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Abstract

Parkinson’s disease (PD) is a devastating and highly prevalent neurodegenerative disease for which only symptomatic
treatment is available. In order to develop a truly effective disease-modifying therapy, improvement of our current
understanding of the molecular and cellular mechanisms underlying PD pathogenesis and progression is crucial. For
this purpose, standardization of research protocols and disease models is necessary. As human dopaminergic neurons,
the cells mainly affected in PD, are difficult to obtain and maintain as primary cells, current PD research is mostly
performed with permanently established neuronal cell models, in particular the neuroblastoma SH-SY5Y lineage. This
cell line is frequently chosen because of its human origin, catecholaminergic (though not strictly dopaminergic)
neuronal properties, and ease of maintenance. However, there is no consensus on many fundamental aspects that are
associated with its use, such as the effects of culture media composition and of variations in differentiation protocols.
Here we present the outcome of a systematic review of scientific articles that have used SH-SY5Y cells to explore PD.
We describe the cell source, culture conditions, differentiation protocols, methods/approaches used to mimic PD and
the preclinical validation of the SH-SY5Y findings by employing alternative cellular and animal models. Thus, this
overview may help to standardize the use of the SH-SY5Y cell line in PD research and serve as a future user’s guide.
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Parkinson’s disease, SH-SY5Y cell line

Background
Parkinson’s disease (PD) is the second most common
neurodegenerative disease with a predicted prevalence of
9 million people worldwide by 2030 [1, 2]. PD has a high
socioeconomic burden since it is slowly progressive and
disease-modifying treatments are not available. PD
presents with motor and non-motor symptoms [3, 4]
that worsen with advancing age, leading to a need for as-
sistance with all daily activities. Disease manifestation is
characterized by the presence of Lewy bodies (abnormal
protein aggregates containing α-synuclein), death of
dopaminergic (DAergic) neurons in the substantia nigra
(SN) projecting to the striatum, and microgliosis (accu-
mulation of activated microglial cells) [5]. However, the
molecular mechanisms underlying all these disease
features are unknown, hampering the development of
effective treatment. In order to understand the

pathophysiological mechanisms underlying PD and de-
velop disease-modifying therapies, it is necessary to have
adequate models for in vitro and in vivo studies.
An in vitro model widely used in PD research is the

neuroblastoma SH-SY5Y cell line. This line is a subline
of the SK-N-SH cell line, which was established in
culture in 1970 from a bone marrow biopsy of a meta-
static neuroblastoma of a 4-year-old female and has
undergone three rounds of clonal selection [6]. The
initial characterization of the SH-SY5Y cell line showed
moderate activity of dopamine-β-hydroxylase and
negligible levels of choline acetyl-transferase, acetyl-
cholinesterase and butyryl-cholinesterase [6], basal nor-
adrenaline (NA) release [7] and tyrosine hydroxylase
activity [8]. Tyrosine hydroxylase is the rate-limiting en-
zyme of the catecholamine synthesis pathway and con-
verts tyrosine to L-dopa [9], the precursor of dopamine
(DA), which is converted to NA by dopamine-β-
hydroxylase [10]. Therefore, the SH-SY5Y cell line may
display a catecholaminergic phenotype since it has the
machinery to synthesize both DA and NA. Although

* Correspondence: G.Martens@ncmls.ru.nl
2Department of Molecular Animal Physiology, Donders Institute for Brain,
Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Xicoy et al. Molecular Neurodegeneration  (2017) 12:10 
DOI 10.1186/s13024-017-0149-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13024-017-0149-0&domain=pdf
mailto:G.Martens@ncmls.ru.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


these properties do not classify SH-SY5Y cells as purely
DAergic, this cell line has been widely used as a model
for PD. The SH-SY5Y cell line displays a number of gen-
etic aberrations due to its cancerous origin, but most
genes and pathways dysregulated in PD pathogenesis are
intact [11]. However, the use of an oncogenically trans-
formed cell line with catecholaminergic rather than
exclusively DAergic properties remains a controversial
issue in the PD field.
The purpose of this systematic review is to provide an

overview of the value and use of the SH-SY5Y line as a
cell model for PD. We describe in detail the culture con-
ditions, the methodology used to provoke the onset of
differentiation, the techniques to mimic typical patho-
genic PD features and the alternative models used to val-
idate the findings. Moreover, the limitations of the use of
the cell line will be discussed.

Main text
For our review, we conducted a standard systematic lit-
erature search in PubMed which included the terms
“Parkinson”, “Parkinson’s”, or “Parkinson’s disease” and
“neuroblastoma”, “SH-SY5Y”, “SHSY5Y” or “SHSY-5Y”.
The application of these search terms aimed to cover
most of the literature regarding the use of the SH-SY5Y
cell line in PD research, missing only those studies in
which the above-mentioned terms are only present in
the main text but not in the title, abstract or MeSH
terms. The search performed the 22nd of November
2016 retrieved 1489 articles, of which 962 were original,
accessible and PD-specific papers and thus were in-
cluded in the analysis. The exclusion criteria for the
remaining 527 articles were: (i) written in a language dif-
ferent from English, (ii) represents a review, (iii) not spe-
cific for PD, (iv) Parkinson as an author, (v) the cell line
was mentioned but used in previous studies, and (vi) use
of a neuroblastoma cell line different from SH-SY5Y (see
Additional file 1, for full list and exclusion details).

Cell source and culture conditions
The most-reported source for access to the SH-SY5Y cell
line is the American Type Culture Collection (ATCC,
CRL-2266, deposited by JL Biedler). Other sources
concern retrieval from other cell banks, such as the
European Collection of Authenticated Cell Cultures
(ECACC, Catalog number: 94030304, deposited by PFT
Vaughan) or the German collection of Microorganisms
and Cell Cultures (DSMZ, ACC 209). Cells were also ob-
tained through gifts from colleague scientists (Fig. 1).
However, in 455 out of 962 publications the cell origin
was not specified.
Recommendations regarding the composition of the

growth medium for propagation of SH-SY5Y cells vary
among the various cell line distributors: ATCC

recommends MEM/F12 supplemented with 10% fetal
bovine serum, ECCAC recommends MEM/F12 with
2 mM glutamine, 1% non-essential amino acids and 15%
fetal bovine serum, and DSMZ recommends MEM plus
15–20% fetal bovine serum. In the actual protocols
employed in the PD-related publications, DMEM was
used most (434 out of 962 publications), followed by
DMEM/F12 (230 out of 962 publications), MEM/F12
(68 out of 962 publications), DMEM high glucose (46
out of 962 publications), RPMI 1640 (37 out of 962 pub-
lications), Cosmedium-001 (21 out of 962 publications)
and MEM (20 out of 962 publications) (Table 1). Fur-
thermore, media used were supplemented with antibi-
otics/antimycotics (65.6% of the articles), glutamine
(23.9% of the articles), non-essential amino acids (9.8%
of the articles), sodium pyruvate (6.3% of the articles) or
other components, such as HEPES, sodium carbonate,
uridine or L-lysine, in different combinations (Table 1;
for more detailed information of the media composition
of each article, see Additional file 2). Careful choice of
medium type and composition is crucial, e.g. the use of
DMEM or RPMI changed the metabolome and the dif-
ferentiation capacity of a number of cell lines [12, 13].
Evidence is now accumulating that nutrient availability,
and also the degree of oxygenation, affects wiring
through different metabolic pathways and that the intra-
cellular levels of glutamine, alpha-ketoglutarate, pyruvate
and NAD+/NADH redox ratio and concentration are
determining factors in the epigenetic control of gene
expression during differentiation, e.g. via effects on

Fig. 1 Sources from which researchers obtained the SH-SY5Y cell
line. Number of articles using a particular source is indicated. ATCC:
American Type Culture Collection; EACC: European Collection of
Authenticated Cell Cultures; other cell banks includes all of them,
except for ATCC and ECACC
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histone-lysine demethylases and DNA demethylases
[14]. Furthermore, supplementing media with sodium
pyruvate has been shown to be protective against oxida-
tive stress [15, 16] and as such may affect the outcome
of experiments that study the involvement of oxidative
damage in PD. In 80% of the articles, the media de-
scribed were supplemented with 10% fetal bovine serum,
although some authors use other concentrations of
serum, ranging from 5 to 20%, or serum from other spe-
cies, such as horse (Table 1). Taking into account that
serum includes growth factors, hormones, amino acids
and lipids that can influence cell growth and differenti-
ation, the use of different serum concentrations, serum
from different species or even serum from different
batches may influence the outcome [17]. It is of note
here that variability in cell growth and sensitivity to vari-
ous compounds depending on the media and substrate
used for the growth of SH-SY5Y cells has already been
reported [18].
To appropriately acknowledge the various effects that

differences in culture media composition can have on
the cellular phenotype, it is thus imperative to systemat-
ically identify in future studies how various metabolic in-
termediates, ions, serum constituents and substrates
influence aspects of growth and differentiation of SH-
SY5Y cells. Only then the protocols for experiments with
PD cell models can be widely standardized.

Phenotype and differentiation of SH-SY5Y cells
The use of the SH-SY5Y cell line is not restricted to PD-
research; this cell line has also been used in other areas
of neuroscience, including research on Alzheimer’s dis-
ease, neurotoxicity, ischemia or Amyotrophic Lateral
Sclerosis, among others [11, 19, 20]. To obtain derivative
cells with a neuronal phenotype, multiple differentiation
protocols have been described [21–25], but details about
the final population of cells, regarding the fate-choices

and fate-specification of cells that undergo terminal dif-
ferentiation, have not been systematically reported. Since
PD is characterized by the death of SN DAergic neurons,
the degree to which this cell line displays a DAergic
phenotype is a key aspect regarding the validity of the
model. In this respect, 392 out of the 962 papers state
that SH-SY5Y cells have a DAergic phenotype without
actually showing supporting evidence. Only a few papers
cite previous work showing the DAergic phenotype. An-
other large proportion of articles (432 out of 962) does
not provide any statement about the DAergic phenotype
or the rationale behind the choice of the cell line for use
in PD-research. Among the remaining publications, in
76 papers the SH-SY5Y lineage is represented as a PD-
model with DAergic properties or a toxin-induced
PD-like phenotype, another 56 publications report the
analysis of the DAergic phenotype, and in 7 papers
cholinergic, neuronal or noradrenergic phenotypes are
mentioned (Table 2).
The phenotype of SH-SY5Y cells can be manipulated

by inducing different programs of terminal neural differ-
entiation. However, in 81, 5% of the published studies no
differentiation regime was used (Fig. 2), for which in
only seven publications a reason was given. Among the
studies that do report on forced differentiation, the most
common method employed is the addition of retinoic
acid (RA) in concentrations ranging from 5 μM to
100 μM, for a period of time from 24 hours to 21 days,
and, sometimes, a reduction of the concentration of
serum in the media (Fig. 2). It has been reported that
RA treatment upregulates expression of neuronal and
DAergic markers and increases susceptibility to DAergic
neurotoxins [26]. However, other studies have observed
increased neuronal markers upon RA differentiation, but
no change in DAergic markers and decreased suscepti-
bility to DAergic neurotoxins [27]. The phenotypic effect
of RA on SH-SY5Y cells has been systematically studied,

Table 1 Compositions of the media used for culturing SH-SY5Y cells

Basal media Supplements - serum Supplements - others

Name #articles Name #articles Name #articles

DMEM 434 10% FBS 770 Antibiotics/antimycotics 631

DMEM/F12 230 15% FBS 70

MEM/F12 68 5% FBS 33 Glutamine/GlutaMAX 230

DMEM (high glucose) 46 20% FBS 3

RPMI 1640 37 None 2 NEAA 94

Cosmedium-001 21 Others 14 Sodium pyruvate 61

MEM 20 Unknown 70

Other 36

Unknown 70

The table is divided into three parts (basal media, serum supplement and other supplements) and the number of papers involved is indicated (#articles). The
Additional file 2 contains a more detailed description of all media and supplements used. Unknown refers to the articles that do not specify media composition.
DMEM: Dulbecco’s Modified Eagle Medium; F12: nutrient mixture F12, MEM: Minimum Essential Media; FBS: fetal bovine serum; NEAA: non-essential amino acids
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including the induction of a terminal neural phenotype
with, specifically, a DAergic-like character [28]. Con-
versely, RA-mediated differentiation of SH-SY5Y cells
has been associated with the induction of a cholinergic
rather than DAergic phenotype [29]. Here it is important
to note that RA has been found to partially protect
SH-SY5Y cells against proteasome inhibitors [30]. In
view of this finding, the results of studies examining

proteasomal dysfunction and involving RA-differentiated
SH-SY5Y cells as PD-model should be interpreted with
care. The second method of choice to differentiate SH-
SY5Y cells is a sequential treatment with RA, usually
10 μM, and 12-O-Tetradecanoylphorbol-13-acetate
(TPA), mostly added in a concentration of 80nM (Fig. 2).
This protocol has been demonstrated to differentiate
SH-SY5Y cells more efficiently to DAergic-like neurons
[31–33]. Early studies on the use of RA and TPA (alone
or in combination) to differentiate SH-SY5Y cells have
shown that these compounds induce various neuronal-
like populations, with a strong increase of NA content
when using only TPA [7]. In view of these differences, it
is important to realize that a set of neurons each synthe-
sizing a separate neurotransmitter (s) has a distinct tran-
scriptional profile [34]. Even neurons synthesizing a
specific neurotransmitter can be classified into several
subpopulations, each with a clearly defined signaling
function in a particular (brain) region and an explicit
vulnerability for stress factors [35]. The third approach
that is commonly used for differentiation induction in-
volves the sequential treatment with RA, usually 10 μM,
and 10-100 ng/mL of brain-derived neurotrophic factor
(BDNF) (Fig. 2). This procedure leads to a homogeneous
neuronal population with expression of neuronal
markers and decreased proliferation [21]. The pheno-
typic outcome of this RA/BDNF differentiation protocol
is, however, still somewhat controversial as it has been
described as sympathetic cholinergic, based on evidence
from target-directed qPCR and microarray studies which
pointed into the direction of increased levels of acetyl-
choline transporter, choline acetyl transferase and neuro-
peptide Y [36, 37], but also as dopaminergic by others
[38]. Moreover, inhibition of cell growth has not always
been replicated when employing this procedure [24].

Table 2 Papers reporting the DAergic phenotype of the SH-
SY5Y cell line and techniques used

DAergic phenotype #articles #differentiated

Not stated 432 70

Stated and not checked 392 50

PD model/DAergic properties/toxin 76 12

Stated and checkeda 48 22

Not stated but checkeda 7 3

Others 7 2

Technique Single Multiple

ICC 11 (4/7) 15 (6/9)

WB 10 (6/4) 23 (13/10)

qPCR 1 (1/0) 13 (7/6)

DA uptake/content 2 (2/0) 6 (3/3)

Not shown 4 (3/1) 0

The top part of the table indicates the number of papers that do specify or do
not specify the DAergic phenotype of the SH-SY5Y cell line and whether or not
the authors checked the phenotype. “Others” refers to articles mentioning other
neuronal linages, including cholinergic, neuronal and noradrenergic phenotypes.
Shown are the total number of articles (#articles) and the number of articles in which
forced differentiation was employed (#differentiated). The bottom part of the table
summarizes the techniques used in the publications that checked the phenotype (a).
Publications are divided into ‘single’ (i.e. papers that use only one method to check
the DAergic phenotype) and ‘multiple’ (papers that use multiple complementary
techniques). Between brackets: the number of studies that checked the DAergic
phenotype in undifferentiated/differentiated cells. ICC immunocytochemistry,WB
western blot, qPCR quantitative polymerase chain reaction, DA dopamine

Fig. 2 Papers reporting the differentiation of the SH-SY5Y cell line for PD-research. Left: Proportion of studies that do not use differentiation protocols
(no differentiation), those that do not specify the differentiation status (unknown) and those that include a differentiation regime (differentiation).
Among the papers in which differentiated cells were used, the main differentiation treatments used are depicted in the right chart, including 10 μM retinoic
acid (RA), 10 μM RA and reduced fetal bovine serum (FBS), other concentrations of RA, 10 μM RA and 50 ng/ml brain-derived neurotrophic factor (BDNF)
and 10 μM RA and 80nM 12-O-Tetradecanoylphorbol-13-acetate (TPA). Other includes 10 μM RA, 1%FBS and 0.3 mM dibutyryl-cAMP; 10 μM RA or
10 μg/mL BDNF; 10 μM RA and 80nM TPA or 50 ng/mL BDNF; 100 ng/mL of GDF5 or recombinant BMP2; neurobasal media with 6-10nM staurosporine
or B27 supplement, 2 mM L-glutamine and 10 μM RA; 10 μM RA and 5 μM cAMP; 50 ng/ml GDNF; 10 μM RA and 80nM tissue plasminogen activator
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Additional protocols used for differentiation may involve
combinations of the above-mentioned methods, or a
combination of 10 μM RA and 0.3-5 mM dibutyryl cyc-
lic adenosine monophosphate (dbcAMP) [39, 40], or of
10 μM RA for 3 days and 80nM tissue plasminogen
activator [41] or the protocol was not specified. Differen-
tiation may also be caused by 200 ng/mL growth/differ-
entiation factor 5 (GDF5) [42], recombinant bone
morphogenetic protein 2 (BMP2) [42], staurosporine
[43, 44] or 50 ng/mL glial cell line-derived neurotrophic
factor (GDNF) [45]. The pros and cons of the differenti-
ation of the SH-SY5Y cell line to obtain a relevant model
for PD have been reviewed more extensively elsewhere
[46]. Again, proper characterization of the differentiated
cells is crucial. Next to the more conventional “ensem-
ble” approaches, such as western blotting, transcripto-
mics or proteomics, the use of novel single-cell
microscopy and single-cell RNAseq approaches will
become instrumental to provide more detailed phenotypic
profiling of the differentiated cell population [47, 48].
In view of the relevance of the DAergic system in PD,

it is striking that among the papers using SH-SY5Y cells
in PD research only 55 out of 962 examine the DAergic
phenotype of the cell line (Table 2; for a list and details
of the articles that checked the DAergic phenotype see
Additional file 3). Remarkably, in some cases the DAer-
gic phenotype has been studied but the results were not
shown. The methods used to determine the SH-SY5Y
DAergic phenotype include immunocytochemistry
(ICC), western blot (WB), quantitative polymerase chain
reaction (qPCR) and DA uptake/content. Of note, “en-
semble” methods like WB and qPCR do not allow a dis-
tinction between expression changes in the whole
population or in just a subset of cells. In this respect,
ICC represents a more reliable technique to check the
phenotype of the cell population. ICC with DAergic
markers has been used in 26 out of the 56 articles: 10 in
undifferentiated and 16 in differentiated cells (in general
compared with undifferentiated controls). Comparison
of all the provided ICC images, taking into account the
cell source, media composition and differentiation
method (when applicable), did not allow us to draw de-
finitive conclusions about the phenotype of the undiffer-
entiated cells, or about differences in outcome between
various differentiation methods. Of note, no or only a
few positive control images are shown in most articles,
hindering the comparative literature survey. Also, SH-
SY5Y cells are known to respond inconsistently to the
same differentiation treatment, depending on their cell
source [49] or possibly passage number. Therefore, the
variation reported may be at least in part due to the
origin of the cells and different aspects regarding their
handling, highlighting the importance of the proper
reporting of all protocols involved.

Mimicking PD
In order to create SH-SY5Y-derived cell models that
mimic PD, strategies are used based on drug treatment
and/or genetic approaches with the manipulation of ex-
pression of candidate genes that have emerged from
genetic studies in PD-families. Most papers (800 out of
962) choose one pharmacological or genetic strategy to
force manifestation of a PD-like phenotype, but also
multiple variants or combinations of these strategies
have been used. The most-used compounds in drug-
based approaches are 1-methyl-4-phenylpyridinium
(MPP+), 6-hydroxydopamine (6-OHDA) and rotenone,
which dysregulate multiple cellular pathways, focusing
on mitochondrial dysfunction and oxidative stress
(Table 3). MPP+ is the toxic metabolite of 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), a by-product
in the synthesis of 1-methyl-4-phenyl-4-propionoxy-pi-
peridine (MPPP), a synthetic analog of heroin, which
causes severe parkinsonism in humans when injected
intravenously [50]. Since SH-SY5Y cells do not have the
machinery to transform MPTP to MPP+, the metabolite
itself is administered. Once inside the cell, MPP+ in-
hibits complex I of the electron transport chain, impair-
ing mitochondrial respiration and increasing reactive
oxygen species (ROS) production, and redistributes DA
to the cytosol, where it is oxidized and generates more
ROS (reviewed in [51]). 6-OHDA is a catecholaminergic
neurotoxin and its molecular mechanisms of action have
been reviewed elsewhere [52]. Briefly, 6-OHDA enters

Table 3 Drug-based and genetic methods used to induce a
PD-like phenotype in SH-SY5Y cells

PD-mimic

Single Multiple Total

MPP+ 169 63 232

Manipulation of expression
of familial genes

180 53 233

6-OHDA 141 47 188

Rotenone 69 56 125

Dopamine 33 26 59

H2O2 12 34 46

NM (R) Sal/Salsolinol 21 6 27

Paraquat 13 12 25

Lactacystin 8 11 19

Other treatments 112

Listed are the most commonly used treatments to mimic PD in the SH-SY5Y cell line
as well as the number of articles that use one (single) or, to validate the results,
more than one (multiple) treatment. Other treatments include conditioned media
from glial cells, MG132, SIN-1, staurosporine, thapsigargin, carbonyl cyanide m-
chlorophenyl hydrazine (CCCP), tunicamycin, epoxomicin, bafilomycin, neuromelanin,
miRNAs, A-β1, BmK1, L-buthionine-(S, R)-sulfoximine (BSO), Conduritol B
epoxide (CBE), Ciplastin and PSI. MPP+: 1-methyl-4-phenylpyridinium; 6-OHDA:
6-hydroxydopamine; H2O2: hydrogen peroxide
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catecholaminergic neurons via DA or NA transporters;
it accumulates inside of the cell and triggers the forma-
tion of ROS and catecholamine quinones, leading to oxi-
dative stress and cell death. Furthermore, 6-OHDA may
inhibit complexes I and IV of the electron transport
chain [53], although this has not been confirmed by
others [54]. Exposure to rotenone, a highly lipophilic in-
secticide, has been linked to sporadic PD [55] and can
directly enter cells, independently from transporters, to
inhibit complex I, impairing mitochondrial respiration
and enhancing ROS production, and inhibit proteasomal
activity (reviewed in [56]).
Next to drug-based strategies also genetic approaches

(e.g. knock down or forced overexpression of genes with
mutations found in familial cases of PD) have been
widely used to induce a PD-like phenotype (Table 3).
Altogether 19 loci segregating with familial forms of PD
are now known [57]. Of these only a subset have been
used for reverse genetic manipulation, and overexpres-
sion of genetically encoded mutated variants of α-
synuclein (A30P, A53T, E46K, G51D, H50Q, S129A,
S129D, S129E) or extracellularly added α-synuclein vari-
ants is by far the most commonly used method to mimic
PD in SH-SY5Y. Functional and rescue studies involving
knockdown, overexpression or mutated forms of other
genes, such as LRRK2 (G2019S, I2020T, R1441C,
Y1699C), PINK1 (G309D, P209A, P399L, T313M), DJ-1
(A39S, C53A, C106A, L166P), ATP13A2, PLA2G6, GBA
and Parkin (C289G, C431F, G328E, G430D, K161N,
R42P, T240N, T240R, R265C, W453stop), have also been
performed. Gene knockdown was mostly performed by
transfection with siRNA or shRNA, while stable expres-
sion of mutated genes was achieved by their insertion
into vectors such as pcDNA3.1 and transfection with re-
agents like Lipofectamine® 2000 (ThermoFisher Scien-
tific) or FuGENE ® (Promega), adenoviral infection or
lentiviral transduction. Surprisingly, novel revolutionary
technologies such as the use of CRISPR/Cas9 or TALEN
have not yet been applied in studies on PD, but we an-
ticipate that reports on these tools for precision gene-
editing will appear soon. Collectively, the studies mim-
icking the genetic mutations present in PD have allowed
the identification of a diverse set of pathways and mo-
lecular processes that are involved in the manifestation
of the disease [58], including mitochondrial and
mitophagy dysfunction [59, 60] and proteasomal and
autophagy dysregulation, leading to protein aggregation
[61–63]. One complementary strategy to study PD in
cells is to interfere directly with one of these processes
by administering specific compounds, with agonistic or
antagonistic activity, such as hydrogen peroxide (oxida-
tive stress), lactacystin/MG-123 (proteasome inhibitors),
tunicamycin (N-glycosylation inhibitor, triggers ER
stress), bafilomycin (inhibitor of vacuolar H+ ATPase,

leading to autophagy dysfunction), thapsigargin (inhibi-
tor of the sarco/endoplasmic reticulum Ca2+ ATPase,
resulting in ER stress and autophagy inhibition), car-
bonyl cyanide m-chlorophenyl hydrazone (CCCP) (in-
hibitor of oxidative phosphorylation, leading to
mitochondrial dysfunction), Conduritol B epoxide (CBE)
(GBA inhibitor), or salsolinol/staurosporine (cell death).
Intriguingly, staurosporine, a broad-spectrum kinase in-
hibitor, has been used in some PD-related publications
to induce cell death [64–72], while other publications
have used it to induce DAergic differentiation and study
PD-related features [43, 44]. Early studies on SH-SY5Y
cells showed differentiation towards a neuronal pheno-
type upon treatment with staurosporine [73, 74], which
later has been characterized as catecholaminergic-like
[75]. Therefore, the effects of different concentrations of
staurosporine on SH-SY5Y cells should be characterized
carefully to properly interpret studies that used this drug
either as a differentiation agent or as an inducer of
apoptosis. Figure 3 summarizes the now known cellular
processes that are dysregulated in PD, based on the ana-
lysis of the functions of the proteins encoded by the
(mutated) familial PD genes, and the use of PD-
mimicking drugs in SH-SY5Y cells.

Reproduction of PD-associated cellular phenotypes
Apart from the DAergic phenotype, the ability of the cell
line to reproduce the cellular abnormalities of PD is
crucial for the validity of the model. One of the main
hallmarks of PD is α-synuclein aggregation [5]. To
mimic this pathological feature, overexpression of WT
α-synuclein or stable expression of one of its familial
mutations, such as A53T or A30P, has been successfully
used [76–78]. Nevertheless, these manipulations do not
always inevitably lead to increased formation of inclu-
sions. Therefore, triggers such as cell differentiation to-
gether with FeCl2 (and H2O2) treatment, or Hsp70
blockage, are sometimes needed to observe α-synuclein
aggregation [79–82]. These different outcomes are pos-
sibly due to the specific α-synuclein mutation used [77]
or the level of expression achieved by the various con-
structs [78]. Interestingly, spontaneous α-synuclein
aggregation has been reported in non-transfected SH-
SY5Y cells [83]. Moreover, both differentiated and undif-
ferentiated SH-SY5Y cells are sensitive to extracellular α-
synuclein-induced toxicity [84]. The cell line has also
been used to study the kinetics and mechanisms of α-sy-
nuclein degradation [78, 85], the link between α-
synuclein aggregation and intracellular calcium [86], and
other pathological changes of α-synuclein, such as its
carboxyl-terminal cleavage [32]. Other PD-related prob-
lems, such as abnormal mitochondrial function, oxida-
tive stress and autophagy or proteasomal dysfunction,
have been reproduced in SH-SY5Y cells as well. These
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hallmarks are usually triggered by the administration of
specific drugs (Fig. 3) or, alternatively, by the knockdown
of a gene corresponding to a familial PD-gene or expres-
sion of a familial PD-gene. For example, silencing of
PINK1 leads to mitochondrial dysfunction [87, 88] and
mutated forms of α-synuclein impair proteasomal activ-
ity [89]. The additive effects that are caused by co-
expression of familial PD genes can also be observed in
this cell line (e.g. cotransfection of α-synuclein and
LRRK2 enhances the formation of aggregates, phosphor-
ylation, cell-to-cell transmission and extracellular release
of α-synuclein [90]). Therefore, SH-SY5Y cells represent
an attractive tool to study most cellular alterations
linked to PD and strategies to ameliorate their effects,
but a careful experimental setting is required when ana-
lyzing α-synuclein aggregation, since the findings vary
between studies. Yet, not all aspects of PD pathobiology
can be faithfully studied in SH-SY5Y cells, and therefore
investigations into for example electrophysiological
abnormalities or neurochemical dysfunction require
other and more complex models, such as primary dopa-
minergic cultures or brain slices, ex vivo.

In vitro and in vivo models used in parallel with SH-SY5Y
cells
PD is characterized by the loss of DAergic neurons from
the SN [5]. Thus, primary cultures of neurons from this
brain area of patients and controls may be considered
the most reliable models to unravel the molecular mech-
anisms underlying this disease. However, the inaccess-
ibility and lack of proliferation of such neurons largely
precludes their use. Conversely, as discussed above, the
use of a proliferative and more uniform model like the
SH-SY5Y cell model has also limitations. Therefore in
many studies other cell types have been employed in
parallel. Of the articles analyzed, 67.6% reported experi-
ments performed exclusively in the SH-SY5Y cell line
and 19.7% used in parallel other cell lines with a neur-
onal phenotype, including rodent mesencephalic primary
cultures and (mainly cortical) primary neurons, stem
cells, PC12 cell line, Neuro-2a cell line or MN9D cell
line (Table 4). The remaining 12.7% used cell lines that
are not neuronal (−like), such as HEK293, HeLa or glial
cells. Primary cell cultures are physiologically more rele-
vant than immortalized cell lines, but they are difficult

Fig. 3 The molecular mechanisms dysregulated in PD and thought to lead to DAergic neuronal cell death. Up to now, 14 genes have been
consistently associated with familial PD (red circles; [38]). The analysis of the functions of the corresponding (mutated) proteins and the resulting
cellular abnormalities has allowed the identification of the depicted main pathways underlying PD: mitochondrial, proteasomal and autophagy
dysfunction, protein aggregation, dopamine metabolism and oxidative stress, leading to DAergic cell death [39–44]. Green circles: compounds
dysregulating multiple cellular processes linked to PD and used to mimic PD with dotted lines pointing towards their targets. Orange circles:
drugs that specifically act on one of the processes are placed next to their targeted pathway
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to maintain and, depending on the age of the source ani-
mals or the dissection accuracy, can introduce experi-
mental variability [91]. Since the SN is located in the
mesencephalon, or midbrain, rodent mesencephalic pri-
mary cultures are enriched for the cell population of
interest, the SN DAergic neurons. Primary cultures from
other brain regions (mainly cortex) have also been ex-
tensively used as complementary in vitro models, but
these cultures consist of mixed populations of various
neuronal subtypes. Furthermore, primary cultures of
DAergic neurons from other species, such as the worm
C. elegans, have been used [92, 93]. In general, the
overtly less physiologically relevant permanently estab-
lished cell lines are easier to maintain than cells in pri-
mary cultures (because the cell lines are generally
rendered immortal) and can sometimes be differentiated
into terminal neuronal populations. The PC12 cell line
(ATCC® CRL-1721™) has been derived from a rat pheo-
chromocytoma and widely used to study PD. This
lineage has a chromaffin-like character, and shares its
embryonic origin with DAergic neurons. Nerve growth
factor treatment of PC12 cells induces differentiation
into a catecholaminergic-like phenotype [94, 95]. The
Neuro-2a cell line (ATCC® CCL-131™) has been derived
from a mouse brain neuroblastoma and can be differen-
tiated into neuronal-like cells [96] and, more specifically,
to DAergic neurons by a dbcAMP treatment [97]. Other
PD cellular models include cell hybrids, such as the
MN9D cell line [98], and derivatives from the neuro-
blastoma SK cell line. A full list of neuronal (−like) cell
models used in parallel with SH-SY5Y cells can be found
in Additional file 4. It is important to note that most of
the alternative lineages are derived from species other

than human. Finally, patient-derived induced pluripotent
stem cells (iPSCs) that can be differentiated into DAer-
gic neurons (and possibly other relevant cell types such
as glial cells) represent an emerging new category of cell
models for PD [99–101].
Apart from cellular models, about 21% of the articles

that use SH-SY5Y cells also employ an animal model for
PD to validate and further understand the cellular re-
sults. The animal models include mouse, rat, C. elegans
and fruit fly and the PD features in these in vivo models
are mimicked with MPTP, 6-OHDA, rotenone or genetic
mutations (reviewed in [102, 103]).

Conclusions
This systematic review illustrates the “popularity” and
broad use of the neuroblastoma cell line SH-SY5Y in PD
research and underlines some of its drawbacks. SH-
SY5Y cells have been used to study the molecular and
cellular mechanisms underlying the effects of some of
the PD-related toxins, to perform functional studies on
familial PD genes, and to test putative protective com-
pounds for PD treatment. Thus, this cell line has been a
valuable asset to help unravel the molecular complexity
of PD. However, SH-SY5Y cells are not purely DAergic
because the cell line was obtained as a neuroblastoma
derivative and thus has cancerous properties that influ-
ence its differentiation fate, viability, growth perform-
ance, metabolic properties and genomic stability. Hence,
SH-SY5Y cells possess physiological characteristics
which differ greatly from the normal DAergic neuronal
features. Reports on the exact SH-SY5Y phenotype are
contradictory. Differences in cell source and mainten-
ance in culture, perhaps of epigenetic character, could
explain these variations, but the lack of accurate report-
ing of experimental protocol parameters and inaccurate
listing of individual characteristics of cell lineages kept
at different laboratories hinders the drawing of firm con-
clusions. Therefore, the cell source has to be specifically
indicated and more studies on the effects of media com-
position on the cell population are needed to compare
findings, and catalyze reproducibility and progress with
this PD-model. In addition, the use of other neuronal
(−like) cell lines, such as those reviewed here, and ani-
mal models in parallel with SH-SY5Y cells may help to
validate the findings. The choice of these additional
models should take into account aspects such as species
differences, tumorigenic properties and time and re-
source requirements. A further topic regarding the use
of SH-SY5Y cells concerns the differentiation regime
that - until now - has been used to drive the cell line to-
wards a DAergic phenotype. Variations in the outcome
of the differentiation protocol could again be due to the
origin and handling of the cells. Furthermore, the use of
chemical compounds to differentiate the cell line into a

Table 4 Use of alternative cellular models in parallel to
SH-SY5Y cells

Alternative cellular models #articles

No other neuronal cell lines 772

Other neuronal (−like) cell lines 190

Mesencephalic cultures (mouse/rat) 54

Primary neurons (cortical mainly) (mouse/rat) 54

PC12 (rat) 39

Neuro-2a (mouse) 13

hESC, NPSC, hMSC, iPSCs (human) 9

SK-N-BE (2)-M17(M17) (human) 9

MN9D (mouse) 7

Other 45

The table specifies the number of articles (#articles) that do not use any neuronal
cell line other than SH-SY5Y cells; and those that do use another neuronal (−like) cell
line (and the most commonly used ones). Sometimes an article uses multiple
alternative cell lines and, thus, the addition of the individual values of other neuronal
(−like) cell lines is larger than the number of articles that use other neuronal (−like)
cell lines (190). More detailed information on these other cell lines can be
found in Additional file 4
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more DAergic or neuronal population may affect param-
eters that are not directly linked to the desired pheno-
type, and they may produce confounding effects. The
systematic use of ICC and other single cell assays, to-
gether with qPCR and WB to characterize the phenotype
of the entire cell population, is required for a proper val-
idation of the DAergic phenotype of the SH-SY5Y cells
as a disease model. The method of choice to model PD
is crucial especially because the onset of this multifactor-
ial disease involves both genetic and environmental fac-
tors. Genetic as well as chemical approaches have been
used in the functional studies on SH-SY5Y cells to target
one or multiple pathways linked to PD. In any case, the
use of multiple approaches in parallel is recommended
and expected to be facilitated by current developments
in the fields of chemical biology and reverse-genetics
(i.e. CRISPR/Cas9 applications) that will allow a much
broader application of chemical libraries for cell-
signaling inhibition and genome editing, respectively.
These novel opportunities together with the proper ex-
ploitation of the already well-established procedures for
cell culturing will allow the standardization of the use of
the SH-SY5Y cell line and maximize the benefit from
this appealing cell model for PD.
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Additional file 1: List of articles resulting from the literature search and
article inclusion/exclusion in this review. Complete list of articles that
were obtained with the search terms “Parkinson”, “Parkinson’s”, or
“Parkinson’s disease” and “neuroblastoma”, “SH-SY5Y”, “SHSY5Y, or “SHSY-
5Y” in PubMed until the 22nd of November 2016. The inclusion and
exclusion criteria are specified. (XLSX 263 kb)

Additional file 2: Compositions of the media used for culturing SH-
SY5Y cells. The table displays the composition of the media used in each
of the articles included in the review. (XLSX 55 kb)

Additional file 3: Techniques and markers used to determine the
DAergic phenotype of SH-SY5Y cells. List of articles in which the DAergic
phenotype of the cell line was experimentally validated, and the tech-
niques and markers that were used, together with the cell source, media
used and differentiation included or not. (XLSX 18 kb)

Additional file 4: Alternative neuronal (−like) cell lines used to validate
the findings in SH-SY5Y cells. The table contains the neuronal (−like) cell
lines that have been used in parallel with SH-SY5Y cells to study PD and
the species from which they are derived, the cell type and the number of
articles that used the cell line. (XLSX 13 kb)
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