upregu-
lated in activated and proliferating microglia and astrocytes
following brain injury and neuroinflammation [160–162].
The differential expression of TSPO in activated glia
enables for it to be exploited with PET to observe and
quantify neuroinflammatory changes. Thus, PET tracers
for TSPO were developed over the past two decades as
markers for glial activation and neuroinflammation in AD.
The attempts have had mixed results.
The first PET study with a TSPO tracer in AD patients

was published by Cagnin et al. [163] and showed an
increased uptake of the [11C]-based tracer PK11195.
Later reports provided mixed results with some studies
showing weak links between microglial activation and
AD progression [164] and a poorly understood relation-
ship with amyloid beta deposition [165, 166]. It became
clear that TSPO tracers had limitations including a mod-
est binding affinity, high non-specific binding, and low
signal-to-noise ratio [167].
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Second generation tracers were subsequently developed
to improve these limitations. However, they were affected
by genetic variability of the TSPO binding site due to the
rs6971 single-nucleotide polymorphism, which resulted in
high-affinity, mixed-affinity, and low-affinity binders [168].
This effectively limited the use of the tracer to studies only
in high and mixed-affinity binders, and required a genetic
test prior to the scan. One recent study with the [11C]-
PBR28 PET tracer has also found significant widespread
clusters positively correlated between levels of microglial
activation and tau aggregation via [18F]-AV1451 PET im-
aging in MCI and AD subjects [169]. The correlations were
stronger in AD than MCI. However, levels of microglial
activation and amyloid deposition were also correlated,
and the correlations were stronger in MCI than AD. This
would suggest that microglial activation can correlate with
both tau aggregation and amyloid deposition.
Third generation tracers, such as GE-180 were produced

with the intent of TSPO quantification regardless of geno-
type, [170, 171]. Early data suggests that increased TSPO
binding is associated with various dementias, but more
studies are needed in AD patients. Although, TSPO im-
aging may potentially serve as a biomarker for neuroinflam-
mation, future development of these tracers and enhancing
their specificity and sensitivity will be needed [172].

Imaging Epigenetics (11C-Martinostat PET)
Epigenetics refers to a set of molecular mechanisms that
are involved in regulating gene expression, but which do
not involve alterations to the genetic code itself. They
include modifications to the structure of the DNA
(methylation) or modifications of the chromatin (acetyl-
ation). Chromatin includes DNA and the histone pro-
teins that help package genomic DNA into the nucleus
of a cell. Epigenetic modifications are thought to be in-
volved in the dynamic process of learning and memory
and are altered by aging and AD pathology.
Whether epigenetic alterations contribute causally to AD

or are a consequence of upstream events still remains sub-
ject to debate [173]. Certain epigenetic changes may arise
before AD pathology presents [174] and some may be more
downstream [175, 176]. In both cases, understanding the
changes to the epigenetic landscape that occur prior to, and
during, the progression of AD can significantly enrich our
understanding of disease pathophysiology.
Histone acetylation is a particular type of epigenetic

modification controlled by histone acetyltransferases
(HATs), which add acetyl groups to histone proteins, and
histone deacetylase (HDACs), which remove acetyl groups
from histone proteins. Imaging this process in vivo in
humans would allow for a means to assess the epigenetic
landscape. The novel radiotracer [11C] Martinostat allows
for imaging HDAC density with high specific binding of a
subset of class I HDAC enzymes (isoforms 1, 2, and 3),

favorable kinetics, and high affinity [177]. In human stud-
ies, HDAC expression was higher in cortical gray matter
than white matter and was generally lowest in the amyg-
dala and hippocampus [178]. Follow-up work by the same
group developed a fluorinated variant of the tracer [18F]
MGS3 [179], which exhibits specific binding, comparable
brain uptake and regional distribution to [11C] Martino-
stat, however the radiosynthesis process remains highly
inefficient precluding complete validation using blocking
experiments in nonhuman primates and subsequent use
in humans. Epigenetic imaging may soon offer a unique
look into gene regulatory processes that are implicated in
AD, however, it is still too early at this time to determine
its utility as a biomarker for AD.

Imaging Synapses (11C-UCB-J PET)
Synapse loss is an important feature of neurodegenera-
tion, and it precedes cellular degeneration in most cases.
Observing synaptic loss in humans has not been possible
until recently with the advent of novel PET tracers for
synaptic vesicle proteins. The synaptic vesicle protein
2A (SV2A) found in neurons as well as endocrine cells
is essential for synaptic neurotransmitter release and is
targeted by anti-epileptics such as levetiracetam. Thus, it
can potentially serve as a biomarker for synaptic density.
The recent development of the SV2A PET radiotracer
[11C] UCB-J [180] may offer the possibility of imaging
synaptic density in vivo, and potentially inform bio-
marker science not just for AD but for numerous other
conditions involving synapse loss [181].
A recent study by Chen et al. [182] used [11C] UCB-J

to quantify SV2A binding in a small sample of AD pa-
tients (amyloid positive) and healthy controls (amyloid
negative). The authors found a significant reduction in
SV2A binding in AD patients compared to healthy con-
trols in addition to a relationship between overall SV2A
binding and episodic memory scores. For decades, the
only information that could be gleaned about synaptic
integrity was indirectly through FDG-PET scans which
are thought to be an indirect correlate of synapse loss
given the relationship between glucose metabolism and
synaptic markers. However, with this new advance, the
field has the opportunity to directly examine synapses
[183]. While still in the early stages, this work ushers
promise in understanding the nature of synaptic alter-
ations in AD and a host of other neurological illnesses.

Summary and Conclusions
In vivo neuroimaging in humans provides a richer un-
derstanding of the pathophysiology of AD. We discussed
a number of methods that have already provided useful
information in terms of diagnosing the disease during
the preclinical stage, tracking its progression, and testing
the efficacy of disease modifying therapeutics. For these
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methods to allow us to develop appropriate biomarkers
that can serve as meaningful outcomes or surrogate end-
points they have to meet numerous criteria.
At a minimum, we suggest that across all these bio-

markers, investigators should think carefully about test-
retest reliability (see review by Henriques et al.[184]),
histological validation, specificity to the disease process,
sensitivity to detect abnormalities when they are subtle,
practical feasibility in a clinical research setting, and re-
lationship to cognitive/clinical outcomes. At this time,
there is not a single imaging modality that meets all of
the above criteria and singularly provides a rich enough
understanding of pathological processes. Not only do
different imaging modalities offer complementary infor-
mation, but the spatial distribution of the measurements
can also offer rich information that can be used for
tracking and staging within individuals and groups.
Thus, we suggest that there is a need for composite

neuroimaging biomarkers that combine information
about glial inflammation, epigenomic alterations, amyl-
oid and tau aggregation, structural and functional alter-
ations, and synaptic and cellular degeneration. With the
growing number of large-scale multimodal datasets (e.g.
ADNI), there is a growing need for developing precision
medicine approaches to better characterize, stage, and
classify subtypes of dementias and discriminate AD from
age-related changes.
Enabling precision medicine research in AD was iden-

tified as a key recommendation resulting from the Na-
tional Institute on Aging (NIA)’s Alzheimer’s Disease
Research Summit 2018: Path to Treatment and Preven-
tion. The use of robust artificial intelligence and the in-
tegration of neuroimaging data with other -omics data
will be critical to advance in the field of Alzheimer’s dis-
ease therapeutics.

Modality Major Finding References

Amyloid-PET Amyloid deposition is linked to
aberrant entorhinal activity among
cognitively normal older adults

[22]

Subthreshold amyloid deposition
predicts tau deposition in aging

[26]

Increased Aβ is associated with cortical
thinning in frontoparietal regions

[24]

Tau-PET Tau deposition predicts atrophy
measures

[39–41]

Higher tracer uptake in the
parahippocampal gyrus strongly relates
to episodic memory

[185]

Older age is associated with binding in
the medial temporal lobe (MTL), the
extent of which is associated with
memory deficits

[43]

Memory scores are strongly correlated [42]

Summary and Conclusions (Continued)

Modality Major Finding References

with medial temporal tau tracer uptake,
whereas whole-brain measures showed
weak associations with memory and
MTL atrophy

Task-
Activated
fMRI

Increased hippocampal activity during
learning in individuals with MCI
compared to normal controls and
individuals with AD.

[66]

Less impaired MCI patients showed this
increase, while more impaired MCI
patients showed a decrease in activity
similar to mild AD cases

[67]

More impaired MCI patients showed a
decrease in activity similar to mild AD
cases

[68]

The extent of hippocampal
hyperactivation at baseline predicted
cognitive decline as measured by the
CDR-SB scores over four years after
scanning.

[69]

High-resolution fMRI studies have
shown that this hippocampal
hyperactivity is specific to the DG/CA3
subregions of the hippocampus

[70, 71]

Reduced signaling in the LEC coupled
with increased signaling in DG/CA3 in
the absence of structural thinning of
the regions.

[73]

Hippocampal activation is associated
with longitudinal amyloid accumulation
and cognitive decline

[74]

Resting-State
fMRI

Widespread changes in DMN
connectivity in MCI and AD

[58–61]

Hyperconnectivity in the anterior DMN
and hypoconnectivity in the posterior
DMN in AD

[63, 186]

Aß+ and tau-PET signal specific profiles [62, 187]

Age-related decrease in connectivity
between the entorhinal cortex and the
dentate and CA3 regions of the
hippocampus, the extent of which was
correlated with memory deficits.

[64]

Diffusion MRI Widespread changes in white matter in
MCI and AD

[83–86]

DTI fiber tracking studies show white
matter microstructural changes in the
fornix and cingulum in MCI and mild
AD cases

[92, 94–96, 107]

Parahippocampal white matter changes
in aging and MCI using structural MRI
and diffusion tensor imaging (DTI)

[93, 102–105]

Perforant path degradation in non-
demented older adults

[106–108]

Structural
MRI

Volume and shape changes in the
hippocampus with healthy aging and
preclinical AD

[115–118]

Volumetric loss of CA1 and DG/CA3 in
APOE4 carriers, preclinical AD, MCI and

[70, 130–132]
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Summary and Conclusions (Continued)

Modality Major Finding References

AD in high resolution scans

ERC thickness predicts hippocampal
atrophy (including CA1-SRLM size) and
is a sensitive measure of structural
change in MCI and AD

[133, 139, 141–
143, 147]

TSPO-PET In the healthy brain, TSPO is only
expressed at low levels and its
expression is upregulated in activated
and proliferating microglia and
astrocytes following brain injury and
neuroinflammation

[160–162]

AD patients show an increased global
and regional uptake

[163, 165, 166]

Microglial activation can correlate with
both tau aggregation and amyloid
deposition.

[169]

Epigenetic
modifications

In healthy adults, HDAC expression was
lowest in the hippocampus and
amygdala among gray matter regions

[178]

Imaging
Synapses

Significant reduction in SV2A binding in
AD patients compared to healthy
controls in addition to a relationship
between overall SV2A binding and
episodic memory scores.

[182]
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