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Abstract

wild type mice.

Background: Cell-to-cell transmission of a-synuclein (aSyn) is hypothesized to play an important role in disease
progression in synucleinopathies. This process involves cellular uptake of extracellular amyloidogenic aSyn seeds
followed by seeding of endogenous aSyn. Though it is well known that aSyn is an immunogenic protein that can
interact with immune receptors, the role of innate immunity in regulating induction of aSyn pathology in vivo is
unknown. Herein, we explored whether altering innate immune activation affects induction of aSyn pathology in

Methods: We have previously demonstrated that recombinant adeno-associated virus (AAV) mediated expression
of the inflammatory cytokine, Interleukin (IL)-6, in neonatal wild type mice brains leads to widespread immune
activation in the brain without overt neurodegeneration. To investigate how IL-6 expression affects induction of
aSyn pathology, we injected mouse wild type aSyn fibrils in the hippocampus of AAV-IL-6 expressing mice. Control
mice received AAV containing an Empty vector (EV) construct. Two separate cohorts of AAV-IL-6 and AAV-EV mice
were analyzed in this study: 4 months or 2 months following intrahippocampal aSyn seeding.

Results: Here, we show that IL-6 expression resulted in widespread gliosis and concurrently reduced aSyn inclusion
pathology induced by a single intra-hippocampal injection of exogenous amyloidogenic aSyn. The reduction in
aSyn inclusion pathology in IL-6 expressing mice was time-dependent. Suppression of aSyn pathology was accompanied
by reductions in both argyrophilic and p62 immunoreactive inclusions.

Conclusions: Our data supports a beneficial role of inflammatory priming of the CNS in wild type mice challenged with
exogenous aSyn. A likely mechanism is efficient astroglial scavenging of exogenous aSyn, at least early in the
disease process, and in the absence of human aSyn transgene overexpression. Given evidence that a pro-
inflammatory environment may restrict seeding of aSyn pathology, this can be used to design anti-aSyn
immunobiotherapies by harnessing innate immune function.
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Background

Synucleinopathies are a group of neurodegenerative dis-
eases characterized by the presence of intra-cytoplasmic
amyloidogenic inclusions comprised of the protein a-sy-
nuclein (aSyn) [1, 2]. In most of these disorders, such as
Parkinson’s disease (PD) or dementia with Lewy bodies
(DLB), these aSyn inclusions are predominantly
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neuronal [2, 3]. The majority of pathological aSyn in
these inclusions are phosphorylated at the serine 129
residue and this modification is generally used as a bio-
logical marker to monitor inclusion formation when
combined with other histological assays [3, 4].

The aberrant aggregation of aSyn to form amyloido-
genic inclusions is thought to follow a prion-like mech-
anism involving the molecular conversion of protein
monomers from their predominantly unfolded structure
to a PB-pleated sheet that can then polymerize into amyl-
oid (reviewed in [4]). As part of this prionoid
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mechanism, such conformationally altered forms of aSyn
can readily aggregate and can subsequently be propa-
gated between cells [5-12]. Consistent with this model,
both intracerebral or peripheral injections of recombin-
ant aSyn amyloid seeds result in robust induction of
aSyn pathology in aSyn transgenic mice and to a lesser
extent, in wild type mice [6, 7, 9, 13—15]. Modeling stud-
ies have further shown that both soluble and aggregated
aSyn can be released and taken up by cells via various
mechanisms [16—18], providing proof of concept that
pathological oSyn shares prion-type transmission
properties.

The observations that innate immune activation is an
invariant finding in synucleinopathies and that aSyn, by
itself, can directly interact with immune cells suggest
that innate immunity can potentially modify how
exogenous aSyn is able to influence the onset and pro-
gression of a-synucleinopathy (reviewed in [19, 20]). In
mouse models of aSyn inclusion pathology induced by
exogenous aSyn aggregates, a significant component of
the aSyn pathology is retained in glial cells [7, 21]. Glial
cytoplasmic inclusions (Papp-Lantos bodies) and tuft-
shaped astrocytes laden with aggregated aSyn have been
reported in patients with synucleinopathies, such as PD,
multiple system atrophy (MSA) and DLB [22-25] as well
as in transgenic mouse models of o-synucleinopathy
[26-28]. Mechanistically, extracellular aSyn can directly
activate microglia by interacting with microglial recep-
tors including TLR2 and TLR4 [29-31]. CNS resident
astrocytes as well as macrophages can endocytose aSyn
via dynamin-related pathways [16, 17], suggesting that
immune pathways can potentially have disease modify-
ing effects in a-synucleinopathies.

To investigate how innate immune activation alters
seeded a-synucleinopathy in wild type mice, we used an
Interleukin (IL)-6 driven somatic transgenesis model.
IL-6 is a pleiotropic cytokine that plays a key role in im-
mune regulation, hematopoiesis and acute phase reac-
tions [32]. Under chronic conditions, IL-6 induces an
acute inflammatory condition by activating immune
cells, such as macrophages, B cells, microglia and astro-
cytes. Using recombinant adeno-associated viruses over-
expressing IL-6 in the brains of wild type mice [33], we
explored how preconditioning innate immune milieu in
the CNS affects the induction of aSyn pathology follow-
ing challenge with exogenous aggregated aSyn. IL-6 ex-
pression, as expected, leads to widespread astrogliosis
and, surprisingly, attenuates the induction of aSyn path-
ology in these mice. Thus, contrary to our expecta-
tions that an inflammatory milieu might exacerbate
a-synucleinopathy, we report that IL-6 induced im-
mune preconditioning limits induction of «-synuclei-
nopathy following injection of exogenous aSyn
aggregates.
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Methods

Mice

All mouse husbandry and experimental procedures
were conducted in accordance with IACUC and
University of Florida policies. All mice were main-
tained under a 12 h light/dark cycle and had access
to food and water ad libitum.

Preparation of recombinant proteins and aSyn fibrils
Recombinant full length mouse wild type aSyn was puri-
fied and fibrillized as described before [13, 34]. Briefly,
recombinant aSyn was expressed and purified from E.
coli, assembled in vitro into fibrils in PBS buffer and
gently fragmented for 60 min using a bath sonicator be-
fore injection. Presence of endotoxins was assessed using
the TLR4 assay (InvivoGen). The experiments were done
using batches of fibrillar aSyn seeds validated by K114
fluorescence and their ability to induce aSyn pathology
in HEK293 cells [35]. Following validation steps, these
fibrils were aliquoted and stored at —80 °C till use.

rAAV delivery and hippocampal stereotactic injections
rAAV were prepared as described previously [33]. Wild
type B6/C3H mice received bilateral, intraventricular in-
jections of rAAV (capsid 1) expressing the inflammatory
cytokine IL-6 or the empty vector plasmid containing no
expression cassette (EV) on neonatal day PO as described
previously [33]. Mice were aged to 2 months and bilaterally
injected (coordinates from Bregma: A/P -2.2, L +/-1.6, D/
V -1.2) with pre-fibrillized wild type mouse aSyn aggre-
gates in the hippocampus according to Sacino et al [7].
Fibrils (2 pL of 1mg/ml synuclein fibrils per hemisphere)
were injected at a rate of 0.2 pL per min. Control mice
were injected with sterile PBS in the hippocampus. Mice
used in various cohorts are shown in Table 1.

Immunohistochemistry

Mice were euthanized by intra-cardiac perfusion and
brains were fixed in neutral buffered formalin. Paraffin-
embedded brain sections were assessed with the follow-
ing antibodies: GFAP (Cell Signaling, 1:1000), Ibal
(Wako, 1:1000); pSer129/81A oSyn (1:3000; [13, 36]);
EP1536Y (AbCam, 1:1000); p62 (Protein Tech; 1:1000),
cd11b (AbCam; 1:250), MHCII (Novus; 1:50) and NeuN
(Abcam; 1:500). For all antibodies except cdllb and
MHCII, antigen retrieval was performed by steaming for
25 min in water. For cd11b and MHCI], antigen retrieval
was done by steaming in Dako Target Retrieval Solution
S1699 (modified citrate buffer, pH 6.1). Colorimetric
slides were treated with ImmPress reagents (Vector
Labs) and visualized with 3, 3’diaminobenzidine followed
by hematoxylin counterstaining. Fluorimetric slides were
visualized with Alexa Fluor conjugated secondary
antibodies (Invitrogen) and counterstaining with 4,
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Table 1 Mice used in study
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rAAV1 injection (PO) Hippocampal injection (2 mo) Harvest age n Used in
Naive N/A 1.5 mo 4 Fig. 1, Additional file 1: Figure S1
rAAV1-IL-6 N/A 1.5 mo 4 Fig. 1, Additional file 1: Figure S1
rAAV1-EV asyn 6 mo 4 Figs. 2, 3,4 and 5, Additional file 2: Figure S2 and
Additional file 3: Figure S3
rAAV1-EV PBS 6 Mo 5 Figs. 2, 3, 4 and 5, Additional file 2: Figure S2,
Additional file 3: Figure S3 and Additional file 4: Figure S4
rAAV1-IL6 asyn 6 Mo 5 Figs. 2, 3,4 and 5, Additional file 2: Figure S2 and
Additional file 3: Figure S3
rAAV1-IL6 PBS 6 Mo 3 Figs. 2, 3,4 and 5, Additional file 2: Figure S2,
Additional file 3: Figure S3 and Additional file 4: Figure S4
rAAV1-EV asyn 4 mo 5 Fig. 6, Additional file 5: Figure S5
rAAV1-IL6 asyn 4 mo 5 Fig. 6, Additional file 5: Figure S5

6-diamidino-2-phenylindole (DAPI; Southern Biotech).
All colorimetric slides were scanned using the Aperio
XT whole slide scanner while fluorescent slides were
visualized using Olympus BX60 microscope with a
color digital camera.

Modified Campbell-Switzer silver staining

This was performed based on the original protocol by
Switzer [37]. Briefly, brain sections were placed in 2%
ammonium hydroxide for 15 min followed by incubation
in Silver-Pyridine-Carbonate solution in the dark with
gentle stirring for 40 min. Slides were treated consecu-
tively in 1% citric acid and acetate buffer (pH 5.0)
followed by immersion in the developer solution
(sodium carbonate, ammonium nitrate, silver nitrate and
formalin). Color development was stopped by transfer-
ring slides to acetate buffer and further incubation in so-
dium thiosulfate for 30 s. Finally, slides were dehydrated
in a series of alcohols and coverslips were applied.

Quantification of gliosis and spatial depiction of pathology
in brain maps

Paraffin-embedded brain sections were stained with anti
GFAP and anti Iba-1 antibodies, images captured by
Aperio XT scanner and analyzed using the Positive Pixel
Count algorithm in ImageScope (Aperio). At least three
slides were used to calculate an averaged immunostain-
ing burden quantity by a blinded experimenter.

CNS distribution of aSyn pathology was performed by a
blinded experimenter by visually evaluating slides from
each experiment (4 month or 2 month cohorts) in a single
sitting on an Evos light microscope (ThermoFisher). A
secondary reviewer also performed random spot-checks to
establish colorimetric assessment. Presence of aSyn path-
ology is represented by red dots on a brain map to reflect
the relative levels of pathology in a qualitative manner. To
quantitatively assess absolute aggregate counts, the number
of EP1536Y and p62 immunoreactive inclusions were

counted from different samples corresponding to slides that
were all cut at a given neuroanatomic location.

Quantification of IL6 levels by ELISA and IL-6 immunostaining
on brains

Wild type B6/C3H mice received bilateral, intraventricu-
lar injections of rAAV-IL-6 on neonatal day PO and
were harvested at 1.5 months. Mice brains were divided
sagitally; left hemisphere was snap frozen for biochem-
ical determination of IL-6 levels and right hemisphere
was fixed in formalin and paraffin embedded as coronal
sections for IL-6 immunohistochemistry. The frozen
hemibrains were extracted in RIPA buffer containing 1x
Protease inhibitor cocktail (Roche, Indianapolis, IN) and
used for biochemical determination of IL-6 protein
levels using the Opti EIA mouse IL-6 assay (BD Biosci-
ences) as described earlier [33]. Colorimetric assays were
analyzed using the SoftMax data acquisition software
(Molecular Devices). For immunohistochemistry, paraf-
fin embedded slides were stained with anti IL-6 antibody
(AbCam, 1:200) following antigen retrieval by steaming
in Dako Target Retrieval Solution S1699 (modified cit-
rate buffer, pH 6.1). Colorimetric slides were treated
with ImmPress reagents (Vector Labs) and visualized
with 3, 3’'diaminobenzidine followed by hematoxylin
counterstaining.

Statistics and image processing

All statistics were performed using the GraphPad Prism
software (GraphPad). Images were mounted using
Adobe Photoshop CS4.

Results

IL-6 expression induces gliosis in the brains of naive wild
type mice and aSyn fibril injected wild type mice

To explore the effect of chronic immune activation in a
model of aSyn seeding in wild type mice, neonatal B6/
C3H pups were transduced by bilateral injection of



Koller et al. Molecular Neurodegeneration (2017) 12:1

Page 4 of 13

100 * El Naive
a 80 El L6
£ *%
é 60 _—
© 40
=
20
1 2 4
0
1 2 3 4
100+ %
g 804
°
3 601
[<]
S 40
£
E
o 20
=
’ o 0-
Naive IL6
ivi IL6
C Na’ e s (PR ;\?10- *
£
=
©
[}
<
L™ o
3 5
/ £
E
®
=2
Naive IL6
Fig. 1 Expression of IL-6 leads to widespread astrogliosis in the forebrain of wild type mice. Wild type mice were injected with rAAV-IL-6 on neo-
natal day PO and analyzed at 1.5 months of age for IL-6 protein levels by ELISA (a). The numerals (on x- axis) denote the different regions of a sa-
gittally sectioned brain as shown on the model brain on the /eft panel (a). Uninjected (naive) mice were used as controls. Mouse forebrains were
also analyzed for astrocyte (GFAP) (b) and microglia (Iba-1) activation (c). GFAP and Iba-1 immunoreactivity was quantified and depicted across
the whole forebrain (b-c). n =3 mice/group. **p < 0.01, *p < 0.05, Student’s t test. Scale bar, 150 um and 40 um (inset)

rAAV1-Empty vector (rAAV1-EV) or rAAVI1-IL-6 into
the cerebral ventricles. rAAV1-EV injected animals were
used as the control cohort in this study as these rAAV
vectors contain the empty pAAV plasmid without any
exogenous protein-encoding genes. Mice were aged to
1.5 months and analyzed for the extent of IL-6 expres-
sion and astrogliosis (Fig. 1). Direct ELISA determin-
ation of IL-6 levels showed that except for the anterior-
most (olfactory bulb), IL-6 was upregulated by ~40 fold
over control cohorts in forebrain and midbrain areas
(Fig. 1a). Immunostaining for IL-6 protein revealed dif-
fuse IL-6 reactivity in the neuropil as well as some cellu-
lar staining present throughout the forebrain and
midbrain areas compared to control mice (Additional
file 1: Figure S1). We also conducted detailed immu-
nohistochemical analysis to assess GFAP immunoreac-
tive astrocytes and Iba-1 reactive microglia in the
cortex and hippocampus. We observed widespread
astrocytosis and microgliosis in IL-6 overexpressing
mice (Fig. 1). Quantification of immunostaining using

the positive pixel count program (Aperio ImageScope)
showed significant increases in astrocytic staining
(113.3x in IL-6 mice compared to naive mice; Fig. 1b)
and microglial staining (17.1x in IL-6 mice compared
to naive mice; Fig. 1c) in IL-6 expressing mice com-
pared to age-matched naive mice.

Two month old mice transduced with rAAV1-IL-6 or
rAAVI1-EV were bilaterally injected with 2 pg of wild
type mouse aSyn fibrils or sterile saline (PBS) in the
hippocampus. Mice were aged to 6 months of age and
analyzed for astrogliosis in the hippocampal area. Four
different groups were analyzed for astrogliosis: mice
injected on neonatal day PO with rAAV1-EV and subse-
quently injected in the hippocampus with either PBS or
aggregated aSyn and mice injected on neonatal day PO
with rAAV1-IL-6 and subsequently injected in the
hippocampus with either PBS or aggregated aSyn (Fig. 2,
Additional file 2: Figure S2). Injection of aSyn fibrils in
EV cohort induced astrogliosis compared to PBS injected
mice (needle track, arrows, Fig. 2a), clearly showing that
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Fig. 2 Astroglial activation in wild type mice following intra-hippocampal delivery of aSyn fibrils. Neonatal mice were transduced with rAAV-EV or rAAV-
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fibrils, focal gliosis (GFAP) was observed along the needle tract in rAAV-EV mice (a). PBS (vehicle) serves as control (a). b-d. Expression of rAAV-IL-6 alone
(IL-6 + PBS) resulted in a significant upregulation of GFAP (p = 0.0345), Iba-1 (p =0.0328) and cd11b (p = 0.0003) immunoreactivity, compared to EV + PBS
cohorts. In the EV cohort, aSyn injection leads to increased GFAP (p =0.0146) and cd11b (p = 0.0002) but does not change Iba-1 levels (p = 02216). In
the IL-6 cohort, injection of aSyn leads to a nonsignificant trend in increased GFAP (p=0.2432) and cd11b (p = 0.0679) immunoreactivity and causes a
non-significant lowering trend in lba-1 levels (p = 0.1002). Whole brain images corresponding to these panels are shown in Additional file 2: Figure S2.
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the presence of exogenous aSyn aggregates activated as-
trocytes at least focally. Overall, IL-6 + PBS mice show
higher induction of astrocytosis (GFAP) and microgliosis
(Iba-1 and cd11b) compared to EV + PBS mice (Fig. 2b—
d). Though injection of aSyn fibrils also increases cd11b
and GFAP immunoreactivity in both IL-6 and EV

cohorts (Fig. 2b, d), the extent of astrogliosis and micro-
gliosis induced by aSyn fibrils (between EV + PBS and
EV + aSyn cohorts) was considerably lower than the
magnitude of glial activation observed in response to IL-
6 alone (between IL-6+PBS and EV +PBS cohorts)
(Fig. 2b—d). Surprisingly, there was a non-significant
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lowering of Iba-1 immunoreactivity in IL-6 group com-
pared to the EV groups following hippocampal delivery
of aggregated aSyn (Fig. 2c). We also observed sparse
MHCII immunopositive cells specifically around the
ventricles in IL-6 alone or aSyn fibril injected cohorts
(Additional file 3: Figure S3). MHCII staining was not
observed in other areas of the brain, for example hippo-
campus or cortex (Additional file 3: Figure S3).

IL-6 expression attenuates aSyn pathology following
intrahippocampal injection of preformed aSyn fibrils
Injections of exogenous aSyn fibrils into predetermined
areas of the mouse brain leads to aSyn inclusion path-
ology in wild type mice [13—-15]. Here, we used a similar
model of a-synucleinopathy by injecting preformed
mouse aSyn fibrils in the hippocampus of 2 month old
wild type mice transduced with rAAV1-EV or rAAV1-
IL-6 on day PO. 4 months post injection, we detected
aSyn pathology throughout the hippocampal CA1-3 and
dentate gyrus and to a lesser extent in the sensorimotor
cortex (Fig. 3a—c). No aSyn pathology was observed in
other regions of the brain. The methodology used in our
studies has been standardized in previous publications
from our group [7, 13]; since we conducted bilateral
seeding and used the whole brain for immunohisto-
chemical assays that allow for accurate quantification,
this precluded us from performing any biochemical as-
says of aSyn. Pathological aSyn was detected using two
distinct antibodies raised against phosphorylated Ser129
epitope in aSyn: pSer129/81A [36] and EP1536Y
(AbCam). We observed that in IL-6 expressing mice, the
induction aSyn pathology was significantly lower in all
the areas of the brain examined (Fig. 3a—c). The absolute
counts of EP1536Y immunoreactive pSer129-aSyn inclu-
sions in the whole brain showed that there was a 10.4x
reduction in IL-6 expressing mice (p = 0.0023) (Fig. 3d).
Using immunofluorescence colocalization in the hippo-
campus (Fig. 3e) and cortex (Fig. 3f), we confirmed that
perikaryal pSer129/81A inclusions were mostly present
in neurons (arrows, NeuN panel) in response to exogen-
ous aSyn fibrils in EV cohorts. Intraneuronal oSyn
inclusion staining was dramatically reduced in the
hippocampus and cortex of IL-6 expressing mice com-
pared to the EV cohort (Fig. 3e—f).

p62-reactive pathology induced by aSyn fibrils is attenuated
in IL-6 expressing mice

The extent of aSyn pathology in EV or IL-6 expressing
wild type mice was also confirmed with anti-p62/seques-
tosome antibody, which is a component of Lewy body
inclusions [38, 39]. Perikaryal and cytoplasmic p62 stain-
ing was localized in the cortex and hippocampus of EV
injected mice, while IL-6 expressing mice had consider-
ably lower amounts of p62 stained inclusions in both
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areas (Fig. 4a, arrows). Overall, there was a 95% decrease
in p62-reactive cell body count in the hippocampus and
cortex (p<0.05) (Fig. 4b). We further confirmed that
age-matched naive mice (EV and IL-6 cohorts) which
were not challenged with aSyn fibrils did not show accu-
mulation of p62 inclusions (Additional file 4: Figure S4),
confirming that the p62 induction is directly associated
with the extent of pathological aSyn inclusions in these
mice, and not with inflammatory activation.

IL-6 induced inflammatory milieu also limits the induction
of argyrophilic inclusions by aSyn fibrils

Using Campbell-Switzer silver staining which detects
Lewy body pathology [40], we examined the patterns of
cytoplasmic inclusion pathology in EV and IL-6 cohorts
following intrahippocampal delivery of aSyn fibrils.
Consistent with patterns of pSer129 aSyn immunoposi-
tivity, we observed argyrophilic inclusions only in the
brain regions contiguous to the injection site. In the EV
cohorts, there was copious perikaryal staining mostly in
the hippocampus and occasional staining was noted in
the cortex. In the IL-6 expressing mice, the intracellular
silver staining was considerably lower in both the hippo-
campus and cortex (Fig. 5a—b).

IL-6 induced attenuation of aSyn pathology is an early event
To further investigate the timeline of the effect observed
in IL-6 expressing mice, we assessed a second cohort of
mice 2 months following intrahippocampal challenge
with aSyn fibrils. Similar to earlier experiments, neonatal
B6/C3H pups were transduced by bilateral injection of
rAAV2/1-EV or rAAV2/1-IL-6 into the cerebral ventri-
cles, aged to 2 months and then injected with aSyn
fibrils in the hippocampus. When these mice were
analyzed 2 months post injection, both GFAP and Iba-1
astrogliosis were upregulated in the forebrain areas in
IL-6 expressing mice compared to EV cohorts
(Additional file 5: Figure S5A-B). Examination of
pSer129 aSyn immunopositivity in this cohort (2 months
aSyn challenge) revealed a similar pattern that was ob-
served in the first cohort (4 months aSyn challenge):
IL-6 expressing mice had lower aSyn burden compared
to EV cohorts when examined 2 months post a-Syn
challenge (Fig. 6a—d). The absolute counts of EP1536Y
immunoreactive pSer129-a-Syn inclusions in the whole
brain showed that there was a 1.7x reduction in IL-6 ex-
pressing mice (p=0.0251) (Fig. 6d). In IL-6 cohorts,
aSyn immunopositivity was mostly restricted to the
hippocampus whereas in the EV cohorts, perikaryal aSyn
staining was observed in both hippocampus and cortex.
There was a corresponding decrease in argyrophilic
inclusions in the IL-6 injected mice compared to the EV
injected mice (Fig. 6¢).
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Fig. 3 IL-6 reduces aSyn pathology in wild type mice following intra-hippocampal injection of aSyn aggregates. Neonatal wild type mice were
injected with rAAV-EV or rAAV-IL-6 and subsequently bilaterally injected in the hippocampus with aSyn fibrils at 2 months of age. Mice were analyzed
4 months post injection with aSyn fibrils in the hippocampus. Representative images of different brain regions stained with two antibodies (EP1536Y
and 81A) that recognize the pSer129 epitope on aSyn are shown (a-b). The pattern and distribution of pSer129 aSyn pathology was similar with both
antibodies. aSyn inclusions were mainly found in the hippocampus, dentate gyrus and cortical regions. Mice expressing IL-6 presented with lower
levels of aSyn pathology than in EV control cohorts. Hematoxylin was used to counterstain tissues. Scale Bar, 25 um. Red dots depicting rostral/caudal
distribution of aSyn inclusions in wild type mice identified by pSer129 immunostaining is presented as a qualitative measure of relative amounts of
aSyn burden (c). The actual number of aSyn inclusions were counted in EP1536Y stained sections (whole brain) of IL-6 and EV cohorts injected with
aSyn aggregates (d). **p < 0.01. e—f, Co-immunofluorescence staining with GFAP (astrocyte marker, Alexa Fluor 594) or NeuN (neuronal marker, Alexa
Fluor 594) with 81A antibody (Alexa Fluor 488) shows aSyn inclusions primarily localized in the neurons in the hippocampus (arrows, ) and cortex
(arrows, f). Overall, intraneuronal aSyn inclusion pathology is reduced in IL-6 expressing mice. n = 4-5 mice/cohort. Scale bar, 25 pm

Discussion pre-fibrillized aSyn aggregates. We show that expression
Here we have investigated the effect of inflammatory im-  of IL-6 in two independent time progressive cohorts
mune activation on the induction of aSyn pathology in  of wild type mice results in 1) widespread and
wild type mice following intra-hippocampal delivery of massive astrogliosis, 2) attenuation of induced aSyn
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Fig. 4 p62 immunoreactive inclusion pathology is reduced in IL-6 expressing mice injected in the hippocampus with aSyn fibrils. Neonatal wild

type mice were injected with rAAV-EV or rAAV-IL-6 and subsequently bilaterally injected in the hippocampus with aSyn fibrils at 2 months of age.
Mice were analyzed 4 months post injection with aSyn fibrils in the hippocampus. Representative p62 staining is shown in different brain regions
of rAAV-EV or rAAV-IL-6 mice following intra-hippocampal injection with aSyn fibrils (arrows, a). IL-6 expressing mice show considerably lower p62
levels than EV cohorts in response to hippocampal aSyn challenge. The number of hippocampal and cortical p62 inclusions were counted in IL-6

\

and EV cohorts injected with aSyn aggregates (b). *p < 0.05. n =4-5 mice/cohort. Scale bar, 25 um

pathology in mice challenged with exogenous aSyn
aggregates and 3) concurrent reduction in p62 and ar-
gyrophilic inclusion pathology in mice injected with
aSyn. Our study is in agreement with earlier reports
that aSyn can be readily endocytosed by astrocytes
[16] and this is potentially an endogenous mechanism
for rebalancing proteostasis abnormalities via lyso-
somal degradation [17]. Taken together, this suggests
that prior activation of astroglia alters the innate im-
mune milieu to generate a beneficial response in wild
type mouse brains challenged with exogenous «Syn
aggregates. However, whether IL-6 induced inflamma-
tory activation will have a different outcome in a
chronic setting, especially with regard to neurodegen-
eration and behavioral outcome measures, remains to
be investigated.

Templated conformational alterations in intracellular
aSyn and its subsequent secretion across neuroanatomic
junctions has emerged as a possible mechanism of dis-
ease progression in a-synucleinopathies [4]. However, lit-
tle is known about the non-cell autonomous effects of
extracellular aSyn on innate immunity in the CNS. More
importantly, whether innate immune based strategies

could potentially induce rapid uptake and degradation of
extracellular aSyn in vivo by immune cells has not been
studied. While chronic inflammation can have a detrimen-
tal role in CNS homeostasis [41], whether transient activa-
tion of astrocytes and microglia can be harnessed as a
disease modifying therapy in aSyn models of PD is still
unknown.

There are multiple reports showing that various ther-
apies can attenuate aSyn pathology in transgenic mouse
models (reviewed in [42]). However, only one previous
report, using a peripherally administered monoclonal
anti-aSyn antibody showed that prefibrillar aSyn aggre-
gate induced a-synucleinopathy can be blocked in vivo
[43]. Additionally, the reported safety and preliminary
efficacy of the ongoing AFFITOPE® PDO1A (AFFiRis
AQG) trials in human patients lends support to the idea
that activating the patient’s immune system to generate
anti-aSyn response may be potentially beneficial in limit-
ing the progression of aSyn pathology. Herein, we show
that pro-inflammatory preconditioning significantly at-
tenuates induction of endogenous aSyn pathology in
wild type mice. Further, our data seems to suggest that
in addition to potential immune scavenging of
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Fig. 5 Argyrophilic inclusion pathology is attenuated in IL-6 expressing
mice injected in the hippocampus with aSyn fibrils. Neonatal wild type
mice were injected with rAAV-EV or rAAV-IL-6 and subsequently
bilaterally injected in the hippocampus with aSyn fibrils at 2 months of
age. Mice were analyzed 4 months post injection with aSyn fibrils in the
hippocampus. Representative images of hippocampal and cortical regions
of mice stained with modified Campbell-Switzer silver staining show that
mice overexpressing IL-6 have fewer silver-positive inclusions than control
(EV) mice (@). Red dots show the comparative distribution of argyrophilic
inclusions along rostral-caudal axis as identified by modified Campbell-
Switzer silver staining (b). n =4-5 mice/cohort. Scale bar, 150 um (eft
panel) and for middle and right panels, 30 um and 15 um (inset)

exogenous aSyn aggregates around the time of adminis-
tration, IL-6 induced gliosis was instrumental in remov-
ing the secondary pathological forms of aSyn at a later
timepoint. The mechanism of such time-progressive
reduction remains unknown but given the present un-
derstanding, it is likely that attenuation of aSyn path-
ology may occur via upregulation of phago-lysosomal
function of the glial cells (reviewed in [44]). Both
the autophagy-lysosomal pathway and the ubiquitin
proteasome system have been shown to play crucial
roles in aSyn clearance [45]. However, there may
well be additional clearance mechanisms underlying
the reduction in aSyn pathology observed in our
study. Our data thus provides a second and unique
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instance where manipulating the immune system
provides a beneficial response in a model of exogen-
ous fibril-induced aSyn pathology. There are some
caveats to such immune manipulations. Given that
microarray expression data suggest that aging itself
skews the human brain towards a pro-inflammatory
state, it is interesting to consider how those age-in-
duced alterations might modify the spread of neuro-
degenerative pathology in humans [46]. In particular,
special cognizance ought to be placed on harnessing
the beneficial nature of innate immune function vis-
a-vis the potentially harmful outcomes of a chronic
response.

Our present data as well as earlier reports show
that CNS injection of exogenous oSyn aggregates
leads to focal gliosis, especially discernible along the
needle track [7]. Exogenous aSyn aggregates may
cause glial dysfunction followed by intracellular pro-
teostasis resembling neuropathological changes in
synucleinopathies [7, 9]. On the other hand, astro-
glial activation may provide trophic support to the
CNS in rodent models of PD and therefore may have
beneficial neuroprotective effects overall [47, 48]. A
major function of glial cells is to scavenge debris
[49] and it is possible that facilitating clearance of
extracellular aSyn may attenuate inter-neuronal
transfer of aSyn and support normal homeostasis.
Interestingly, aSyn is thought to be taken up by
astrocytes around axon terminals in brains of PD pa-
tients [50], which was demonstrated in cell culture
using exogenous aSyn [16]. Both astrocytes and
microglia can internalize and degrade extracellular
and cell-derived aSyn [11, 17, 29, 30, 51, 52]. Two
microglial receptors, TLR2 and TLR4, have been
identified as possible endogenous receptors respon-
sible for aSyn internalization; indeed, TLR4 ablation
reduces aSyn clearance and exacerbates neurodegen-
eration [30]. Therefore, such astrocytic and micro-
glial scavenging and clearance mechanisms hold
promise in preventing the spread of aSyn pathology
during inter-cellular transfer of aSyn seeds.

Although the general dogma in many neurodegen-
erative disorders is that inflammatory stimuli might
promote disease [53], data in preclinical models of
Alzheimer’s disease demonstrate that activating the
immune system can attenuate the underlying protei-
nopathy [33, 54-57]. We and others have demon-
strated that at least early in the disease process,
inflammatory activation in the CNS can have posi-
tive disease modifying effects in mouse models of
Alzheimer’s disease [33, 54, 58, 59]; similarly, in this
study, we demonstrate that at least in an acute sce-
nario, IL-6 induced innate immune activation can
have a protective outcome in wild type mice
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Fig. 6 Reduced aSyn pathology in IL-6 expressing mice at 2 months following intra-hippocampal injection of aSyn fibrils. Neonatal wild type mice
were injected with rAAV-EV or rAAV-IL-6 and subsequently bilaterally injected in the hippocampus with aSyn fibrils at 2 months of age. pSer129 aSyn
immunoreactive pathology was assessed in wild type mice 2 months post intra-hippocampal aSyn challenge. Immunolabeling with EP1536Y and 81A
antibodies demonstrate reduced pathological aSyn levels in IL-6 mouse brains (a—b). Argyrophilic inclusions were also reduced in IL-6 cohort com-
pared to the EV cohort (c). Accompanying panels on the right display the comparative distribution of pSer129 immunoreactive aSyn pathology on a
representative brain map. The number of aSyn inclusions were counted in EP1536Y stained sections (whole brain) of IL-6 and EV cohorts injected with
aSyn aggregates (d). *p < 0.05. n = 4-5 mice/cohort. Scale bar, 300 um and 80 pm (inset)

following exogenous aSyn challenge. To our know-
ledge the current data presented here is the first to
show that an inflammatory interventional strategy
may also work in a mouse model of seeded synuclei-
nopathy. However, in Lewy Body diseases, the role of
individual cytokines still remains to be elucidated
(reviewed in [60]). Different inflammatory cytokines have
been shown to be correlated with the disease process in
mouse models of nigro-striatal degeneration as well as in
Parkinsonian patients. Both IFN-y and TNFa have been
shown to be associated with neurodegeneration in PD
mouse models [61-63] while the role of other cytokines,
such as IL-6 and IL-4 that are upregulated in PD patients
[64], have not been studied before in mouse models of

synucleinopathies. In particular, whether any of these lat-
ter cytokine signaling pathways can modify induction and
progression of a-synucleinopathy and therefore have
translatable disease modifying outcomes is of paramount
interest in therapeutics against synucleinopathies.

Conclusion

Here, we show that inflammatory priming of the CNS
using IL-6 attenuates aSyn inclusion pathology in wild
type mice. Our data adds novel insights into harnessing
innate immunity as disease modifying therapies in synu-
cleinopathies and further identifies potential immune
pathways for therapeutic intervention in these diseases.



Koller et al. Molecular Neurodegeneration (2017) 12:1

Additional files

Additional file 1: Figure S1. Depiction of IL-6 staining in AAV injected
mice. Mice were injected at neonatal day PO with rAAV-IL-6 and analyzed
at 1.5 months of age. Representative whole brain images of naive and IL-
expressing mouse brain sections stained with IL-6 are presented. Magni-
fied images from selected areas of the brain (numbered) are presented in
the bottom panels. Scale bar, 600 um (top) and 15 pm (bottom panels).
(185 kb)

Additional file 2: Figure S2. Depiction of inflammatory activation in IL-
6 expressing mice injected with aSyn fibrils. Mice were injected at neo-
natal day PO with rAAV-IL-6 or rAAV-EV and subsequently injected in the
hippocampus with aSyn at 2 months of age. Mice were analyzed

4 months post injection with aSyn fibrils in the hippocampus. Whole
brain images of Empty vector (EV) and IL-6 expressing mouse brain sec-
tions that were injected with aSyn fibrils or PBS in the hippocampus are
shown. Representative images stained with GFAP, Iba-1 and cd11b. These
images correspond to the high power magnified images shown in

Fig. 2b-d. Scale bar, 600 um. (4.74 MB)

Additional file 3: Figure S3. MHCI staining in IL-6 expressing mice
injected with aSyn fibrils or PBS. Mice were injected at neonatal day PO
with rAAV-IL-6 or rAAV-EV and subsequently injected in the hippocampus
with aSyn at 2 months of age. Mice were analyzed 4 months post injec-
tion with aSyn fibrils in the hippocampus. Representative sections stained
with MHCII antibody show that CNS expression of IL-6 alone as well as in-
jection of aSyn fibrils leads to MHCII immunoreactivity around the ventri-
cles. Other regions of the brain, including the hippocampus shown here,
do not show any detectable MHCII immunostaining. Scale bar, 80 um.
(2.73 MB)

Additional file 4: Figure S4. |L-6 expression by itself does not alter p62
levels. Mice were injected at neonatal day PO with rAAV-IL-6 or rAAV-EV
and subsequently injected in the hippocampus with aSyn at 2 months of
age. Mice were analyzed 4 months post injection with aSyn fibrils in the
hippocampus. Representative sections stained with anti-p62 antibody
shows that CNS expression of IL-6 by itself does not produce any overt
changes in p62 expression. Scale bar, 80 um. (1.49 MB)

Additional file 5: Figure S5. Astrocytosis and microgliosis in IL-6 ex-
pressing mice injected with aSyn. Mice were injected at neonatal day PO
with rAAV-IL-6 or rAAV-EV and subsequently injected in the hippocampus
with aSyn at 2 months of age. Mice were analyzed 2 months post hippo-
campal injection. Presence of IL-6 increases both GFAP and Iba-1 immu-
noreactivity (A-B) compared to EV cohort. Red dots depicting distribution
of glial immunoreactivity in and around the aSyn injection site are pre-
sented on the right hand panel in a brain schematic. n =5 mice/cohort.
Scale bar, 150 um and 40 um (inset). (1.18 MB)
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