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Abstract

Neuronal Ceroid Lipofuscinoses (NCLs), commonly known as Batten disease, constitute a group of the most
prevalent neurodegenerative lysosomal storage disorders (LSDs). Mutations in at least 13 different genes (called
CLNs) cause various forms of NCLs. Clinically, the NCLs manifest early impairment of vision, progressive decline in
cognitive and motor functions, seizures and a shortened lifespan. At the cellular level, all NCLs show intracellular
accumulation of autofluorescent material (called ceroid) and progressive neuron loss. Despite intense studies

the normal physiological functions of each of the CLN genes remain poorly understood. Consequently, the
development of mechanism-based therapeutic strategies remains challenging. Endolysosomal dysfunction
contributes to pathogenesis of virtually all LSDs. Studies within the past decade have drastically changed the notion
that the lysosomes are merely the terminal degradative organelles. The emerging new roles of the lysosome
include its central role in nutrient-dependent signal transduction regulating metabolism and cellular proliferation
or quiescence. In this review, we first provide a brief overview of the endolysosomal and autophagic pathways,
lysosomal acidification and endosome-lysosome and autophagosome-lysosome fusions. We emphasize the
importance of these processes as their dysregulation leads to pathogenesis of many LSDs including the NCLs.

We also describe what is currently known about each of the 13 CLN genes and their products and how understanding
the emerging new roles of the lysosome may clarify the underlying pathogenic mechanisms of the NCLs. Finally,

we discuss the current and emerging therapeutic strategies for various NCLs.
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Background

In 1955, Christian de Duve, while investigating the
mechanism of insulin action, discovered the lysosome
[1], a membrane-bound organelle which plays critical
roles in the degradation and recycling of material deliv-
ered to it from both extracellular and intracellular
sources [2—4]. Although historically known as the center
for cellular waste disposal, the lysosome has since been
reported to serve essential roles in such functions as cel-
lular nutrient sensing, energy metabolism and plasma
membrane repair. To maintain homeostasis, a network
of lysosomal proteins, soluble lysosomal acid hydrolases,
lysosome-related organelles, autophagosomes and other
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cellular constituents are put in place to degrade the ma-
terial imported into the cell. Impairment of this lyso-
somal network contributes to a group of diseases called
LSDs [5-7]. In most of the LSDs, neurodegeneration is a
devastating manifestation [8]. Despite tremendous ad-
vances in the field, the precise molecular mechanism(s)
underlying these diseases remain elusive. The emerging
new roles of the lysosome as the nutrient sensor and
signaling hub of the cell may provide a better under-
standing of the pathophysiology of various NCLs.

The lysosome, in addition to harboring the soluble
acid hydrolases in its lumen, is endowed with numerous
proteins that are localized to its membrane [9, 10]. For a
long time, the lysosomal membrane was thought to pro-
vide just a barrier between the luminal acid hydrolases
and the cytoplasm. However, emerging evidence indi-
cates that the lysosomal membrane serves critical roles
in a wide range of cellular functions, including
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phagocytosis, autophagy, membrane repair and apoptosis
[10]. All lysosomal membrane proteins are synthesized
in the endoplasmic reticulum (ER) and are selectively
transported to the lysosome. The degradative func-
tions of the lysosome are essential for cell clearance,
signaling, metabolism and homeostasis. Cellular
homeostasis also requires ubiquitylation, a process
that facilitates specifying the proteins which are trans-
ported to the lysosomal lumen by endosomal sorting
complex required for transport (ESCRT) to sort car-
gos tagged with ubiquitin into the invaginated endo-
somal membranes [11]. Recently, it has been reported
that the ESCRT machinery plays an essential role in
repairing injured endolysosomes and thereby provid-
ing a mechanism to protect the cells from death.
Compelling evidence indicates that the lysosome per-
forms a much broader function than just being the cellu-
lar waste disposal. It has critical roles in some of the
most vital processes like secretion, signaling, repair of
the plasma membrane, and energy metabolism [12]. In
addition, the lysosome has an essential role in autophagy
[3, 4], which along with its other functions places this
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organelle at the center of several vital processes, such as
nutrient sensing, metabolism and homeostasis [13].
Thus, impairment of lysosomal function has implications
for the pathogenesis of all LSDs including the NCLs.

Lysosomes receive materials for degradation via three
major pathways: phagocytosis, endocytosis and autoph-
agy (Fig. 1). A network of lysosomal proteins, and other
cellular constituents contribute to the degradation of the
imported cargo delivered to this organelle [14]. In the
following paragraphs, we articulate how the endolysoso-
mal and autophagic pathways of degradation require
lysosomal acidification and endosome-lysosome as well
as autophagosome-lysosome fusions.

The endolysosomal and autophagic pathways of
degradation

The lysosome is the terminal organelle for degradation
and cellular clearance. Materials from varying locations
are delivered to the lysosome for degradation. There are
two major pathways by which materials enter the lyso-
some. These are (i) endocytosis in which the material
from outside the cell enters the lysosome via endocytic
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Fig. 1 Dysregulation of the endocytic and autophagic pathways in LSDs including the NCLs. Cells import materials from outside the cell by
endocytosis. This process is initiated by the invagination of the plasma membrane, which encloses the material forming the early endosome,
which progresses to the late endosome. The fusion of the membranes of the late endosome and lysosome forms a hybrid structure called
endolysosome. The fusion of the two membranes is catalyzed by Rab7, a small GTPase, and the endosomal cargo is degraded by lysosomal acid
hydrolases and the constituent components are reutilized by the cell. The process of autophagy is initiated by the formation of a double-
membrane structure in the cytoplasm called phagophore. This structure in its mature form is called phagosome, which encircles materials such
as aged macromolecules and disabled organelles. The autophagosome fuses with the lysosome forming a hybrid structure called autolysosome.
The lysosomal hydrolases then degrade the cargo to their respective components (i.e. amino acids for proteins, fatty acids for lipids, etc.) which
are reutilized by the cells. Notably, impaired or missing lysosomal acid hydrolases or failure of endosome-lysosome and autophagosome-
lysosome fusions may result in the accumulation of undigested cargo in the lysosome leading to lysosomal storage diseases
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vesicles originating from the plasma membrane [15] and
(ii) autophagy in which material from within the cell is
transported to the lysosome via autophagosomes. It has
been suggested that dysregulation of autophagy is a
common mechanism in the pathogenesis of the LSDs
including several NCLs and other more common neuro-
degenerative diseases [16].

The endo-lysosomal pathway plays multiple roles in cel-
lular function and homeostasis [17, 18]. This pathway has
an important function in enabling the cell to internalize
extracellular macromolecules and fluids together with
portions of the plasma membrane. It also plays vital roles
in the sorting of the internalized membrane and its
constituent proteins. The major sorting stations in this
pathway consist of the early and late endosomes and
pleiomorphic organelles with tubulo-cisternal and
multi-vesicular domains, which are packed with intralum-
inal vesicles [19]. The cargo contained in the endosomes
are either delivered to the lysosome where acid hydrolases
catalyze degradation or promote recycling back to the
plasma membrane via recycling endosomes, or further
transported to the Golgi using the retromer complex [20,
21]. In some instances, the endosomes undergo fusion
with the plasma membrane, thereby discharging the con-
tents into the extracellular space. These extracellular ma-
terials are called the exosomes [22].

The Rab GTPases [23], which are the major regulators
of vesicular trafficking, control the dynamics of sorting,
trafficking and membrane remodeling in the endocytic
pathway including secretion of the exosomes. Recent in-
vestigations have demonstrated how Rab35 and Arf6
might serve as input sensors for two types of endocytosis
to balance membrane trafficking to preserve cell surface
homeostasis. More recently, it has been shown that lyso-
somal contact with mitochondria regulates mitochondrial
fission through the hydrolysis of Rab7, which allows bidir-
ectional regulation of mitochondrial-lysosomal dynamics
[24]. This may explain why lysosomal as well as mitochon-
drial dysfunction have been observed in various human
diseases including the neurodegenerative LSDs like the
NCLs. One of the important factors in intracellular diges-
tion is lysosomal acidification, which directly impacts the
catalytic activities of the lysosomal acid hydrolases as these
enzymes work most efficiently in acidic pH.

Lysosomal acidification

In virtually all NCLs, except CLN2 and CLNS, lysosomal
acidification is reported to be dysregulated [25, 26]. It has
also long been recognized that acidification of the endocy-
tic organelles is essential for the degradation and clearance
of exogenous and endogenous material delivered to the
lysosome via endosome and autophagosome pathways
[15]. Lysosomal acidification is regulated by vacuolar
ATPase (v-ATPase) [27-29], which is a multi-subunit
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protein complex consisting of a cytosolic V1-sector and a
lysosomal membrane-anchored VO-sector. The v-ATPase
acidifies a wide array of intracellular organelles by pump-
ing protons across the membranes into the vesicular (late
endosomal/lysosomal) lumen [27-29]. The V1-sector of
v-ATPase generates energy by hydrolyzing ATP and this
energy is utilized to facilitate the transport of protons
from the cytoplasm across the lysosomal-membranes to
the vesicular lumen. The recycling of the cell surface
receptors, the receptor-ligand dissociation, protein deg-
radation by lysosomal hydrolases, neurotransmitter
loading as well as the recycling of synaptic vesicles are
all pH-dependent [30, 31]. Moreover, it has been dem-
onstrated that alterations in the intracellular pH alone
severely alter organellar morphology, movement and
function [32]. Indeed, it has been demonstrated that
nanoparticle-mediated correction of lysosomal acidifi-
cation defects may have implications for lysosomal-
related diseases [33].

The endosome-lysosome and autophagosome-lysosome
fusion

An orderly execution of fusion of the membranous organ-
elles is vitally important for the eukaryotic cells [34]. For
example, the fusion of the autophagosome-lysosome and
endosome-lysosome membranes is critical for the degrad-
ation of material imported from intracellular and extracel-
lular sources that are delivered to the lysosome [4].
Similarly, membrane fusion plays an essential role in syn-
aptic transmission in the central nervous system in which
SNARE- and SM (Secl/Munc18-like)-proteins have been
reported to play critical roles [35]. The v-ATPase, by regu-
lating lysosomal acidification, mediates the fusion of endo-
cytic and autophagic vesicles although the mechanism(s)
by which the fusion of these membranes occurs remains
poorly understood [36]. Notably, the maturation of the
autophagosome precursor has been shown to depend on
homotypic membrane fusions [37].

Autophagy is a major degradative pathway in the cell
[3, 4]. There are three different types of autophagy: (i)
macroautophagy, (ii) microautophagy and (iii) chaperone
-mediated autophagy. During macroautophagy (hereafter
called autophagy), the cytoplasmic contents (e.g.
long-lived proteins and disabled or aged organelles) are
encircled by a double-membrane structure called the
autophagosome [3, 4]. An autophagosome is a double-
membrane structure, originating from the ER-mito
chondria contact sites, called a phagophore, which en-
closes long-lived proteins, aged and disabled organelles,
and aggregated proteins. Autophagosome fuses with the
lysosomal membrane generating a hybrid organelle
called autolysosome in which the acid hydrolases de-
grade the cargo. At the final stage of cargo-degradation,
each type of autophagy requires the fusion of
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autophagosomes with functional lysosomes [38]. In re-
cent comprehensive reviews [39, 40] the molecular def-
inition of autophagy and autophagy-related processes as
well as how their dysfunction may lead to neurodegener-
ation has been described. It has become increasingly evi-
dent that impaired autophagy is associated with several
human neurodegenerative diseases including neurode-
generative LSDs like the NCLs [16, 40, 41]. Membrane
fusion is an essential requirement for early biogenesis of
autophagosome and degradation of cargo in the lyso-
some and this vital process is impaired in many neuro-
degenerative diseases [4, 40, 42].

Impaired membrane fusions have been reported in the
LSDs as well as in common neurodegenerative diseases
[43, 44]. Thus, fusion of these organelles is particularly im-
portant for maintaining neuronal survival as impaired au-
tophagy causes accumulation of several aggregate-prone
proteins (e.g. huntingtin, a-synuclein), which are poten-
tially harmful to the neurons [44, 45]. Despite intense in-
vestigations the physiological functions of the mutant
genes underlying various forms of the NCLs remain
poorly understood. In the following paragraphs, we de-
scribe what is known about these genes, the proteins they
encode and how the emerging new roles of the lysosome
may advance our understanding as to how mutations in
these genes may impair lysosomal function.

CLN gene mutations and their differential pathologic
manifestations in various NCLs
Commonly known as Batten disease [46—52], NCLs constitute
a group of the most common inherited neurodegenerative
LSDs that mostly affect children. Lysosomal accumulation of
autofluorescent material (called ceroid), increased neuronal
apoptosis, dysregulated autophagy, neurodegeneration and
shortened lifespan are some of the common features shared
by all NCLs. Our knowledge that the lysosome functions as a
nutrient sensor and the signaling hub of the cell [12-14,
53-56] may be applied to facilitate a greater understanding
of the pathogenic mechanism(s) underlying the NCLs.
The 13 different genes (Table 1), mutations of which
cause various forms of NCLs, may be classified into four
groups according to the proteins they encode. The group
I genes (CLNI1, CLN2 CLNS5, CLN10 and CLN13) encode
lysosomal soluble proteins/enzymes. The group II genes
(CLN3, CLN7 and CLN12) encode membrane proteins
but two of the genes (CLN6 and CLN8) encode
ER-membrane proteins. The group III genes (CLN4 and
CLN14) encode soluble proteins and one gene in group
IV (CLN11I) encodes a protein in the secretory pathway
[46-52]. A summary of the proteins encoded by all CLN
genes is provided in Table 1. In Table 2, The CLN gene
mutantions underlying pathophysiological manifestations
of various NCL forms are provided in Table 2.
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CLN1/PPT1

The discovery of an enzyme in bovine brain, its purifica-
tion to homogeneity and the demonstration that it cata-
lyzed the cleavage of the thioester linkage in
palmitoyl-CoA and S-acylated H-Ras in vitro [57] paved
the way for the identification of the mutant gene (now
called CLNI) [58]. Inactivating mutations in the CLNI
gene underlie infantile NCL (or INCL), also known as
Santavuori-Haltia disease [59]. The CLNI gene encodes
palmitoyl-protein thioesterases-1 (PPT1) [60], a soluble
depalmitoylating enzyme, which is essential for the deg-
radation of S-acylated proteins by lysosomal hydrolases
[61]. Numerous proteins in the central nervous system
undergo S-palmitoylation (or S-acylation), a process in
which a 16-carbon fatty acid (predominantly palmitate)
is attached to specific cysteine residues in polypeptides
via thioester linkage [62]. It is the only reversible lipid
modification that has emerged as an important regula-
tory mechanism for many proteins, especially in the
brain [63, 64]. These S-acylated proteins require depal-
mitoylation by thioesterases prior to degradation by lyso-
somal acid hydrolases [61]. Thus, PPT1-deficiency
impairs lysosomal degradative function causing intracel-
lular accumulation of S-acylated proteins leading to
INCL. At birth, the children afflicted with INCL are
phenotypically normal. However, by 11-18 months of
age they manifest signs of psychomotor retardation. By 2
years of age, these children are completely blind due to
retinal degeneration. Around 4 years of age, an isoelec-
tric electroencephalogram (EEG) attests to a vegetative
state, which may last for several more years before even-
tual death [59].

It has been reported that CLNI mutations can also
cause milder forms of INCL, which may manifest as late
infantile, juvenile, or adult phenotypes [65, 66]. Although
the precise biological roles of PPT1 and its in vivo sub-
strates remain unidentified, a recent report suggested
that cysteine string protein-a (CSPa) may be an in vivo
substrate of PPT1 [67]. Notably, it has been demon-
strated that in vitro, PPT1 depalmitoylates S-acylated
growth associated protein 43 (GAP-43) and rhodopsin
and its catalytic activity is higher at neutral pH (7.4) ra-
ther than at acidic pH (4.0) suggesting that PPT1 may
have extra-lysosomal functions. Altered lysosomal pH
has been reported in several NCLs including INCL [68].
It has recently been demonstrated that in ClnI”" mice,
V0al, a critical subunit of the v-ATPase (the proton
pump of the cell) that regulates lysosomal acidification,
requires S-palmitoylation for its lysosomal targeting
[68]. Notably, in Clnl”" mice lacking Pptl, VOal is
misrouted to the plasma membrane instead of its normal
localization on the lysosomal membrane (Fig. 2). This
defect inhibits v-ATPase activity and consequently, alters
the lysosomal pH in Pptl-deficient cells [68].
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Table 1 Neuronal Ceroid Lipofuscinoses (Batten Disease)
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Mutant  NCL Encoded Classification Posttranslational ~ Subcellular Function Interactions
Gene Disease Protein and protein modification localization
size
CLNT Infantile Palmitoyl soluble protein, N-gly Lysosomal Palmitoy-protein S-acetylated proteins
NCL (CLNT-  protein 306 aa MéP lumen, [thioesterase (GAP43, rhodopsin,
disease) thioesterase 1 extralysosomal saposin D)
(PPT1) vesicules,
extracellular,
presynaptic
areas in neurons
CLN2 Late Tripeptidyl soluble protein, N-gly Lysosomal Serine protease CLN3, CLN5
infantile peptidase 1 563 aa M6P lumen
NCL (TPP1)
CLN3 Juvenile CLN3/Batenin 6 TM protein,  N-gly Late endosomal/  Unknown / predicted: pH  Hook1, kinesin-2, CLN5,
NCL, 438 aa farnesylated lysosomal regulation and Na+, K+ ATPase, Rab7,
Batten phosphorylated  membrane, modulation of vesicular fodrin
disease presynaptic trafficking and fusion
vesicles
CLN4 Kuffs Cysteine-string  soluble protein, Palmitoylated Cytosolic, Hsc70 co-chaperone CSPa, SNAP-25, myosin
disease protein alpha 198 aa vesicular involved in exocytosis 1B, calsenilin, DHHC17,
(CSPa), DNAJC5 membranes and endocytosis dynamin-1, syntaxin, Gas,
Rab3b, synaptotagmin 9,
Hsp70, Hsp40, Hsp90, HIP,
HOP, SGT
CLN5 CLN5 - soluble protein, N-gly Lysosomal Unknown / predicted: PPT1/CLNT, TPP1/CLN2,
disease 407 aa M6P lumen modulation of vesicular CLN3, CLN6, CLN8
trafficking
CLN6 CLN6 CLNé-protein 7 TM protein, ~ None ER-membrane Unknown CLN5, CLN6
disease 311 aa (transmembrane) CRMP-2
CLN7 Turkish MFSD8 12 TM protein,  N-gly Lysosomal Predicted transmembrane AP-1, cathepsin L
variant of 518 aa proteolytic membrane transporter function
late- cleaved predicted
infantile
NCL
CLN8 NCL 8 CLN8 5 TM protein,  None ER-membrane Unknown, predicted: to CLN5, CLN8, syntaxin 8,
286 aa (transmembrane) aid in the maturation of ~ VAPA, GATE16, AGA,
lysosomal proteins by ARSA, ARSB, ARSG, CTBS,
transporting them from CTSA, CTSB, CTSD, CTSF,
the ER to the Golgi CTSZ, DNASE2, GALNS,
complex, predicted GGH, GM2A, GNS, GUSB,
regulation in lipid HPSE, IDS, LIPA, MAN2BT,
metabolism, MAN2B2, MPO, NAGA,
NEUT1, PCYOX1, PLBD2,
PPT1, PPT2, PSAP,
RNASET2, SGSH, SIAW,
SMPD1, TPP1
CLN9 - Currently - - - - -
designated as
CLN4
CLN10  Congenital  Cathepsin D soluble protein, N-gly Lysosomal Aspartyl protease APP, CST3, CTSB, proSAP,
NCL (CTSD) 462 aa MeP lumen and several others
CLNT17  Unknown  Progranulin soluble protein, None Extracellular Unknown/ predicted, MMPs, ADAMs, TGFa
and granulins 593 aa roles in inflammation, receptors, sortilin,
embryogenesis, cell ADAMTS-7/ADAMTS-12/
motility and perlecan/HDL/COMP,
tumorigenesis TGNFa receptors, EPHA2
CLN12  Unknown  ATPase 13A2, 10 TM protein, None Lysosomal Unknown / predicted ~ 43 vesicular trafficking
KRPPD, PARKY, 1180 aa membrane regulation of ion and synuclein misfolding

HSA9947, RP-
37C104

homeostasis

postulated proteins
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Table 1 Neuronal Ceroid Lipofuscinoses (Batten Disease) (Continued)
Mutant  NCL Encoded Classification Posttranslational ~ Subcellular Function Interactions
Gene Disease Protein and protein modification localization
size
CLN13  Unknown  Cathepsin F soluble protein, N-gly Lysosomal Unknown / predicted: CD47 antigen
(CTSF) 484 aa M6P lumen cysteine protease
CLN14  Unknown  Potassium soluble protein, Phosphorylated — Cytosolic, Unknown / predicted Cullin-3, KCTD7
channel 289 aa partially modulation of ion
tetramerization associated to channel activity
domain- membranes
containing
protein 7
(KCTD?)

Numerous studies have shown that both physiological
and pathological conditions disrupt protein folding in
the ER leading to the accumulation of these misfolded
proteins, which cause ER-stress [69]. Increased ER stress
activates a signaling network known as the unfolded pro-
tein response (UPR) to suppress protein synthesis [69]. In
a wide variety of pathological conditions, including GM1
glycosidosis [70] and INCL [71], high levels of ER-stress
have been reported to cause neuron loss. In response to
ER stress, the protein-folding and degradation capacity of
the ER is dynamically adjusted by the induction of the
UPR [69]. Several comprehensive reviews have been
published describing the prevalence of the UPR in the ner-
vous system and its functional link in neurodegeneration
[69, 71]. In CinI” mice, ER- and oxidative-stress have
been shown to cause caspase activation leading to neuron
loss by apoptosis [72—74]. Recently, a comprehensive re-
view on ER-stress and UPR in various LSDs including the
NCLs has been published [75].

CLN2/TPP1

Mutations of the CLN2 gene encoding tripeptidyl-
peptidase 1 (TPP1) underlie pathogenesis of late infantile
NCL (LINCL) or CLN2-disease [76]. TPP1 is a lysosomal
protease that requires acidic pH for its activation. More-
over, inactivation of the aminopeptidase activity of TPP1
impairs the removal of tripeptides from the N-terminus
of small proteins leading to CLN2-disease [77, 78]. Chil-
dren with LINCL are phenotypically normal at birth but
around 2-4 years of age the disease manifestation occurs,
and they succumb to the disease when they are around
6-15 years old.

Like cathepsin D (CTSD), a lysosomal aspartyl prote-
ase, TPP1 is synthesized as an inactive proenzyme
(pro-TPP1) in the ER. It is then autocatalytically proc-
essed to the active enzyme in the acidic pH of the
lysosome requiring Ca** [79, 80]. The CLN2 gene is
ubiquitously expressed and developmentally regulated
[81]. In the human brain, TPP1 is expressed at a high
level starting at 2 years of age [81] and in mice and rats,
the highest expression level is reached at adulthood

[82]. Like most of the NCLs, the management of the pa-
tients with CLN2-disease is palliative. It requires a
multidisciplinary approach as the disease has a complex
array of symptoms and its progression is generally rapid.
Moreover, because of the rapid decline of the medical
condition of these patients, it is essential that the pa-
tient families are given extensive psychosocial support.
An excellent review article has recently been published
in which the authors provided a detailed overview of
CLN2 disease and the associated complications that
might be expected [83].

In both CLN2- and CLN3-diseases, endosomal/lyso-
somal trafficking as well as autophagy are reported to be
dysregulated [84]. These abnormalities in CLN2-
deficient cells may stem from oxidative-stress, which
upregulates the PI3/Akt pathway activating the mechan-
istic (mammalian) target of rapamycin complex 1
(mTORC1) [85]. Using induced pluripotent stem cells
(iPSCs) from normal subjects and CLN2 patients, it has
been shown that the earliest CLN2 disease events can be
recapitulated in the human iPSCs at the pluripotent
stage and during neuronal differentiation [86]. Moreover,
these authors have reported distinct, yet overlapping,
early-stage pathology in multiple subcellular compart-
ments. Furthermore, the results of this study provided
the proof-of-principle that establishes a platform for the
development of genotype-directed therapeutics for NCL
by drug screening in patient neurons differentiated from
iPSCs. Remarkably, when the iPSCs were differentiated
to neurons, other abnormalities characteristic of the
CLN2-disease began to appear [86]. Notably, while LSD
features were not detectable in iPSCs, disease-specific
storage materials were seen upon neural differentiation
of the same cells. Recently, an unbiased exhaustive
proteomic analysis of the brain and cerebrospinal fluid
from patients with CLNI-, CLN2- and CLN3-disease
have revealed significant alterations in the expression of
proteins in each of these NCLs [87]. Studies like these
are likely to identify biomarkers for these diseases, which
are essential for evaluating emerging therapeutic strat-
egies and to determine their efficacy.
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Table 2 Mutant CLN genes and underlying pathophysiology of various forms of NCLs

Mutant  Cells/ tissues Myoclonus  Autofluorescent  Elevated  ER Dysregulated  Cellular dysfunction
Gene & Seizures  inclusions lysosomal  Stress degradation
pH

CLNT Ubiquitously expressed, CNS, X X X X X protein response
brain

CLN2 Ubiquitously expressed, brain, X X X Endocytic pathway dysfunction
neurons, cerebrospinal fluid

CLN3 Ubiquitously expressed, CNS, X X X X X TGN is impaired, localized on the
immune and circulatory lysosome, cellular proliferation,
systems, iPSC, neural progenitor apoptosis and synaptic transmission
cells, colorectal cancer cells

CLN4 Ubiquitously expressed, X (Type A) X X - - Type: B manifests movement
neuronal synapses (1% of total abnormalities with dementia
synaptic vesicle-associated
proteins)

CLNS Ubiquitously expressed in X X X Endosomal sorting, the stability of
human tissue, CNS, peripheral sortilin and CIMPR both declines,
organs and tissues, neurons defective myelination
(ganglionic eminence) and
microglia

CLN6 Ubiquitously expressed X X X X manifest characteristic cholesterol and

subunit ¢ of mitochondrial ATP
synthase (SCMAS), aberrant biometal
metabolism

CLN7 Ubiquitously expressed at a X X X X loss of CLN7 causes depletion of
very low level, its expression in soluble proteins in the lysosomes
the liver, heart, and pancreas impairing reactivation of mTOR
(markedly higher)

CLN8 Ubiquitously expressed, high X X X X progressive motor neuron dysfunction
level expression in cerebral and retinal degeneration, lysosomal 3
cortex and hippocampus in glucosidase deficiency,
electrical kindling model of
epilepsy

CLN9 Currently designated as CLN4 - - - - -

CLN10  Ubiquitously expressed, brain X X X X CTSD-processing

CLNT1  Ubiquitously expressed, CNS, X - - significantly activated microglia after
neuron, microglia, astrocytes, TBI, the elevated lysosomal biogenesis
and endothelial cells in activated microglia, which increased

cerebrocortical neuron damage,
reduces lysosomal biogenesis

CLN12  Ubiquitously expressed, ventral X X X - - extrapyramidal involvement, oxidative-
midbrain, including substantia stress in neuroblastoma cells;
nigra (high lever), kidney and dysregulated neurotransmission
skeletal muscle (low level)

CLN13  CTSF is expressed at a high X X X - - neurons showed accumulation of
level in cerebrocortical, eosinophilic granules
hippocampal and cerebellar
neurons

CLNT14  Ubiquitously expressed, X X X - - disrupt KCTD7-Cullin-3 interactions

cerebrocortical and cerebellar
Purkinje cells, pyramidal cell
layers of the hippocampus
(high levels)

CLN3/ Batten disease

The CLN3 gene was identified in 1995 and it was
reported that mutations in this gene underlie ju-
venile NCL (JNCL) [88]. It encodes a 438-amino
acid transmembrane lysosomal protein with both
its N- and C-termini localized to the cytoplasm

[89, 90]. The CLN3 mutations as well as clinico-
pathological spectrums have previously been
reviewed [91].

The most frequent disease-causing mutations in this
gene, found in patients with CLN3-disease, is a 1 kb
deletion that causes removal of exons 7 and 8, which
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generates a premature stop codon [88]. This mutation
results in a substantial decrease in mRNA expression
and stability. Therefore, it is likely that the mutant
gene expressing a truncated CLN3-protein is not
expressed at all [92]. In both humans and mice, the
CLN3/CIn3-gene and CLN3/Cin3-protein are ubiqui-
tously expressed [93]. It has been reported that muta-
tions in the CLN3 gene impair loss of vision, cause
epileptic seizures, as well as progressive decline in
motor and cognitive functions. However, there are re-
ports providing evidence that CLN3-pathology also
extends beyond the central nervous system for ex-
ample, the immune- and circulatory systems [94—96].
Although lysosomal localization of CLN3 has also
been reported, it is also localized to the neuronal
synapses and growth cones of telencephalic neurons
of mice. Furthermore, CLN3 has been shown to colo-
calize with the SV proteins such as SV2 and synapto-
physin [97-99]. Thus, it has been suggested that
CLN3 may have a role in endosomal/lysosomal system
as well as in neuronal synapses.

While the precise function of CLN3 is not yet clearly
understood, its localization primarily on late endosome
and lysosome is suggestive of its important roles in these
organelles [99, 100]. Notably, in CLN3-ablated HeLa
cells expressing CD8-tagged CI-M6PR as the reporter, it
has been demonstrated that in these cells the exit of
CD8-CI-MPR from the TGN is impaired [101]. Recent

reports indicate that CLN3 plays a critical role in au-
tophagy and this process is defective in CLN3-disease
models [102]. Moreover, using juvenile CLN3 disease
patient-derived iPSCs and neural progenitor cells derived
from juvenile CLN3 disease it has been shown that au-
tophagy is defective [103]. In addition to its localization
on the lysosomal membrane and its role in the function
of this organelle, CLN3-silencing has been shown to
stimulate proliferation in human colorectal cancer cells
[104]. Interestingly, it is reported that the wild, but not
the mutant CLN3, binds galactosylceramide suggesting
that it may transport galactosylceramide [105]. More-
over, it has also been demonstrated that suppression of
galactosylceramide synthase by siRNA in normal cells
adversely affected cellular growth and induced apoptosis.
Notably, storage of subunit ¢ of ATP synthase has also
been reported in all NCLs except in INCL. However, it
has been reported that the accumulation of subunit c
does not cause the neuropathology characteristic of
NCL-diseases [106]. Considering all these observations,
it appears that CLN3 mutation adversely affects several
cellular processes such as lysosomal pH, endocytosis, au-
tophagy, transport of proteins from the TGN, cell prolif-
eration, apoptosis and synaptic transmission, although it
remains unclear what precise biological function(s)
CLN3 regulates and what is the mechanism of such
regulation. Recently, using human iPSC models of
NCLs Lojewski and colleagues [86] have reported
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endocytic pathway dysfunction in cells carrying mu-
tations in the CLN2- and CLN3-genes, respectively.
Although phosphorylation of TFEB, which prevents
its translocation to the nucleus, is catalyzed by
mTORCI, it has recently been reported that in a
CLN3 disease model, TFEB activation has been
achieved by the inhibition of Akt by trehalose, which
mediated cellular clearance and neuroprotection [107].

CLN4 / DNAJC5

Mutations in the CLN4 /| DNAJCS gene encoding CSP«
underlie the adult onset form of NCL also called Parry
disease [108], is a very rare and difficult to diagnose
NCL [106]. At least two variants of Kufs disease have
been reported [109]. The type A variant is a progressive
myoclonus epilepsy with cognitive impairment, and type
B variant manifests movement abnormalities with de-
mentia [110-112]. Although most of the NCLs are auto-
somal recessive diseases, the inheritance pattern of type A
Kufs disease (CLN6 mutations) is autosomal dominant
[112]. Proper folding of proteins plays critical roles in their
function and it has been reported that CSPa acts as a
chaperone to facilitate correct folding of proteins [113].
Thus, its localization in the neuronal synapses accounts
for 1% of total synaptic vesicle-associated proteins. In the
neuronal synapses, a-synuclein (a-Syn) and CSPa are
present in abundance [114]. Although it has been
reported that dominant mutations in a-SYN gene cause
Parkinson's disease, the physiological role(s) of a-Syn re-
mains elusive. Targeted-disruption of the CSPa gene re-
sults in progressive neurodegeneration in mice and it has
been suggested the co-chaperone function of CSP« is
required for the survival of neurons [115]. Remarkably,
it has been found that transgenic expression of «-Syn
prevents neurodegeneration caused by CSPa-ablation.
These results demonstrate not only the neuroprotective
role of a-Syn, but also how CSPa works in concert with
a-Syn in the nerve terminals to protect the neurons
[115]. Interestingly, a recent study has reported that
DNAJC5/CSPax and PPT1/CLNI1, which is mutated
INCL, may be functionally linked [67].

CLN5

The CLNS5 gene encodes a soluble lysosomal glyco-
protein of unknown function. Although its mutations
were first discovered in the Finish variant of late in-
fantile NCL, they are now reported in both juvenile
and adult NCL patients of a wide range of ethnicities
[116, 117]. CLN5’s expression varies throughout the
body, having the highest levels in the central nervous
system and moderate levels in the peripheral organs
and tissues. In the brain, it is highly expressed in the
cerebral cortex and cerebellum [118]. Similar expres-
sion patterns occur in the mouse brain where it is
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also developmentally regulated. Moreover, it is expressed
in the ganglionic eminence and microglia, the latter of
which sees very early activation in Cln5”" mice, which
may adversely affect adjoining normal neurons. In
addition, CLN5-protein has been reported to localize to
the lysosomal compartment [119] and CLNS5 overex-
pression in COS-1 cells has been shown to interact
with CLN1/PPT1, CLN3, CLN6, CLNS, and endogenous
CLN2/TPP1 [120].

Although the precise function of CLN5 encoded
protein remains unclear, it has been reported that it
plays a role in endosomal sorting [121]. Indeed, it has
been shown that in HeLa cells, overexpressing
HA-tagged CLN5 and myc-tagged sortilin, a lysosomal
enzyme transporter, both are coimmunoprecipitated.
This suggested an interaction between these two pro-
teins. Conversely, in CLN5-deficient cells the stability
of sortilin and CIMPR both declined [122]. The import-
ance of CLNS in the brain is suggested by its relatively
high expression in neurons and microglia [118]. Moreover,
patients with late infantile CLN5-disease and in the brains
of CIn5”" mice, defective myelination occurs in the brain
[118]. Further investigations are likely to delineate
the precise physiological function(s) of the CLNS5
gene product.

CLN6

Mutations in the CLN6 gene cause classical and variant
late infantile NCL [123, 124]. CLN6 encodes a 27 kDa
transmembrane ER-protein of 311 amino acids, which is
expressed in virtually all tissues, including the cerebel-
lum and the hypothalamus. However, its biological func-
tion(s) remain obscure and there is currently no known
protein homologue of CLN6 [125]. The expression of
Cin6 is developmentally regulated in the murine brain
and mice aged P14 and older express Cln6-mRNA in
cells of the cerebral cortex (layers II-VI), cerebellar Pur-
kinje cells and in the dentate gyrus of the hippocampus.
Moreover, it has been reported that CLN6 has a role in
the regulation of cellular acidification, endocytosis and
autophagy [126-128]. CLN6 mutations also manifest
characteristic NCL phenotypes in lysosomal storage
granules such as intracellular autofluorescent lipopig-
ments (constituent of ceroid), cholesterol and subunit ¢
of mitochondrial ATP synthase (SCMAS) [106, 126].
However, SCMAS are absent in lipopigments of CLNI,
CLN4 and CLNIO. It remains unclear if SCMAS are
present in the lipopigments in CLN11-CLNI14. Notably,
it has been reported that there is no difference in the
total mannose 6-phosphate proteome in brain tissues
from patients with CLN6-disease and healthy controls
[129]. One of the striking findings in CLN6-disease is the
aberrant biometal metabolism, which is also reported in
common neurodegenerative disorders such as Parkinson’s
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and Alzheimer’s [130]. Biometals such as copper, zinc,
manganese and cobalt have been shown to accumulate in
animal models of CLN6 disease [130]. In Cin6 mutant
(nclf) mice, accumulation of these biometals has been re-
ported in the cerebral cortex, spinal cord, liver and heart
[131]. Further investigations are required to determine the
biological function(s) of CLN6 and how impaired function
of this gene leads to the accumulation of biometals and
how this defect leads to CLN6 disease pathogenesis.

CLN7

Mutations in the MFSD8 gene cause CLN7-disease,
which is a variant late infantile phenotype [132].
Although MFSD8 is ubiquitously expressed at a very low
level, its expression in the liver, heart and pancreas is
markedly higher. Interestingly, rat neurons, astrocytes
and microglia as well as cultured microglial cells showed
much higher levels of Mfsd8-mRNA [133]. The abun-
dance of Mfsd8-mRNA was more pronounced in the
cerebral cortex and the midbrain and much less pro-
nounced in the hippocampus [133]. MFSDS8 is a multi-
span integral lysosomal membrane protein belonging to
the major facilitator superfamily (MES) of active perme-
ases. These proteins function as transporters of sugars,
sugar phosphates, drugs, inorganic and organic cations,
amino acids and neurotransmitters across membranes.
However, its precise biological function remains unclear.
Results from colocalization studies of MFSD8 and lyso-
somal membrane markers suggest lysosomal localization
of this protein [134]. Studies using lysotracker red and
Lamp-1 colocalization in HeLa cells with GFP-tagged
MESDS8 found similar results [135]. Remarkably, none of
the pathogenic MFSD8 mutations had any adverse effect
on protein trafficking or lysosomal localization [133]. It
has been reported that in Cln7-KO mice, loss of Cln7 in
the brain leads to lysosomal dysfunction and impairs
constitutive autophagy leading to neurodegeneration late
in the disease process [136]. It has also been demon-
strated that CLN7-protein is cleaved by lysosomal pro-
teinases generating N- and C-terminal fragments, which
are then released in the extracellular space. Loss of
CLN?7 causes depletion of soluble proteins in lysosomes
impairing reactivation of mTOR [137], which is a potent
anabolic regulator of cell growth and metabolism. Fur-
ther investigations are essential to delineate the specific
role(s) of CLN7 in neurons and how MFSD8 mutations
may lead to CLN7 disease.

CLN8

In humans, CLN8 mutations manifest two distinct
phenotypes. One of these phenotypes is characterized by
progressive seizures and mental retardation and the
other is a juvenile-onset variant, which is called
Northern Epilepsy [138]. The CLN8 gene encodes an ER
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membrane-spanning protein containing several hydro-
phobic domains. The protein is reported to shuttle be-
tween the ER and Golgi intermediate compartment for
recycling. In non-neuronal cells, CLN8 contains an
ER-retrieval signal KKRP (Lys-Lys-Arg-Pro) at the car-
boxy terminal [139, 140]. The naturally occurring mouse
model of the disease called mnd (motor neuron degener-
ation) shows progressive motor neuron dysfunction and
retinal degeneration [140]. CLN8-mRNA is expressed
ubiquitously with high level expression in cerebral cor-
tex and hippocampus in electrical kindling model of
epilepsy [141]. However, the relevance of CLN8 overex-
pression in this model still needs to be determined.
Although the precise function of CLN8 remains unclear,
a 200-amino acid (residues 62-262) TLC (TRAM-
LAG1-CLN8) domain has been suggested to be essential
for ceramide synthesis, glycosphingolipid trafficking
[140] and lipid homeostasis [142, 143]. Of note, a report
suggested CLNS8 as a genetic modifier after the stimula-
tion of CLN8-mRNA expression in a chemically induced
Gaucher disease model [144]. However, the mechanism
by which CLN8 expression is induced in this model,
which is caused by lysosomal B-glucosidase deficiency,
remains unclear. Interestingly, several studies suggested
that altered CLNS8 function may be linked to ER- and
oxidative-stresses (reviewed in [75]), disruption of cal-
cium homeostasis, defective mitochondrial function, in-
flammation and apoptosis [145-147]. A recent study
demonstrates that CLN8 protein is retrieved from the
Golgi complex to the ER via coat-protein I (COPI) and
that mutations in the CLN8 gene impairs the transport
of lysosomal enzymes such as TPP1 leading to pathogen-
esis of CLN8-disease [148]. Undoubtedly, further re-
search is needed to understand the mechanism(s) of
pathogenesis of CLNS-disease.

CLN9/reclassified as CLN4

CLN10/ CTSD

Mutations in the CLN10 gene cause a severe neurode-
generative LSD called congenital NCL (CNCL) [149,
150]. Clinically, congenital NCL (CLN10 disease) mani-
fests with respiratory insufficiency after birth and status
epilepticus, which are followed by death within hours to
weeks ([149] and references there in). The CLNIO gene
encodes cathepsin D (CTSD; EC 3.4.23.5), an aspartic
protease belonging to the pepsin superfamily. It is asso-
ciated with several physiological processes such as pro-
tein degradation, autophagy and apoptosis [151]. CTSD
hydrolyzes a wide variety of substrates including the
extracellular matrix proteins fibronectin and laminin.
However, the in vivo substrates of this enzyme have not
been clearly identified although it has been reported that
CTSD catalyzes the cleavage of a-synuclein [152], a pro-
tein associated with Parkinson’s disease.
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Human subjects with CLNI0-disease either die pre-
natally or within a few weeks after birth. Typically, these
patients present with microcephaly and seizures and un-
like other forms of NCLs they lack the progressive cog-
nitive/motor or visual deficits [153, 154]. Sporadic
mutations in the CLNI0 gene causing CTSD deficiency
in sheep have been reported as congenital ovine NCL
[155] and in American bulldogs [156].

Mammalian CTSD is synthesized as a 53 kDa pre-pro
enzyme protein [157]. The pre-pro-CTSD is first proteo-
lytically processed to a 48 kDa proenzyme, which then is
transported through the endosomal pathway to the
lysosome. Here the proenzyme is further processed by
the proteolytic actions of cathepsin B and L, generating
a 31 kDa and a 14 kDa fragment; non-covalent
dimerization of these two fragments constitutes the ma-
ture, catalytically active-CTSD enzyme [157]. Variable
pH optima have been reported for CTSD but maximal
enzymatic activity is manifested at a pH optimum of 3.5 (26).
Purified CTSD from porcine spleen has shown a pH
optimum near 3 and 4, which has been reported to
vary with salt concentration [158].

Several animal models with inactivating mutations in
the CLNIO/CTSD gene manifest CNCL phenotype.
Targeted-disruption of the Cln10/Ctsd gene has been re-
ported to cause an early-onset NCL phenotype and pro-
gressive neurodegeneration in mice and Drosophila
[159-162]. It has also been reported that CTSD-
processing is defective in lysosomes derived from the
brain of ClnI”" mice, which suggests that lysosomal defi-
ciency of enzymatically active CTSD is a common
pathogenic link between INCL and CNCL [163].

CLN11/PGRN

The CLNI11 gene encodes progranulin (PGRN). In 2012,
mutations in the PGRN gene were first reported in two
siblings suffering from an adult-onset NCL [164]. PRGN
was originally described as a growth factor that regulates
wound healing, vasculogenesis and tumor growth [165].
However, in 2006, landmark studies showed that muta-
tions in the GRN gene also underlie a familial form of
frontotemporal lobar degeneration (FTLD) with distinct
neuropathological features consisting of ubiquitin-positive
protein aggregates in the nucleus and cytoplasm of cor-
tical neurons [166]. Subsequently, these aggregates were
found to be enriched in TAR DNA-binding protein-43
(TDP43) [167]. Moreover, it was discovered that patients
with homozygous GRN mutations developed NCL-11
[164, 168]. Interestingly, while heterozygous mutations in
the granulin gene (GRN) in older adults lead to haploin-
sufficiency in PGRN, which causes FTLD, homozygous
mutations in the GRN gene lead to complete PGRN loss,
which causes CLN11-disease in children [169]. However,
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the cause of the differential pathologic manifestation re-
mains unclear.

Within the central nervous system GRN-mRNA is
expressed in a variety of cell types including neuron,
microglia, astrocytes and endothelial cells [170]. Despite
its potential role in lysosomal function, the presence of a
secretory signal in the N-terminal of GRN protein facili-
tates its regulated secretion [171]. Interestingly, micro-
glial activation enhances progranulin expression and
significantly impacts neuronal function and synaptic
density [172]. Extracellular progranulin can bind to
multiple receptors including sortilin, which transports
it to the lysosome [173]. Progranulin also binds to
TNFa-receptor [174] as well as the ephrin type-A re-
ceptor (EPHA2) on the cell surface and such interac-
tions activate tyrosine kinase activity of EPHA2 and
downstream kinase Akt [175]. This may suggest that
signaling pathways downstream of Akt may also be
activated by progranulin.

Although PGRN has been shown to be transported to the
lysosome via sortilin [176], its function(s) in this organelle
remains unclear. In macrophages, granulins, cleaved from
PGRN, bind to CpG oligodeoynucleotides in lysosomes, en-
abling Toll-like receptor-9 signaling [177]. Recently, it has
been reported that in the mouse traumatic brain injury
model, PGRN prevents lysosomal dysfunction [178]. Most
notably, the expression of PGRN is significantly elevated in
activated microglia after traumatic brain injury. The
elevated lysosomal biogenesis in activated microglia, which
increased  cerebrocortical neuron damage, reduces
lysosomal biogenesis [54, 179]. It has been reported that
PGRN-deficiency causing lysosomal dysfunction can be ex-
plained based on lipidomic and transcriptomic consider-
ations [180]. In a recent comprehensive review, Paushter
and colleagues have provided new insights into the lyso-
somal function of PGRN and its link to multiple neurode-
generative diseases [181]. More research would be needed
to advance our understanding of the role of PGRN in the
pathogenesis of CLN11- and FTD-diseases.

CLN12/ATP13A2

The CLN12 disease is caused by loss of function muta-
tions in the predominantly neuronal P-type ATPase
(ATP13A2) gene. The CLNI12 (ATP13A2) gene is also
known as KRPPD, PARKY, HSA9947, RP-37C10.4. It en-
codes a 36 kDa lysosomal transmembrane protein con-
taining 10 predicted transmembrane domains [182],
which were previously shown to underlie a rare form of
autosomal recessive juvenile-onset Parkinson dementia
called Kufor-Rakeb syndrome [183]. The patients
afflicted with this syndrome manifest characteristics of
not only typical NCL, but also show extrapyramidal in-
volvement. Postmortem pathological examination of the
brain tissues from a Kufor-Rakeb syndrome patient with
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homozygous missense mutations in the ATPI13A2 gene
showed extensive deposition of lipofuscin in the retina,
cerebral cortex, basal ganglia and cerebellum [183]. In
most human tissues, CLN12-mRNA is detectable, but it
is expressed at a high level in the ventral midbrain, in-
cluding substantia nigra, and to a lesser extent in the
kidney and skeletal muscle [182].

CLNI12/ATP13A2 gene product is targeted to the
acidic compartments of the cell including the late endo-
some and lysosome [182, 183]. Cultured fibroblasts de-
rived from patients with Kufor-Rakeb syndrome as well
as ATP13A2-deficient cell lines have demonstrated that
loss of this protein impairs lysosomal acidification,
which in turn impairs the degradation of cargo by lyso-
somal hydrolases disrupting lysosome-mediated clear-
ance of the autophagosomes [182, 184]. Recently, it has
been uncovered that impaired CLNI2/ATP13A2 func-
tion causes oxidative-stress in human neuroblastoma
cells [185]. Interestingly, oxidative-stress is found to in-
crease the expression of the CLNI2/ATP13A2-mRNA
[186]. A comprehensive review on this subject has been
published linking its role as a cation transporter regulat-
ing Mn? *, Zn> *, Mg®> * homeostasis with H" ions con-
centration in the cell [187]. A pathogenic link has been
suggested between CLN12/ATP13A2 and Parkinsonism as
they both protect neurons against a-Syn toxicity. Since
cation regulation and homeostasis are vital for neuronal
function including intra- and inter-cellular signaling [188],
the loss of transporter function of the ATP13A2 may ex-
plain the dysregulated neurotransmission and eventual de-
mentia characteristic of CLN12 disease.

CLN13/CTSF

The CLN13 gene encodes cathepsin F (CTSF) and muta-
tions in this gene were originally reported in mice [189],
which develop neurological disease with accumulation of
autofluorescent material in neurons of the cerebral cortex,
hypothalamus, cerebellar Purkinje cells and other regions
of the brain. The neurological disease develops between
12—16 months of age and is characterized by the lack of
coordination, muscular weakness and premature death.
The pathological findings in the brain also include numer-
ous activated microglial cells [189]. Recently, 3 families
with adult-onset NCL causing dementia and motor distur-
bances without epilepsy have been described [190, 191].
These patients carried rare mutations in the CTSF gene,
which were identified after linkage analyses, and exome se-
quencing. CTSF is a cysteine protease consisting of 484
amino acids. It contains a 251-amino acid pro-peptide con-
sisting of a N-terminal cystatin-like pro-region, which
works as a cysteine protease inhibitor [192]. Synthesized in
the ER, CTSF is tagged with mannose 6-phosphate resi-
dues in the cis-Golgi and transported by CI-M6PR to the
late endosomal/lysosomal compartment [193]. CTSF is
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expressed at a high level in cerebrocortical, hippocampal
and cerebellar neurons [190]. Although CTSF is recog-
nized as a lysosomal cysteine proteinase, its in vivo func-
tion remains obscure. Targeted-disruption of the CTSF
gene in mice has been carried out and phenotypic
characterization of the CTSF” animals shows that they are
apparently healthy and reproduced normally. However,
these mice manifested progressive weakness in their hind
legs and declining motor coordination at 12 to 16 months
of age. This was followed by significant weight loss leading
to death. Pathologic analysis of the CTSF-deficient neurons
showed accumulation of eosinophilic granules that had
characteristics of lysosomal lipofuscin as well as elevated
levels of autofluorescent lipofuscin, which are characteristic
of all NCLs. These findings may indicate that CTSF either
only mildly affects the phenotype or is mildly compensated
by other gene product(s). Thus, the phenotypic manifest-
ation of CTSF-deficiency requires a longer period for the
manifestation of CLN13-disease symptoms [190].

CLN14

Progressive myoclonic epilepsy (PME) is a clinically
defined epileptic syndrome that manifests as myoclonic
seizures and progressive neurological dysfunction [194,
195]. Mutations in the potassium channel tetrameriza-
tion domain-containing protein 7 (KCTD7) have been
extensively linked to progressive myoclonic epilepsy
[196]. Moreover, homozygous mutations in the KCTD7
gene have been reported to cause a subtype of NCL dis-
covered in two siblings in a Mexican family who pre-
sented with infantile-onset, progressive myoclonic
epilepsy, cognitive impairment, loss of vision, motor re-
gression, and premature death. Pathological analysis
showed prominent NCL-type storage material [197].
Further analyses showed that these patients carried a
missense mutation in the KCTD7 gene and pathological
analysis showed autofluorescent storage material charac-
teristic of the NCLs. Currently, KCTD7 gene represents
CLN14 [197].

KCTD7 is a member of the KCTD protein family
[198]. It is a highly conserved protein consisting of 289
amino acids, and in the mouse, it is predominantly
expressed in the cerebrocortical and cerebellar Purkinje
cells as well as in the pyramidal cell layers of the hippo-
campus [197]. It is a soluble cytosolic protein. The struc-
ture and localization of KCTD7 in various organs
suggests that it is involved in hyperpolarization of the
cell membrane via interaction with a component of the
ubiquitin ligase complex [198]. In a patch clamp study,
it has been demonstrated that KCTD7 overexpression in
murine neurons hyperpolarizes the cell membrane and
decreases excitability of these cells. Moreover, KCTD7
directly interacts with Cullin-3, a component of E3
ubiquitin-protein ligases, for degradation by ubiquitin-
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proteasome system. Furthermore, missense mutations in
the KCTD gene found in CLNI4 disease, disrupt
KCTD7-Cullin-3 interactions, which suggests that
such mutations may impair cellular degradative process
[197, 198].

Emerging new roles of the lysosome in the context of
NCLs

How might emerging new roles of the lysosome clarify
the differential pathologic manifestations in the NCLs ?
The lysosome has been known as the major degradative
and recycling organelle in the cell. However, it is in-
creasingly being recognized as a “command and control
center for cellular metabolism” [199]. A clear under-
standing of the emerging new roles of the lysosome as a
“regulatory Hub” [200] in the cell may clarify how muta-
tions in 13 different CLN genes may impair lysosomal
function. The endo-lysosomal pathway requires coordi-
nated expression and action of various components that
regulate the action(s) of the acid hydrolases, lysosomal
acidification machinery, and the lysosomal membrane
proteins. Recently, it has been reported that a motif (10
base pair sequence) near the transcription initiation site
of many genes, designated as coordinated lysosomal ex-
pression and regulation (CLEAR), controls the expres-
sion of the genes that encode many lysosomal proteins
[12]. The transcription factor EB (TFEB), upon trans-
location to the nucleus, binds to the CLEAR element
and promotes the expression of many genes encoding
lysosomal proteins [53]. Indeed, the CLEAR element is
found in many genes encoding both non-lysosomal and
lysosomal proteins including LAMP1, NPC1 and NPC2,
[-galactosidase, CTSD, CLN3 and CLNS5 [12]. However,
TFs other than TFEB may also regulate the transcription
of proteins such as progranulin, which is associated with
neurodegenerative disorders like FTLD and neurodegen-
erative LSDs like CLN11 disease [180]. Notably, in the
LSDs, the TFEB translocates from the cytoplasm to the
nucleus activating its target genes. However, the phos-
phorylation of TFEB by mTORCI1 prevents its transloca-
tion from the cytoplasm to the nucleus. These events
attest to the fact that a genetic program regulates lyso-
somal biogenesis and function [201, 202]. It is note-
worthy that the activation of mTORC1 impairs
autophagy [199] and dysregulation of lysosomal acidifi-
cation impairs autophagy in common neurodegenerative
diseases like Alzheimer’s [44, 203]. Moreover, mTORC1
activation has been reported in JNCL [84] and recently,
it has been shown that TFEB activation by
mTORCI1-independent pathway can be stimulated by
suppression of Akt by trehalose, which appears to be
neuroprotective and lifespan expanding in a mouse
model of CLN3-disease [106]. In virtually all LSDs in-
cluding most of the NCLs lysosomal acidification is
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dysregulated [25, 26, 67]. Since dysregulation of autoph-
agy has been suggested as a common mechanism under-
lying pathogenesis of the LSDs including the NCLs [16],
suppression of mTORCI activation is being considered
as a therapeutic strategy for these diseases.

Within less than a decade, the discovery that the lyso-
some responds to environmental cues by sensing the nu-
tritional status of the cell and regulating both cellular
clearance and energy production has opened a new era
in lysosomal research. It has been reported that activa-
tion of mTORCI1 localized on the lysosomal membrane
regulates cellular growth and homeostasis [204]. In this
regulatory system, the nutrients in lysosomal lumen pro-
mote TFEB-phosphorylation catalyzed by mTORCI,
which inhibits the activity of TFEB. Notably, inhibition
of mTORC1 by its inhibitors like rapamycin, activates
TEEB by its translocation to the nucleus. Similar results
were obtained when the cells were starved to deplete nu-
trients like amino acids in the lysosomal lumen. Interest-
ingly, the Rag GTPases in coordination with the
v-ATPase-Ragulator complex sense lysosomal amino
acids activating mTORCI. Thus, the lysosome appears
to sense its luminal content to regulate its own biogenesis
by an “inside-out” signaling mechanism, which requires
both TFEB and mTOR [54, 205]. Notably, S6K1 is phos-
phorylated by mTORC1 and in the brain of ClnI”" mice
elevated p-S6K1 levels have been reported [206] suggest-
ing dysregulation of mTORC1, which may impair autoph-
agy. The mTORC1 is a multiprotein complex, which
together with the Rag GTPases, Ragulator, and the
v-ATPase, forms an amino acid-sensing machinery on
lysosomal surface, which at multiple levels affects the de-
cision between cell growth and catabolism [204]. More-
over, diminished mTORC1-dependent JNK activation in
Drosophila has been shown to cause neurodevelopmental
defect. An elegant review on the roles of mTOR activation
in several neurodegenerative diseases has recently been
published [205]. Although the mTORCI1 signaling in NCL
diseases has not been studied extensively, it has recently
been reported that mutations in the CLN7 gene cause de-
pletion of soluble lysosomal proteins, which impair mTOR
reactivation [136]. It is likely that mTOR signaling abnor-
malities may underlie pathogenesis of other NCLs besides
CLN7-disease.

Recently, it has been uncovered that in Pptl-deficient
Clnl”" mice, the misrouting of VOal subunit of the lyso-
somal v-ATPase dysregulates lysosomal acidification
[68]. Since v-ATPase on the lysosomal membrane is one
of the components of the nutrient sensing machinery
which regulates mTORC]1 signaling [Fig. 3], it is possible
that mTORCI signaling is defective in all NCLs includ-
ing the CLNI-disease. This is one area of investigation
that may provide insight into the pathogenesis of INCL.
Interestingly, dysregulated lysosomal pH, which is also
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Fig. 3 Lysosome as the nutrient sensor and signaling hub of the cell. Emerging evidence indicates that the lysosome in addition to performing
its digestive function also acts as a signaling hub for regulating cellular metabolism. In growing cells, signals from amino acids (e.g. arginine,
leucine etc), within the lysosomal lumen are integrated upstream of the Rag and Rheb GTPases to promote recruitment of mTORC1 on lysosomal
membrane leading to its activation. Signals from other factors such as oxygen and growth factors are also integrated in this fashion by the
AKT-TSC pathway. Upon activation, AKT relieves the TSC complex from inhibiting Rheb. The v-ATPase, Ragulator, Rag GTPases and SLC38A9 also
participate in the complex process of mTORC1-translocation to the lysosomal membrane where it is activated. Disruption of one or more of these
signaling inputs may impair mTORC1 signaling and its recruitment to the lysosomal membrane suppressing its kinase activity. It should be noted
that in a nutrient replete state the mTORC1 activation stimulates cell proliferation (anabolic effect), whereas in nutrient depleted state mTORCT is
inactive allowing autophagic pathway to be active (catabolic effect). Most notably, inhibition of mTORC1 by rapamycin and its analogs has been
reported to ameliorate pathology and increase lifespan. Abbreviations used: mTORC1, mechanistic target of rapamycin complex 1; AKT, Protein
kinase B; TSC, Tuberous sclerosis complex; IGFR, Insulin-like growth factor receptor
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reported in many LSDs, impairs mitochondrial function
and shortens lifespan in yeast [207]. Cumulatively, these
results demonstrate the importance of both cytosolic
and lysosomal pH in cellular homeostasis and lifespan.

Current and emerging therapeutic strategies

Unlike those LSDs, in which the pathologic manifesta-
tions occur predominantly in the visceral organs, NCLs
pose a significant therapeutic challenge. This is primar-
ily because these diseases manifest mainly in the central
nervous system, which is relatively inaccessible due to
the blood-brain barrier. Moreover, in most of the NCL
forms, the disease onset occurs in early childhood while
in others the disease progression is very rapid; for a
treatment to be effective, it needs to be initiated as
early as possible to prevent significant neuron loss. Be-
cause the NCLs are rare diseases, most physicians are
unfamiliar with their clinical manifestations. Thus, by

the time a genetic diagnosis is firmly established, sig-
nificant neuron loss has already occurred. Despite these
obstacles, progress towards therapeutic development
continues to be made.

Among the therapeutic strategies, enzyme replacement
therapy (ERT) as well as gene therapy for the CLNs are
making steady progress. However, small molecules that are
non-toxic, cross the blood-brain-barrier and mimic the
function of the mutant gene may be a valuable addition to
the other therapeutic strategies. Recently, attempts are be-
ing made to identify and characterize thioesterases-
mimetic small molecules for the treatment of INCL. Since
nucleophilic attack cleaves the thioester linkage in
S-palmitoylated proteins (constituents of ceroid), it was
reasoned that nucleophilic small molecules, such as cyste-
amine and N-acetylcysteine, alone or in combination, may
have therapeutic potential for INCL. These compounds
have been tested first in vitro using cultured cells from
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INCL patients [208]. Based on the results of in vitro stud-
ies, a combination of these compounds has been tested in
a clinical trial. While the results showed some modest
beneficial effects, the patients eventually succumb to the
disease [209]. Further efforts to find more potent
thioesterases-mimetic small molecules resulted in the iden-
tification of a non-toxic small molecule, N-tert-(Butyl) hy-
droxylamine (NtBuHA), which is undergoing pre-clinical
testing in ClnI”" mice. Treatment of ClnI”~ mice with oral
NtBuHA showed its neuroprotective and lifespan extend-
ing effects in these animals [210]. Pre-clinical studies on
this small molecule are currently ongoing.

Nonsense mutations in the CLNI gene can cause
INCL and the availability of nonsense- suppressors
prompted the testing of at least one such compound,
PTC124 [211]. Previously, PTC124 has been tested
in vitro using cultured fibroblasts and lymphoblasts from
INCL patients to override the premature stop codons
resulting from nonsense mutations. However, this treat-
ment yielded only a very modest increase in Pptl en-
zyme activity [212]. This study was followed by the
generation of two Clnl-knock-in (KI) mouse models car-
rying a lethal nonsense mutation in the ClnI gene com-
monly found in INCL patients in the US [213, 214]. In
one study [213], PTC124 was tested in vivo using
Ppt1-KI mice, which yielded promising results.

Several ongoing preclinical studies demonstrating the
efficacy of Pptl enzyme replacement therapy [215-217]
as well gene therapy [218, 219] continue to pave the way
for clinical trials in INCL patients. Recently, it has been
reported that a commonly used GAP junction inhibitor,
carbenoxolone (CBX), a compound that has been pro-
posed to modify lipid microdomains and corrects defect-
ive membrane fluidity in Cln3-deficient endothelial cells,
which ameliorates defects in endocytosis, caveolin-1 dis-
tribution at the plasma membrane, and Cdc42 activity
[220]. Remarkably, treatment of the Cln3-deficient mice
with CBX improved the status of blood-brain-barrier
and reduced autofluorescence. Since CBX has been used
in humans it has been suggested that CBX and related
compounds may have therapeutic potential for patients
with CLN3-disease [220]. The current and emerging
therapeutic approaches are presented in several excellent
articles [221-227]. More specifically, the current thera-
peutic approaches, which have reached pre-clinical or
clinical trials, include CLN1, CLN2, CLN3 and CLN6 dis-
eases (Table 3). Both small and large animal models of
various forms of NCLs are being developed. These animal
models are likely to be very useful for the preclinical
evaluation of novel therapeutic strategies. In this regard, a
recently published comprehensive review provides an ex-
tensive list of small and large animal models of various
NCL forms [228]. Detailed information on various clinical
trials can be found in http://clinicaltrials.gov.
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Outlook

The lysosome, with its uniquely acidic pH and acid hy-
drolases, is the terminal organelle shared by both endo-
cytic and autophagic pathways of degradation. Since the
discovery of the lysosome more than six decades ago,
tremendous progress has been made towards identifying
the mutated genes underlying LSDs. However, the mech-
anism(s) by which these mutations impair lysosomal
function, causing pathogenesis of the neurodegenerative
LSDs, remains poorly understood. Unravelling the com-
plexity and molecular mechanisms that underlie the
endo-lysosomal system and delineating the nature of the
pathophysiology of neurodegenerative disorders in gen-
eral remain a formidable challenge. Currently a major
objective in the treatment of the LSDs and other com-
mon proteinopathic neurodegenerative disorders has
been the substrate reduction and clearing of the lyso-
somes. Although this approach has been moderately suc-
cessful in treating LSDs that involve the visceral organs,
it shows limited benefits at best for the neurodegenera-
tive LSDs like the NCLs. While we continue to learn
more about the biological functions of the mutant genes,
as related to the pathophysiology of these diseases, the
development of mechanism-based treatment may be
possible. The development of new vectors for gene ther-
apy is another avenue that may be successful in the fore-
seeable future. The emerging new roles of the lysosome
as they relate to the LSDs and common neurodegenera-
tive diseases may further advance our understanding of
the pathogenic mechanisms underlying these diseases
and facilitate the development of novel therapeutic strat-
egies. Correlation of basic and clinical data from differ-
ent therapeutic trials may also contribute to our
understanding of these diseases and further identify novel
therapeutic targets. It is hoped that in the ensuing years,
we will be able to address the following basic questions: (i)
what are the critical elements that regulate the
endo-lysosomal transport system and what makes this sys-
tem dysfunctional in neurodegenerative LSDs; (ii) what
roles do the lysosomal membrane proteins and their
post-translational modifications play in regulating nutrient
sensing and mTOR-signaling and how are they dysregu-
lated in neurodegenerative LSDs; (iii) what are the critical
elements that regulate membrane fusion between
endosome-lysosome and autophagosome-lysosome and
(iv) what mechanisms underlie dysregulation of lysosomal
acidification in virtually all LSDs as well as in common
neurodegenerative diseases. It has recently been proposed
that since lysosomal acidification is dysregulated in most
LSDs, reacidification of the lysosome may be one of the
therapeutic approaches to be considered. Finally, we must
aspire to understand what therapeutic interventions can
counteract the above-mentioned dysfunctions and what
interventions may have a positive impact to ameliorate
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NCL-related Natural History/ Treatment National Study Location Status Phase
proteins Clinical Trial
Number
CLNT Single Group Assignment, Procedure: Surgery to implant human CNS stem  NCT00337636  Oregon Health and ~ Completed Phase
cells, single dose Science University 1
Drug: Immunosuppression for 12 months post transplant StemCells, Inc.
Single Group Assignment, Interventional, Small Molecule, Cystagon and N-  NCT00028262  NICHD/NIH Completed Phase
acetylcysteine 4
CLN2 Single Group Assignment, Biological, ERT (BMN-190 [recombinant human ~ NCT01907087 ~ NCH® Completed Phase
tripeptidyl peptidase-a (hTPP1/cerliponase alfa)l), 30-300 mg ICV infusion University Hamburg- 1/2
administered every other week for at least 48 weeks Eppendorf
Guy's St & Thomas
NHS Foundation
Trust
Hospital for NHS
Foundation Trust
BioMarin
Pharmaceutical
Parallel Assignment, Biological, AAVrh.10CUhCLN2 (either 9.0 x 10711 or NCT01414985 WCMC® Active, not  Phase
2.85x 10711 genome copies) recruiting  1&2
Parallel Assignment, Genetic: AAVrh.10CUhCLN2 (either 9.0 x 10711 or NCTO1161576  WCMC Active, not  Phase
2.85x 10711 genome copies) recruiting 1
Parallel Assignment, Genetic: AAV2CUhCLN2 (3 x 10712 particle units) NCT00151216  WCMC Active, not  Phase
recruiting 1
Observational, Case-Only NCT01035424  WCMC Active, not  N/A
recruiting
Single Group Assignment, Biological: BMN-190, 300 mg ICV infusion NCT02485899  Columbus, Ohio, Active, not  Phase
administered every other week for up to 240 weeks United States recruiting  1/2
Device: Intraventricular access device, surgical implantation of an MRl Hamburg, Germany
compatible ICV access device in the lateral ventricle of the right Rome, Italy
hemisphere London, United
Kingdom
BioMarin
Pharmaceutical
Single Group Assignment, Biological: BMN-190 & recombinant human NCT02678689  Columbus, Ohio, Enrolling Phase
tripeptidyl peptidase-1 (hTPP1), an age-appropriate dose of BMN 190 United States by 2
administered via intracerebroventricular (ICV) infusion every other week Hamburg, Germany  invitation
(gow) for a duration of 144 weeks Rome, Italy
Device: Intraventricular access device, surgical implantation of an MRl London, United
compatible ICV access device in the lateral ventricle of the right Kingdom
hemisphere BioMarin
Pharmaceutical
Observational, Natural History, Primary Outcome: correlation analysis NCT00151268 ~ WCMC Completed N/A
between genotype (genetic constitution) and baseline [time frame: 18
months]
Single Group Assignment, Procedure: Surgery to implant human CNS stem  NCT00337636 ~ Oregon Health and ~ Completed Phase
cells (HUuCNS-SC) Science University 1
Drug: Medication to suppress the immune system for 12 months post StemCells, Inc.
transplant
CLN3 Crossover Assignment, Drug: Small Molecule (Mycophenolate mofetil) NCT01399047  University of Completed Phase
Rochester 2
Natural History, Cohort NCT03307304  NICHD/ NIH Recruiting
CLN6 Observational/Natural History, Primary Outcome: disease progression [time  NCT03285425 NCH Recruiting  N/A
frame: 3 years]
Single Group Assignment, Gene Therapy, Drug:scAVW9.CB.CLN6 NCT02725580  NCH Recruiting  Phase
administered by intrathecal injection 1/2
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Table 3 A partial list of completed or ongoing NCL clinical trials® (Continued)

NCL-related Natural History/ Treatment National Study Location Status Phase
proteins Clinical Trial
Number
General Observational [Patient Registry], Cohort, NCT01873924  University of Recruiting  N/A
Batten Primary Outcome measures: Refinement and validation of UBDRS, The Rochester
Disease natural history of Batten Disease [both time frames:10 years]
Observational, Cross-Sectional Primary Outcome measure: sleep NCT01966757  NCH Completed N/A

disturbance

Secondary Outcome measure: epilepsy onset, Blindness [both time frames:

1 year]

For a complete list of clinical trials go to: https://Clinicaltrials.gov
PNCH, Nationwide Children’s Hospital
‘WCMC,Weill College of Medicine, Cornell University

9dNICHD, National Institute of Child Health and Human Development, NIH, National Institutes of Health

these defects. Our efforts to answer the above questions
may enable us to develop effective therapeutics for the
neurodegenerative LSDs, which mostly affect children.
We anticipate that advances in our understanding of the
disease mechanism(s) coupled with the improved methods
of restoring normal lysosomal function by small molecules
that cross the blood-brain barrier, the development of
novel strategies to deliver the missing gene product, and
the generation of vectors to deliver gene therapy to the
brain may lead to effective treatments for these devastat-
ing diseases.

Conclusion

In summary, endolysosomal and autophagic dysfunction
underlie most of the LSDs and neurodegeneration is a dev-
astating manifestation in most of these diseases. Neuronal
ceroid lipofuscinoses are the most common neurodegener-
ative LSDs that mostly affect children. Although the mutant
genes underlying each of the 13 NCL forms have been
identified and characterized, the physiological functions of
the gene products remain poorly understood. Conse-
quently, the pathogenic mechanism(s) of the NCLs remain
elusive despite intense investigations. While major advances
towards understanding the pathophysiology of the NCLs
have been achieved more research is needed to arrive at the
finish line. Despite the lack of mechanistic understanding
of these diseases, progress is being made towards the
development of effective therapies. In this regard, animal
models are a very useful tool. Although replacement of the
missing gene product and gene therapy approaches have
made significant progress, and some are in clinical or
pre-clinical trials, efforts to develop mechanism-based ther-
apeutics should continue. Another area of research that
needs more attention is the search for biomarkers for each
of the NCL forms. The emerging new roles of the lysosome
is an area of research that promises to yield new informa-
tion on all LSDs including the NCLs.
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