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Abstract

phosphorylation

Background: The molecular mechanism underlying progressive memory loss in Alzheimer's disease is poorly understood.
Neurogenesis in the adult hippocampus is a dynamic process that continuously changes the dentate gyrus
and is important for hippocampal plasticity, learning and memory. However, whether impairments in neurogenesis
affect the hippocampal circuitry in a way that leads to memory deficits characteristic of Alzheimer's disease is
unknown. Controversial results in that regard were reported in transgenic mouse models of amyloidosis.

Methods: Here, we conditionally ablated adult neurogenesis in APPswe/PSTAE9 mice by crossing these with
mice expressing nestin-driven thymidine kinase (6-HSV-TK).

Results: These animals show impairment in performance in contextual conditioning and pattern separation
tasks following depletion of neurogenesis. Importantly, these deficits were not observed in age-matched
APPswe/PSTAE9 or 6-HSV-TK mice alone. Furthermore, we show that cognitive deficits were accompanied by
the upregulation of hyperphosphorylated tau in the hippocampus and in immature neurons specifically. Interestingly,
we observed upregulation of the immediate early gene Zif268 (Egr-1) in the dentate gyrus, CA1 and CA3 regions of
the hippocampus following learning in the neurogenesis-depleted &-HSV-TK mice. This may suggest overactivation of
hippocampal neurons in these areas following depletion of neurogenesis.

Conclusions: These results imply that neurogenesis plays an important role in the regulation of inhibitory circuitry of
the hippocampus. This study suggests that deficits in adult neurogenesis may contribute to cognitive impairments, tau
hyperphosphorylation in new neurons and compromised hippocampal circuitry in Alzheimer’s disease.
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Background

The mechanism underlying cognitive deficits in Alzheimer’s
disease (AD) is not fully elucidated [1]. Normal age-related
memory loss is thought to begin in the dentate gyrus (DG)
[2]. This observation is supported by high-resolution fMRI
[3-5] and cognitive studies [6—9]. In AD, neuronal loss
in the entorhinal cortex is preceded by a long period of
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deficits in the connectivity of the hippocampal formation
[10]. In the hippocampus there is an age-dependent
decrease in the number of new neurons that are being
continuously added to the dentate gyrus in rodents
[11-16]. Similarly there is a decline in adult neurogenesis
in humans [17-20]. This is compounded by changes in
synaptic structure. In both rodents and humans the density
of synaptic contacts formed onto granule cells of the DG is
reduced with age [21, 22].

In familial Alzheimer’s disease (FAD)-linked APPswe/
PSIAE9 mice, hippocampal neurogenesis is impaired in
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young adults, prior to cognitive deficits or the appearance
of amyloid plaque pathology [23]. Similar observations of
neurogenic impairments were independently confirmed in
the 3xTg-AD mouse [24, 25] (review [26, 27]). Addition-
ally, in vitro studies of neural progenitor cells (NPCs), iso-
lated from the subgranular layer of APPswe/PS1AE9 mice,
show both expression of hyperphosphorylated tau and
reduced proliferation [23]. Nevertheless, there have been
contradicting reports about the fate of neurogenesis in
FAD, and the contribution of neurogenesis to AD remains
controversial [1, 28, 29].

Significantly, there is overlap between FAD related pro-
teins and proteins regulating adult neurogenesis (review
[26, 27]). In particular, presenilin 1 (PS1) regulates neural
progenitor cell differentiation in vitro and in vivo [30].
Additionally, soluble amyloid precursor protein alpha
(sAPPa), a cleavage product of the amyloid precursor pro-
tein (APP), acts as a proliferation factor on NPCs in the
adult brain [31, 32]. PS1/y-secretase regulates the metab-
olism of critical players in neurogenesis, such as notch-1,
EGEF, [B-catenin and cAMP response element binding
protein (CREB), all of which are important neurogenic sig-
nals. Changes in PS1 function could alter these signaling
factors and thus affect neurogenesis. Importantly, we have
shown that downregulation of PS1 compromises the mat-
uration of new neurons, suggesting that defective neurons
incorporate into the dentate gyrus [33].

In light of that, in this study we attempted to address
three fundamental questions: 1. Does depletion of hippo-
campal neurogenesis promote cognitive decline observed
in AD? 2. Does depletion of hippocampal neurogenesis
promote AD-related neuropathology? and 3. Does deple-
tion of hippocampal neurogenesis alter the hippocampal
circuit? To address these questions, we conditionally
ablated neurogenesis in APPswe/PS1AE9 mice using nestin-
regulated expression of thymidine kinase (8§-HSV-TK).
We show that depletion of adult neurogenesis in APPswe/
PS1AE9 impaired performance in contextual conditioning
and pattern separation tasks. These deficits were not ob-
served in age-matched APPswe/PS1AE9 mice. Furthermore,
depletion of neurogenesis induced hyperphosphorylation of
tau in the hippocampus. However, we observed no effect of
neurogenesis on level of oligomeric AP in the entorhinal
cortex of these mice. Importantly, we show overactivation of
neurons in the dentate gyrus, CA3 and CALl regions of the
hippocampus following depletion of neurogenesis, suggest-
ing that neurogenesis plays an important role in regulating
neuronal activation in the hippocampus. In summary, this is
the first study to examine the effect of reduced neurogenesis
on the development of cognitive deficits and AD. Com-
bined, the results of this study suggest that reduced levels of
hippocampal neurogenesis can induce cognitive dysfunction
and tau pathology characterizing AD, and interfere with
hippocampal function.
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Methods

Animals

Animal care procedures were conducted according to
the National Institutes of Health Guide for the Care and
Use of Laboratory Animals. Our colony is maintained
via group housing (<5 mice per cage) in a high barrier
facility under a 14:10 light:dark cycle with free access to
food and water. FAD-linked APPswe/PS1AE9 mice [34]
and Nestin-6-HSV-TK mice [35] were generated as pre-
viously described. To maintain consistency of pathology
progression and avoid gender-related disparate observa-
tions, mice used in this study were all females. Mouse
euthanasia was performed using isofluorane and cervical
dislocation.

Valganciclovir treatment

Valganciclovir powder was mixed into mouse chow (.09%,
Valcyte, valganciclovir hydrochloride) and given ad libitum
for an average dose of ~90 mg/kg/day (Custom Animal
Diets, LLC (Easton, PA)). Animals were fed either
Valganciclovir- containing chow or standard chow
(“vehicle”) right after weaning for 2 months. At the
end of this period mice were subjected to behavioral tests,
i.e, contextual fear conditioning and pattern separation
sequentially. A separate group of mice was subjected to
pattern separation followed by a single probe test, as de-
scribed in Fig. 5. Following sacrifice, brains were analyzed
as described below.

Contextual fear conditioning

Performed as previously described [36]. Conditioning
was conducted in two distinct contexts: context A with
the shock, and context C without the shock. Both test
cages (17.8 x 17.8 x 30.5 cm) were encased by isolation
cubicles. Context A had two plexiglass walls, two metal
walls and a stainless steel grid floor (Coulbourn Instru-
ments). The light and fan were turned on. A mild lemon
blossom scent was used, and 70% ethanol for cleaning.
Context C had the light and fan turned off, the chamber
door ajar, a mild anise scent, and Clorox disinfecting
wipes for cleaning. The shape of the chamber was altered
with a plastic circular insert, and a plastic flooring was
placed on top of the stainless steel grid floor with cage
bedding added. Motion was recorded by a digital video
camera mounted above the test cage. On day O mice were
tested only in context A, then for 3 consecutive days in
both A and C context with an hour separation. In test
cage A the mice received a single 2 s foot shock (0.75 mA
at the 185th second). FreezeFrame and FreezeView soft-
ware (Actimetrics) were used for recording and analyzing
freezing behavior. Percentage of freezing during the first
180 s in each context for each day was computed. Dis-
crimination ratios were calculated using the formula:
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Discrimination Ratio = (Freezing A~ Freezingc) /

(Freezing AT FreezingC).

Pattern separation

Performed as previously described [33]. Conditioning
was conducted in two similar contexts: the shock context
A, and the similar context B. Both cages had two clear
Plexiglas walls, two grey metal walls and a stainless steel
grid floor (Coulbourn Instruments). In cage A the house
light and fan were turned on. A mild lemon blossom scent
was used. Cages were cleaned with 70% ethanol prior to
mouse placement. Test cage B differed from test cage A in
that the metal walls had black and white inserts, the house
light and fan were turned off and the chamber door was
left ajar. A mild peppermint scent was used, and Clorox
disinfecting wipes. On day 0 mice were exposed only to
the training context A. For the next nine consecutive days
mice were exposed to A and B in a randomized order.
Discrimination ratios were calculated using the formula:

Discrimination Ratio = (Freezing, — Freezingg)/

(Freezing, + Freezingg).

BrdU injections

Two doses of 5'-bromo-2’-deoxyuridine (BrdU; Sigma)
were administered four hours apart intraperitoneally
(100 mg/kg), in physiological saline. Animals were sacri-
ficed four weeks later.

Brain tissue processing

For immunohistochemical staining, all mice were anes-
thetized using overdose of isofluorane and transcardially
perfused with ice-cold PBS. Removed brains were halved
on the sagittal plane, and half placed into 4% parafor-
maldehyde and half saved for western blot.

Immunohistochemistry

50 pm sagittal sections cut using a sliding freezing
microtome (Leica Biosystems, Buffalo Grove, IL) were
stored in cryoprotectant (glycerol, ethylene glycol, 1X
PBS) at -20 °C. The following antibodies were used: rat
anti-BrdU (1:400; Accurate Chemical & Scientific Corp.,
Westbury, NY), mouse anti-nestin (1:100; Millipore
Corporation, Billerica, MA), goat anti-doublecortin (DCX;
1:400; Santa Cruz Biotechnology, Santa Cruz, CA), mouse
anti-NeuN (1:400, Millipore, Temecula, CA), rabbit anti-
Egr-1 (1:250, Santa Cruz Biotechnology, Santa Cruz, CA),
goat anti-green fluorescent protein (GFP, 1:1000, Abcam,
Inc. Cambridge, MA) and mouse anti-green fluorescent
protein (GFP, 1:200; Santa Cruz Biotechnology, Santa Cruz,
CA). Secondary antibodies from Jackson ImmunoResearch
Laboratories (West Grove, PA): biotinylated species-specific
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anti-IgG (all used at 1:250), Cy3-conjugated Donkey anti-
Rabbit (1:250), Cy3-conjugated Donkey anti-Rat (1:250),
Alexa Fluor 647 (AF647)-conjugated Donkey anti-Mouse
and anti-Rat (1:250), Cy2-conjugated Streptavidin (1:250),
DAPI Nucleic Acid Stain (1:2500, Life Technologies, Grand
Island, NY).

Stereological quantification

Cell counts were performed using design-based stereology
(Stereolnvestigator version 8, MBF Bioscience). For the
analysis, every sixth section of brain tissue was quanti-
fied by applying the Nv x VRef method. Sections were
traced using a Zeiss AX10 microscope (Carl Zeiss Ltd.,
Hertfordshire, England) in low magnification (5x) and
counting was performed at high magnification (63x), count-
ing frame = 100 pm x 100 pm, grid size 100 um x 100 pum,
and all sections were counted using 12.5-um top and
bottom guard zones.

Dot-blot for Oligomeric AR

Entorhinal cortex underwent extraction for isolating the
water soluble A fraction for dot-blot analysis as previously
described [37]. Briefly, entorhinal cortex was homogenized
in 1X PBS containing protease inhibitor cocktail (1:100,
Sigma-Aldrich #P8340) followed by ultracentrifugation at
100,000 g for 1 h at 4 °C. The water-soluble fraction was
quantified via the BCA method and 25 pg total protein
was blotted onto prewet nitrocellulose membrane in
the dot-blot apparatus (Bio-Rad Bio-Dot Microfiltration
Apparatus). The membrane was then washed once in
TBS and was blocked in 5% nonfat milk in 1X TBS + 0.01%
Tween 20 (TBST) for 2 h at room temperature and incu-
bated overnight at 4 °C in polyclonal rabbit anti-amyloid
oligomer (All; 1:5000; EMD Millipore #AB9234). The
membrane was then washed three times in TBST and then
incubated for 1 h at room temperature in IRDye 800CW
donkey anti-rabbit IgG (1:20,000; Li-Cor #925-32213).
The membrane was imaged using an Odyssey Fc (800
channel, 30 s acquisition) and protein expression levels
were quantified using Image Studio Lite (version 5.2.5;
Li-Cor).

Western blotting

Protein extraction of brain tissue was performed as pre-
viously [30]. Antibodies used for Western blot included
mouse anti-actin (1:5000, Millipore, Temecula, CA),
rabbit anti-amyloid precursor protein (APP, Abcam,
Cambridge, MA), mouse anti-phospho-PHF-tau (ATS,
1:500, ThermoFisher Scientific) and mouse anti-tau
(tau-5, 1:1000, Millipore, Temecula, CA). The following
secondary antibodies were used, mouse anti-HRP (1:10,000,
Thermo Scientific, Rockford, Il1) and rabbit anti-HRP
(1:15,000, Promega, Madison, WI). Protein expression
was measured in Image] and was normalized to actin.
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Statistical analysis

Stereological quantification was analyzed using two-tail
or one-tail (Fig. 5), unpaired t-test, or Welch’s unequal
variance ¢-test where appropriate. Contextual fear condi-
tioning, pattern separation, and discrimination ratios were
analyzed using repeated measures, two-way ANOVA with
Holm-Sidak multiple comparison testing. Western blot
data was analyzed using two-tail, unpaired t-test, or
Welch’s unequal variance f-test where appropriate. All
statistical analysis was done in GraphPad Prism (Version
7.01; GraphPad Software Inc., La Jolla, CA, USA). All data
shown represent mean + S.E.M. and a probability of less
than 0.05 was considered statistically significant.

Results

Ablation of adult neurogenesis in a FAD mouse model

To address the hypothesis that decreased adult neuro-
genesis will exacerbate the cognitive deficits associated
with Alzheimer’s disease, we temporally ablated neural
progenitor cells from the brains of FAD-linked APPswe/
PSIAE9 transgenic mice. For this purpose, we bred the
APPswe/PS1AE9 mice with the Nestin-8-HSV-TK trans-
genic mouse line, [35]. The Nestin-8-HSV-TK transgenic
line contains a modified version of the herpes simplex
virus thymidine kinase (TK), as well as an enhanced green
fluorescent protein (GFP), driven by the nestin promoter
and its second intron regulatory element (Fig. 1a). Admin-
istration of valganciclovir in mouse chow, which is specif-
ically phosphorylated by Nestin-6-HSV-TK, kills dividing
nestin expressing cells in these mice by acting as a toxic
thymidine analog. The number of GFP-expressing nestin
positive cells in the subgranular layer of the hippocampus
of Nestin-8-HSV-TK treated with valganciclovir is reduced
compared to vehicle-treated Nestin-6-HSV-TK mice
(Fig. 1b-f). Likewise, a dramatic decrease in GFP+
cells was observed in brain sections of APPswe/
PSIAE9;Nestin-8-HSV-TK treated with valganciclovir,
compared to vehicle-treated APPswe/PS1AE9;Nestin-
O0-HSV-TK mice (Fig. 1g-n). To determine the nature
of neurogenic deficits in valganciclovir-treated Nestin-
8-HSV-TK and APPswe/PS1AE9;Nestin-6-HSV-TK, we
quantified the number of GFP+ neural progenitor cells
(NPCs) by unbiased stereology following a two-month
valganciclovir treatment. No change in the number of
GFP + DCX- (nestin expressing NPCs; Fig. 1d) or
GFP + DCX+ (neuroblasts; Fig. 1e) was observed between
valganciclovir- and vehicle-treated Nestin-6-HSV-TK mice.
However, a significant reduction in the number of GFP-
DCX+ (immature neurons) was observed in Nestin-6-HSV-
TK mice treated with valganciclovir (Fig. 1f; two-tailed,
unpaired -test; £, = 5.589, P = 0.0008). Taken together, this
may suggest that in the tested conditions, reduced neuro-
genesis in the valganciclovir treated Nestin-§-HSV-TK mice
is manifested at the immature neuron stage. Interestingly,
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APPswe/PS1AE9;Nestin-5-HSV-TK mice treated with val-
ganciclovir displayed a significant decrease at earlier stages.
Specifically, a significant reduction in total number of nestin
expressing NPCs (GFP + DCX-, Fig. 1i; two-tailed, unpaired
t-test; to = 3.253, P = 0.0099), neuroblasts (GFP + DCX+,
Fig. 1j, two-tailed, unpaired t-test; £y = 3.305, P = 0.0092)
and immature neurons (GFP-DCX+, Fig. 1k, two-tailed, un-
paired #-test; to = 2.932, P = 0.0167) in the subgranular layer
following treatment (Valganciclovir N = 5, Vehicle N = 6).
This may suggest that in the APPswe/PS1AE9;Nestin-o-
HSV-TK mice, treatment with valganciclovir affects earlier
neurogenic populations compared to the Nestin-6-HSV-TK
mice and is manifested by a significant reduction in the
number of NPCs, neuroblasts and immature neurons. This
may further support previous reports suggesting impairment
of NPCs in FAD [30, 38]. To assess the impact on the num-
ber of newly born neurons we quantified the number of
BrdU + NeuN+ cells in the granular cell layer of the DG of
the APPswe/PS1AE9;Nestin-8-HSV-TK mice. Unbiased
stereology demonstrated a trending decrease in the total
number of BrdU+ (Fig. 11, two-tailed, Welch’s unequal vari-
ance t-test; t;034 = 2.204, P = 0.0917), BrdU + NeuN+ new
neurons (Fig. 1m, two-tailed, Welch’s unequal variance ¢-
test; 4062 = 2.077, P = 0.1054), as well as in the number of
new glia BrdU + NeuN- cells (Fig. 1n, two-tailed, Welch’s
unequal variance t-test; £, ;3, = 2.457, P = 0.0679) following
valganciclovir treatment (Valganciclovir N = 4, Vehicle
N = 5). Combined, this data demonstrates a successful abla-
tion of adult neurogenesis in APPswe/PS1AE9;Nestin-6-
HSV-TK animals, resulting in less new neurons and glia in
the granular cell layer of the DG. In addition, these results
may imply that NPCs and neuroblasts are more vulnerable
in the brains of APPswe/PS1AE9;Nestin-8-HSV-TK mice
compared to the Nestin-§-HSV-TK mice.

Ablation of adult neurogenesis in FAD mice induces
deficits in the contextual fear conditioning task

To determine cognitive performance of FAD mice fol-
lowing depletion of neurogenesis, mice were tested in
the contextual fear conditioning and the DG-specific
pattern separation tasks as previously described [36, 39].
In the contextual fear-conditioning task (Fig. 2a), age
matched wild type (Nontransgenic, N = 11, Fig. 2b) and
APPswe/PS1AE9 (Fig. 2d, n=14) mice that were fed with
vehicle chow, were able to successfully distinguish between
the two contexts, based on percentage freezing, by the end
of the second day. Discrimination ratio shows no difference
between vehicle- and valganciclovir-fed wild type (Fig. 2c)
or APPswe/PS1IAE9 mice (Fig. 2d), suggesting no side
effect of the valganciclovir on animals’ behavior. Simi-
larly, Nestin-6-HSV-TK animals fed with either vehicle- or
valganciclovir-containing chow were also able to success-
fully learn the task (vehicle-treated Nestin-8-HSV-TK
N = 12, valganciclovir- treated Nestin-6-HSV-TK N = 8,
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Fig. 2f-h respectively), suggesting that ablation of adult
neurogenesis alone is insufficient for the disruption of this
behavioral task. Vehicle treated APPswe/PS1AE9;Nestin-
6-HSV-TK animals exhibited some difficulty learning the
task on the first day, but successfully distinguished
between the two contexts on day 2 and 3 (N = 7, Fig. 2i).
Importantly, valganciclovir-fed APPswe/PS1AE9;Nestin-d-
HSV-TK mice were unable to distinguish between context
A or C on any of the days of the test (N = 9, Fig. 2j). It is
important to note that this deficit was only observed with
the combination of ablated neurogenesis and the FAD
mouse background. Nevertheless, discrimination ra-
tios revealed no significant difference in the animal’s
ability to discriminate between contexts between days
(Fig. 2k), which may suggest that the effect is very

mild. However, valganciclovir-fed Nestin-5-HSV-TK
mice had a significant Context x Days interaction (Fig. 2l,
repeated measures two-way ANOVA, Context x Days:
Fy36 = 3.56 P = 0.0388). Furthermore, on Days 2 and 3
valganciclovir-fed Nestin-8-HSV-TK exhibited significantly
increased abilities to discriminate between contexts A
and C compared to valganciclovir-fed APPswe/PS1AE9;-
Nestin-8-HSV-TK and APPswe/PS1AE9 mice (Fig. 2I; re-
peated measures two-way ANOVA, *P < 0.05, “P < 0.05,
*P < 0.01) with the genotype having a significant influence
on discrimination between contexts A and C (repeated
measures two-way ANOVA, Genotype: F,, = 7.00
P = 0.0044). To examine whether freezing behavior is the
result of anxiety rather than learning, mice were subjected
to the Light/Dark box anxiety task. However we found no
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used. A (shock) and C (no shock) are distinct contexts. Mice were fed with either vehicle or valganciclovir chow after weaning for 1.5 months
prior to the contextual fear conditioning task. b, d, f, g Based on anticipatory freezing behavior nontransgenic (N = 11) b), APPswePS1AE9

(N = 14) (d), vehicle-fed Nestin-6-HSV-TK [((f), N = 12)] and valganciclovir-fed Nestin-6-HSV-TK [(g), (N = 8)] mice are able to distinguish context A
from C (repeated measures two-way ANOVA, b. Context: F; 5o = 46.64, P < 0.0001; d. Context: F; 55 = 6.36, P = 0.0182; f. Context: F;,, = 3140,

P < 0.0001; g. Context: F 14 = 19.72, P = 0.0006). i vehicle- treated APPswe/PSTAE9;Nestin-8-HSV-TK (N = 7) are able to distinguish between the
contexts (repeated measures two-way ANOVA, i. Context: F; 1, = 7.90, P = 0.0157). j valganciclovir-treated APPswe/PSTAE9;Nestin-6-HSV-TK (N = 9)
mice are unable to distinguish between the two contexts (repeated measures two-way ANOVA, j. Context: F; ¢ = 2.82, P = 0.1125) ¢, e, h, k
Discrimination ratios in (c) nontransgenic, (€) APPswe/PSTAE9, (h) Nestin-6-HSV-TK, and (k) APPswe/PS1AE9,Nestin-6-HSV-TK revealed no significant
differences in the animal’s ability to discriminate between contexts between days; however, (h) Nestin-6-HSV-TK mice had a significant Context x Days
interaction (repeated measures two-way ANOVA, Context x Days: F»36 = 3.56 P = 0.0388). | Valganciclovir-fed Nestin-6-HSV-TK exhibited significantly
better abilities to discriminate between contexts A and C compared to valganciclovir-fed APPswe/PSTAES and APPswe/PS1AE9;Nestin-6-HSV-TK mice
(repeated measures two-way ANOVA, *Nestin-6-HSV-TK vs. APPswe/PSTAE9;, #Nestin-6-HSV-TK vs. APPswe/PSTAENestin-5-HSV-TK) with the genotype
having a significant influence on discrimination between contexts A and C (repeated measures two-way ANOVA, Genotype: F,5, = 7.00 P = 0.0044).

*P < 0.05; **P < 0.01; *¥*P < 0.001; ***P < 0,0001; *P < 0.05; #P < 001
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differences in anxiety level between any of the groups (data
not shown), suggesting that these observed deficits are not
a result of increased anxiety in the APPswe/PS1AE9;
Nestin-6-HSV-TK animals.

Ablation of adult neurogenesis in FAD mice induces
deficits in the pattern separation task

We next asked whether depletion of neurogenesis in the
FAD mice would induce difficulty learning in a known
DG-specific task, pattern separation. The challenge in
this task is the high similarity between the two contexts,
and typically the learning process is longer compared to
the contextual fear conditioning (Fig. 3a).

Vehicle chow-fed age matched wild type (Nontransgenic,
N = 11, Fig. 3b) or APPswe/PS1AE9 animals (N = 13,
Fig. 3d) were able to successfully distinguish between
the two contexts, based on percentage freezing, by the
end of the pattern separation task (repeated measures
two-way ANOVA, **P < 0.01, ***P < 0.001). Discrimin-
ation ratios of vehicle and valganciclovir-treated wild
type (Fig. 3c) and APPswe/PS1AE9 (Fig. 3e) show no
difference between the treatment groups, excluding the
possibility of side effect of valganciclovir on mouse be-
havior. Unexpectedly, Nestin-6-HSV-TK animals fed
with either vehicle or valganciclovir containing chow
were able to successfully learn the task (Vehicle-treated
N = 12, valganciclovir-treated N = 7, Fig. 3f-h; repeated
measures two-way ANOVA, *P < 0.05, **P < 0.05,
P o< 0.001, ***P < 0.0001), suggesting that either
ablation of adult neurogenesis using the Nestin-5-HSV-
TK transgenic line is insufficient for the disruption of
this behavioral task, or that our specific contexts were
not sufficiently challenging, masking the deficit. Inter-
estingly, vehicle-fed APPswe/PS1AE9;Nestin-8-HSV-TK
were able to discriminate between the tasks albeit not
all days were statistically significant (N = 7, Fig. 3i; repeated
measures two-way ANOVA, *P < 005, *P < 0.05,
**P < 0.001). This may suggest a genetic background effect
in comparison to vehicle-fed APPswe/PSIAE9 mice.
Importantly, ablation of neurogenesis in the APPswe/
PS1AE9;Nestin-6-HSV-TK mice completely disrupted the
performance of mice in the first three days of the task
(N = 8, Fig. 3j; repeated measures two-way ANOVA,
*P < 0.05). Discrimination ratios within genotype revealed
no significant differences in the animal’s ability to discrim-
inate between contexts between days (Fig. 3k), suggesting a
mild behavioral effect of neurogenesis in this task. Add-
itionally, when comparing discrimination ratios between
valganciclovir-fed Nestin-8-HSV-TK, APPswe/PS1AE9 and
APPswe/PS1AE9;Nestin-6-HSV-TK mice there was no sig-
nificance within days but there was an overall days effect
among the groups (Fig. 3l; repeated measures two-way
ANOVA, Days: F5 190 = 10.50 P < 0.0001).

Page 7 of 13

Ablation of adult neurogenesis enhances tau
hyperphosphorylation in FAD mice

Next, we asked whether, in addition to learning and
memory, hippocampal neurogenesis would affect AD
neuropathology. Western blot analysis of hippocampal
protein lysate of vehicle- and valganciclovir-treated APPswe/
PS1AE9;Nestin-6-HSV-TK animals showed that the levels of
phosphorylated tau, as detected by AT8 antibodies, demon-
strated a trending increase following ablation of adult
neurogenesis in the valganciclovir-treated APPswe/
PS1AE9;Nestin-8-HSV-TK (Fig. 4a,b). Total tau expres-
sion levels did not change (tau-5, Fig. 4a,c), while the ratio
of phosphorylated tau to total tau was significantly in-
creased (Fig. 4d; two-tailed, unpaired t-test; t; = 4.368,
P = 0.0120). This observation suggests that ablation of
adult neurogenesis induces upregulation of tau hyperpho-
sphorylation in the hippocampus. Immunohistochemical
analysis of hippocampal sections stained for phosphory-
lated tau (p-tau) and doublecortin (DCX) clearly show
AT8 immunoreactivity in DCX+ neuroblasts and new
neurons in valganciclovir-treated APPswe/PS1AE9;Nestin-
O0-HSV-TK, but not in vehicle-treated APPswe/PS1AE9;-
Nestin-6-HSV-TK mice (Fig. 4e). This may suggest that
depletion of neurogenesis compromises the regulation of
tau phosphorylation in newly differentiated neurons.
Given the critical role of tau in neuronal maturation, this
may suggest that the reduced level of neurogenesis may
lead to the incorporation of aberrant new neurons into
the hippocampus. To make sure that the observed alter-
ations in tau phosphorylation are not a side effect of the
valganciclovir treatment, we examined p-tau expression in
vehicle- and valganciclovir- treated wild type mice and ob-
served no change in p-tau expression (Additional file 1:
Figure S1). This suggests that induction of hyperpho-
sphorylated tau observed in the valganciclovir-treated
APPswe/PS1AE9;Nestin-8-HSV-TK was due to the deple-
tion of neurogenesis.

To address the effect of neurogenesis on the amyloido-
genic pathway we examined levels of full length APP in
hippocampal protein lysates of vehicle- and valganciclovir-
treated APPswe/PS1AE9;Nestin-6-HSV-TK animals. We
observed that APP levels do not change after ablation of
neurogenesis (N = 3, Fig. 4a). In addition, the level of oligo-
meric AP was comparable in water-soluble protein extracts
prepared from the entorhinal cortices of these mice
(Fig. 4f). These results suggest that the effect of deple-
tion of neurogenesis on tau may not be modulated by
amyloidosis.

Ablation of adult neurogenesis modifies hippocampal
circuit activity

To assess the impact of loss of neurogenesis on the
activity of the hippocampal circuitry we examined ex-
pression of the immediate early gene Egr-1 (zif268), as
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Fig. 3 Ablation of neurogenesis compromises pattern separation in APPswe/PS1AE9;Nestin-6-HSV-TK mice. a Schematic presentation of the
experimental paradigm used to test pattern separation. Two very similar contexts, A (shock) and B (no shock). Nontransgenic [N = 11, (b)],
APPswe/PSTAES [N = 13, (d)], vehicle- treated Nestin-6-HSV-TK [N = 12, (f)] and valganciclovir- treated Nestin-6-HSV-TK [N = 7, (g)] mice are able
to distinguish context A from B (repeated measures two-way ANOVA, b. Context: F; 5o = 18.20, P = 0.0004; d. Context: Fy 15 = 7.06, P = 0.0172; f.
Context: F15, = 13.24, P = 0.0014; g. Context: F 1, = 22.87, P = 0.0004). i vehicle-treated APPswe/PSTAE9;Nestin-&-HSV-TK mice (N = 7) exhibit
similar but not identical learning patterns to APPswe/PSTAE9 mice (repeated measures, two-way ANOVA, F; 19 = 18.09, P = 0.0017). j Valganciclovir-
treated APPswe/PSTAE9;Nestin-6-HSV-TK (N = 8) mice are unable to distinguish between the two contexts for the first three days (repeated measures,
two-way ANOVA, F; 14 = 445, P = 00534). ¢, e, h, k Discrimination ratios in (c) nontransgenic, (e) APPswe/PSTAEY, (h) Nestin-6-HSV-TK, and (k) APPswe/
PSTAE9;Nestin-6-HSV-TK revealed no significant difference in the animal’s ability to discriminate between contexts between days. | There were no
significant differences in discrimination ratios between days for valganciclovir-fed Nestin-8-HSV-TK, APPswe/PSTAE9, and APPswe/PS1AE9;Nestin-&-
HSV-TK mice but there was a significant effect overall across days (repeated measures two-way ANOVA, Days: Fs 190 = 10.50 P < 0.0001). *P < 0.05;

P < 0.01; P < 0.001; ***P < 0.0001

an indicator of neuronal activation following learning.  completion, a single probe trial of only the shock context
For this purpose, Nestin-8-HSV-TK mice fed with vehicle  was performed, and mice were immediately sacrificed and
or valganciclovir were subject to pattern separation, as  examined for Egr-1 expression (Fig. 5a). Using unbiased
above. To assess the neuronal population activated by the  stereology the number of Egr-1 expressing cells was quan-
long-term memory of context A, ten days after task tified in the granular cell layer of the DG, the CA1 region,
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and the CA3 region of these mice (N = 4). Ablation of
adult neurogenesis caused a trending increase in the num-
ber of Egr-1 expressing cells in the granular cell layer of
the DG (Fig. 5b), with a significant increase in the CA3 re-
gion (Fig. 5cef; one-tailed, unpaired ¢-test; £, = 2.302,
P = 0.0414), and the CA1 region (Fig. 5d,g,h; one-tailed,
unpaired t-test; tg = 2.039, P = 0.0438). These results sug-
gest that eliminating the presence of new neurons relieves
inhibitory circuitry in the DG-CA3-CAl. Alternatively,
this may be the result of decreased excitatory synapses
onto interneurons in the hilus.

Discussion

This study addresses three fundamental questions. First,
we examined the role of neurogenesis in cognitive deficits
in AD. We show that depletion of neurogenesis induces

mild learning and memory impairments in APPswe/
PS1AE9 mice. Previous reports show that in the APPswe/
PS1AE9 mouse model cognitive deficits can develop as
early as six months, including impairment in the fear-
conditioning task [40]. We show that depletion of neuro-
genesis in the brains of APPswe/PS1AE9 mice exacerbates
performance deficits in this task inducing deficits at
4 months of age. It should be noted that APPswe/
PSIAE9 mice exhibit impairments in neurogenesis as
early as 2 months of age characterized by both reduction
in neurogenesis as well as defective neuronal differenti-
ation [33]. Thus, the comparison between vehicle- and
valganciclovir-treated APPswe/PS1AE9; Nestin-5-HSV-TK
mice is between defective and ablated neurogenesis,
respectively. That said, in contrast to vehicle-treated,
valganciclovir-treated APPswe/PS1AE9; Nestin-5-HSV-
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TK mice were unable to learn the contextual fear
conditioning task at all. In the case of pattern separ-
ation, valganciclovir-treated APPswe/PS1AE9; Nestin-
0-HSV-TK mice were unable to learn the task for the
first three days. These results are the first evidence
that learning and memory impairments in AD can be
induced by compromising neurogenesis. It should be
noted that mice were subjected to pattern separation
following contextual fear conditioning. Thus, we can-
not exclude the possibility that the former played a
role in training them better for the latter. In such
case, this may mask the true level of the learning def-
icits of the valganciclovir-treated APPswe/PS1AE9;

Nestin-8-HSV-TK mice, who without training would
likely have taken longer to learn the task.

Notably, Valganciclovir-treated Nestin-8-HSV-TK mice,
not on an AD background, did not exhibit deficits in either
contextual conditioning or pattern separation. While
neurogenesis has not been directly implicated in con-
textual fear conditioning, its role in pattern separation
is well established [39, 41]. This may suggest that either
ablation of adult neurogenesis using the Nestin-§-HSV-
TK transgenic line is not sufficient to disrupt learning
and memory, or that our specific contexts were not suf-
ficiently challenging to unravel deficits. While previous
lesion studies of the hippocampus have shown deficits
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in pattern separation, more specific genetic modulation
of adult neurogenesis demonstrates mixed results [1].
For example, [42] found deficits in pattern separation
after ablation of nestin expressing cells using the Nestin-
rtTA, TRE-BAX transgenic line, while [43] ablated prolif-
erating GFAP expressing cells in the hippocampus and
observed no deficits in pattern separation [42, 43]. Further
studies will need to be done to determine if our result is
due to the specific transgenic line used or if aspects of our
study such as duration of feeding with valganciclovir
chow, age/gender of the animals or specific aspects of our
contextual paradigm are underlying this difference.

Second, we addressed the role of neurogenesis in
modulation of tau pathology. We show that ablation of
neurogenesis upregulates levels of hyperphosphorylated
tau, and that this effect is neurogenesis- rather than
valganciclovir-dependent. This may strongly suggest that
neurogenesis plays a major role in hippocampal mainten-
ance, and that depletion of neurogenesis compromises
neuronal viability. In addition, induction of hyperpho-
sphorylated tau in neural progenitor cells suggests that
depletion of neurogenesis may compromise the integrity
and functionality of new neurons in the hippocampus. In
contrast, we did not detect any effect of neurogenesis on
the level of full length APP or oligomeric AB. Our results
are in agreement with studies reporting lack of direct
association between amyloidosis and neurogenesis. For
instance, previous studies suggest that enhanced neuro-
genesis does not alter amyloid plaque load [44]. In turn,
amyloid does not play a major role in impairments of
neurogenesis in FAD [45].

Third, we addressed the role of neurogenesis in regula-
tion of the hippocampal circuit. It is thought that the
DG regulates pattern separation either by encoding similar
inputs with differential firing rates of place cells (rate re-
mapping) or through the recruitment of non-overlapping
engrams (global remapping) [46, 47]. However, the exact
mechanism is not fully elucidated. A recent study suggests
that neurogenesis modifies the excitability of mature DG
neurons without affecting excitability in the CA3 [48].
Another study shows that genetic suppression of adult
neurogenesis impairs pattern separation by increasing
overlap between engrams of differing contexts in CA3
cells [49]. The latter study, in agreement with ours, exam-
ined neuronal activation following a learning task, which
enhanced neuronal response in the hippocampus. We
show that depletion of neurogenesis in valganciclovir-
treated Nestin-8-HSV-TK mice induces the activation of
more neurons in the hippocampus, and that this neuronal
over-activation takes place in the DG, CA3 and CA1. This
result suggests that following depletion of neurogenesis,
more neurons get activated, thus increasing the chance of
coding overlap, which would subsequently impair pattern
separation. Notably, our results suggest that the effect of
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ablation of neurogenesis on the hippocampal circuit is
broader than previously reported. Our result may also
suggest that neurogenesis plays a major role in memory
storage and recall by regulating inhibitory networks in the
hippocampus. One possibility is that new neurons affect
the circuit by modulating the activity of the older mature
granular neurons and affecting their feedback inhibition,
which in turn, affects the CA3. Alternatively, they may
directly affect feedforward excitation and inhibition to
the CA3.

In summary, this study implies that depletion of
hippocampal neurogenesis, as occurs in the adult brain
as a function of age, may compromise hippocampal func-
tion and induce learning and memory deficits and some
neuronal pathology. Future studies should address the
possibility that enhanced neurogenesis may be protective
and reduce the risk for AD.

Conclusions

The results of this study imply that neurogenesis plays
an important role in the regulation of inhibitory circuitry
of the hippocampus. In addition, this study suggests that
deficits in adult neurogenesis may contribute to cogni-
tive impairments, tau hyperphosphorylation in new
neurons and compromised hippocampal circuitry in
Alzheimer’s disease.

Additional file

Additional file 1: Figure S1. Valganciclovir treatment does not alter
tau phosphorylation. Western blot of hippocampal protein extract from
4 months old nontransgenic mice fed with vehicle or valganciclovir
chow for 3 months (N = 2). There was no change in the expression of
p-tau as recognized by AT8 antibodies in extracts of valganciclovir-
versus vehicle-treated mice (TIFF 1521 kb)
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