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Abstract

Background: Apolipoprotein E (ApoE) is a major cholesterol carrier and plays an important role in maintaining lipid
homeostasis both in the periphery and brain. Human APOE gene is polymorphic at two single nucleotides
(rs429358 and rs7412) resulting in three different alleles (ε2, ε3 and ε4). ApoE isoforms modulate the risk for a
variety of vascular and neurodegenerative diseases; thus, APOE genotyping is crucial for predicting disease risk and
designing individualized therapy based on APOE genotype.

Results: We have developed an APOE genotyping method that is based on allele-specific PCR methodology
adapted to Real Time PCR monitored by TaqMan probe. Rather than using TaqMan probes specific for the two
polymorphic sites, only one TaqMan probe is used as the polymorphic alleles are recognized by site-specific PCR
primers. Each genotyping assay can be completed within 90 minutes and is applicable to high-throughput analysis.
Using this protocol, we genotyped a total of 1158 human DNA samples and obtained a 100 % concordance with
the APOE genotype determined by sequencing analysis.

Conclusion: The APOE genotyping assay we have developed is accurate and cost-effective. In addition, our assay
can readily be applied to genotyping large sample numbers. Therefore, our APOE genotyping method can be used
for assessing the risk for a variety of vascular and neurodegenerative diseases that have been reported to be
associated with APOE polymorphism.
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Background
The human apolipoprotein E (apoE) gene is mapped to
chromosome 19q13.2, which consists of four exons and
three introns [1]. APOE gene is polymorphic at two sin-
gle nucleotides (rs429358 and rs7412), resulting in three
different alleles (ε2, ε3 and ε4) and six APOE genotypes
(ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε3, ε3/ε4 and ε4/ε4) [2]. The
worldwide frequency of ε2, ε3 and ε4 allele is 8.4 %,
77.9 % and 13.7 %, respectively [3, 4]. However, the
APOE allele frequencies vary widely among different eth-
nic populations [5]. Differences among the three apoE
isoforms reside in the amino acid residues 112 and 158,

where either cysteine or arginine is present: E2 (Cys 112,
Cys 158), E3 (Cys 112, Arg 158), and E4 (Arg 112, Arg
158) [6]. Despite differences by only one or two amino
acids, the structural and functional differences among
the three apoE isoforms can be profound to affect dis-
ease risk [7, 8].
ApoE is a major cholesterol carrier and plays an im-

portant role in maintaining lipid homeostasis both in the
periphery and brain [3, 6]. In the periphery, apoE is syn-
thesized predominantly by liver and macrophages. In the
brain, apoE is produced primarily by astrocytes and de-
livers cholesterol and other essential lipids to neurons
through members of the low-density lipoprotein recep-
tor (LDLR) family [9–12]. The single amino acid differ-
ences among the three apoE isoforms alter the protein’s
structure and influence its lipid association and receptor
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binding; therefore apoE modulates cholesterol homeo-
stasis in an isoform-dependent manner [13]. Notably,
apoE2 binds to LDLR with ~50-fold weaker affinity
than apoE3 and apoE4. As a result, apoE2 transports
lipids less efficiently, and ε2 homozygosity is associ-
ated with an increased risk for type III hyperlipopro-
teinemia [14–16]. ApoE4 preferentially binds to large
lipoprotein particles and is associated with increased
risk for hypercholesterolemia and atherosclerosis, fas-
ter HIV disease progression, and accelerated telomere
shortening [3, 17, 18].
Most importantly, genome-wide association studies

have confirmed that the ε4 allele of APOE is the stron-
gest genetic risk factor for late-onset Alzheimer’s disease
(LOAD) [9, 19–21]. Compared with those with an ε3/ε3
genotype, the risk of AD was increased in individuals
with one copy (ε2/ε4, OR 2.6; ε3/ε4, OR 3.2) or two cop-
ies (ε4/ε4, OR 14.9) of the ε4 allele [4, 22, 23]. Con-
versely, the ε2 allele of APOE has a protective effect
against AD [24]. The risk of AD in individuals carrying
an ε2/ε2 (OR 0.6) or ε2/ε3 (OR 0.6) genotype is lower
than those carrying ε3/ε3 [4]. Additionally, the ε4 allele
of APOE was found to be a risk factor for other neuro-
degenerative diseases including cerebral amyloid angio-
pathy (CAA) [25], dementia with Lewy bodies [26, 27]
and multiple sclerosis [28].
As APOE genotype predicts the risk for a variety of

vascular and neurodegenerative diseases, it is critical to
develop rapid and cost-effective methods to analyze
APOE gene polymorphism. Several different APOE geno-
typing methods have been developed. Among them, the
PCR-Restriction Fragment Length Polymorphism (PCR-
RFLP) analysis is a conventional method applied to
genotype APOE polymorphism [29, 30]. However, this
method is complex and labor-intensive as it involves
multiple steps including restriction enzyme digestion.
PCR plus sequencing or mass spectrometry is an
effective method, but requires expensive detection
equipment and is also labor-intensive [31]. Several Real
Time PCR-based techniques have been developed to
genotype APOE gene, including HRM (high resolution
melt) [32, 33], TaqMan probe [34] and FRET (Fluores-
cent Resonance Energy Transfer) [35]. However, the for-
mation of primer-dimers may complicate the melting
curves interpretation, and the use of FRET and multiple
TaqMan probes is in general costly.
In view of the importance of APOE genotyping in pre-

dicting individual risk for a variety of vascular and neu-
rodegenerative diseases, we have developed a rapid and
cost-effective method for analyzing APOE polymorph-
ism. Using this protocol, we genotyped a total of 1158
human DNA samples and obtained a 100 % concordance
with the APOE genotype determined by sequencing ana-
lysis. Therefore, the method we have developed for

APOE genotyping is precise and suitable for genotyping
large sample cohorts.

Results
APOE genotyping assay development and validation
Our assay was based on allele-specific PCR methodology
adapted to Real Time PCR monitored by TaqMan probe.
Initial PCR primers were designed according to the nu-
cleotide differences located at the two SNPs within exon
4 of the APOE gene, rs429358 and rs7412 (Fig. 1a). We
screened a group of oligonucleotide primers and ob-
tained three pairs that gave specific amplifications of ε2,
ε3 and ε4 allele, respectively (Table 1). In order to moni-
tor real-time DNA amplification products, one double-
dye oligonucleotide TaqMan probe was included in all
reactions. The probe has a FAM fluorophore attached to
its 5’ end and a BHQ quencher molecule attached to its
3’ end (Fig. 1b). The probe initially hybridizes to the
template strand via its complementary sequences. Upon
PCR amplification, Taq polymerase will degrade the
probe during strand extension, resulting in the separ-
ation of fluorophore and the quencher which allows the
excitation of the fluorophore by laser [36].
To validate the efficiency and specificity of our assay,

we synthesized three 197-bp DNA sequences covering
the two SNPs for ε2, ε3 or ε4 allele and a 179-bp DNA
sequence of beta-actin gene (ACTB) which serve as posi-
tive controls for APOE genotyping. The TaqMan probe
for ACTB was designed similar to APOE but the former
has a HEX fluorophore attached to its 5’ end. Genotyp-
ing of each sample was carried out in parallel reactions,
namely ε2, ε3 or ε4 reaction. Each reaction contains
allele-specific primers for APOE in combination with the
primers for ACTB. Specific amplification curve appeared
only in ε2 reaction when ε2-positive DNA was used
(Fig. 2). Similar results were observed in ε3 or ε4 reac-
tion, demonstrating the specificity of our detecting
system.

APOE genotyping of clinical DNA samples
We further validated our APOE genotyping assay
using human DNA samples. Genomic DNA was ex-
tracted from 1158 clinical blood samples and under-
gone subsequent APOE genotyping analysis. The
presence/absence of haplotypes was either determined
by differential amplification with the three specific
amplification setups for ε2, ε3 or ε4 allele, or by
DNA sequencing performed by Sangon Biotech using
the ABI 3730XL DNA Sequencer. In the clinical sam-
ple testing, our APOE genotyping assay has been effi-
cient such that a single Real Time PCR reaction took
approximately 90 minutes, and the Roche LightCycler
480 II system has the potential to run 384 reactions
at one time. Typical results are presented in Fig. 3,
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with genotyping results and allele frequencies summa-
rized in Table 2. APOE genotyping using our assay
showed 100 % concordance with DNA sequencing re-
sults, demonstrating the accuracy and reliability of
our protocol. The APOE allele frequency for ε2, ε3
and ε4 in our Chinese Han population was 7.90 %,
83.94 %, 8.16 %, respectively. Thus, the frequency of
the ε4 allele was lower than that for the world-wide
population (8.4 %, 77.9 % and 13.7 % for ε2, ε3 and
ε4, respectively), but was similar to previous studies
in Chinese population [4, 5, 37]. To provide guidance
on evaluating the accuracy of our APOE genotyping
method, receiver operating characteristic (ROC) curve
analysis was performed to assess the cut-off ΔCt
values for each Real Time PCR reaction (Table 3). A
sample is considered to be negative for the corre-
sponding genotype analysis if the ΔCt value is higher
than the cut-off value.

Table 1 Sequences of primers and probes for the APOE
genotyping assay

Name Sequence (5’-3’)

ε2-Forward GCGGACATGGAGGACGTGT

ε2-Reverse CCTGGTACACTGCCAGGCA

ε3-Forward CGGACATGGAGGACGTGT

ε3-Reverse CTGGTACACTGCCAGGCG

ε4-Forward CGGACATGGAGGACGTGC

ε4-Reverse CTGGTACACTGCCAGGCG

APOE probe FAM-CAGCTCCTCGGTGCTCTGGC-BHQ1

ACTB-Forward GACGTGGACATCCGCAAAGAC

ACTB-Reverse CAGGTCAGCTCAGGCAGGAA

ACTB probe HEX-TGCTGTCTGGCGGCACCACCATGTACC-BHQ1

Fig. 1 Schematic diagram of the human APOE gene and APOE genotyping method. a The APOE gene is located on chromosome 19, and is
polymorphic at two single nucleotides (rs429358 and rs7412) resulting in three different alleles (ε2, ε3 and ε4). b Amplifications of the APOE ε2, ε3
and ε4 alleles are initiated by allele-specific PCR primers. One double-dye oligonucleotide TaqMan probe was included in all reactions to monitor
real-time DNA amplification products
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Discussion
We have developed an APOE genotyping assay that is
based on allele-specific PCR methodology adapted to
Real Time PCR monitored by a common TaqMan probe.
Each genotyping analysis can be accomplished within
90 minutes and is applicable to high-throughput ana-
lysis. We validated the specificity and robustness of our
assay in 1158 clinical DNA samples by comparing the
results with those from DNA sequencing. All samples
genotyped using our assay showed perfect concordance
with the APOE genotypes determined by sequencing
analysis. Therefore, our method for APOE genotyping is
rapid, precise and cost-effective, with the potential for
high-throughput application.
APOE gene polymorphism modulates the risk for a

variety of vascular and neurodegenerative diseases; thus,
APOE genotyping is crucial for predicting disease risk
and designing individualized therapy based on APOE
genotype. Recent studies have suggested that therapeutic

interventions applied earlier in the course of AD might
be more likely to achieve disease modification. Indeed,
there is a growing recognition that the pathophysio-
logical process of AD begins many years prior to the on-
set of clinical symptoms [38]. APOE ε4 allele is the
strongest genetic risk factor for AD. The mean age of
onset and frequency of AD are 68 years and 91 % in ε4
homozygotes, 76 years and 47 % in ε4 heterozygotes,
84 years and 20 % in ε4 non-carriers [39]. Intriguingly,
apoE4 has been associated with greater efficacy in at
least two clinical trials on mild cognitive impairment
[40, 41]. Taken together, APOE genotype status may add
predictive value to the clinical diagnosis and evaluation
of treatment efficacy [8, 42]. Developing an accurate and
reliable method for APOE genotyping is therefore crucial
for AD diagnosis and therapy.
PCR-RFLP analysis is a conventional method for APOE

genotyping, but is relatively error-prone and labor-
intensive due to a number of reaction steps [29, 30].

Fig. 2 APOE genotyping on ε2-, ε3- or ε4-positive plasmid DNA by Real Time PCR. Representative amplification curves for APOE and ACTB are
shown. 12000 copies of each plasmid DNA are used as templates. Blue: ε2 reaction; Green: ε3 reaction; Red: ε4 reaction. FAM fluorescence: APOE
gene; HEX fluorescence: ACTB gene
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Fig. 3 APOE genotyping on clinical DNA samples by Real Time PCR and DNA sequencing. Representative amplification curves for APOE and ACTB,
and representative sequencing results for the two SNPs (rs429358 and rs7412) are shown. Blue: ε2 reaction; Green: ε3 reaction; Red: ε4 reaction.
FAM fluorescence: APOE gene; HEX fluorescence: ACTB gene
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Compared with the PCR-RFLP method, the accuracy of
our APOE genotyping method was improved by reducing
the steps to one PCR reaction in closed PCR tubes and
with no post-PCR sample handling. DNA sequencing is
an accurate method for APOE genotyping, but it is labor-
intensive and not suitable for high-throughput analysis.
Our assay was based on allele-specific PCR methodology
and possesses the potential for high-throughput applica-
tion. Several Real Time PCR-based techniques have been
developed to genotype APOE alleles, but the formation of
primer-dimers makes the interpretation of the melting
curves at times difficult [32, 33]. In our protocol, we
provide guidance on threshold selection to evaluate the
performance of PCR amplification by ROC analysis; there-
fore, the sensitivity and specificity of our protocol are well
defined. TaqMan systems for APOE genotyping have been
developed for the single nucleotide polymorphisms at
rs429358 and rs7412 [34, 43]. However, most protocols re-
quire the use of four costly TaqMan probes. Only one
TaqMan probe is used in our method as the polymorphic
alleles are recognized by site-specific PCR primers. Thus,
our method has the potential to design high-throughput
application in a way that is cost-effective.

Conclusions
In this work, we present an APOE genotyping method
that is accurate and cost-effective. In addition, our assay
is based on allele-specific PCR methodology; therefore,
can readily be applied to high-throughput APOE geno-
typing. Our APOE genotyping protocol can be used in
addressing the impact of APOE polymorphism on

disease risk, and notably in clinical assessments that pre-
dict the risk for a variety of vascular and neurodegenera-
tive diseases.

Methods
Subjects
A total of 1158 peripheral blood samples were collected
from the clinical laboratories in three hospitals (399
samples from Zhongshan Hospital Affiliated to Xiamen
University, 390 samples from Fujian Medical University
Union Hospital, and 369 samples from Huadong
Hospital Affiliated to Fudan University). The study was
performed in accordance with the Declaration of
Helsinki and approved by the Ethics Committees of the
three hospitals.

DNA constructs and reagents
All PCR primers and TaqMan probes were synthesized
and purified by Life Technologies (Table 1). Three 197-
bp DNA sequences covering the two SNPs for APOE ε2,
ε3 or ε4 allele and a 179-bp DNA sequence of beta-actin
gene (ACTB) were synthesized and cloned into pUC57
vector, which served as positive control DNA templates
(Sangon Biotech, Shanghai, China). All constructs were
verified by DNA sequencing (Sangon Biotech, Shanghai,
China). Premix PrimeSTAR HS (R040A) was purchased
from TAKARA; TaqMan® Genotyping Master Mix
(4371357) was purchased from Applied Biosystems;
DMSO (D2650) was purchased from Sigma; and blood
DNA extraction kit (DP348-03) was purchased from
TIANGEN (TIANGEN, Beijing, China).

Human genomic DNA isolation
Genomic DNA was extracted from 400 μL peripheral
blood by using the blood DNA extraction kit (TIAN-
GEN) according to the manufacturer’s instructions.
DNA was diluted with nuclease free water to 8 ng/μL
for APOE genotyping analysis.

Table 2 Analysis of APOE genotypes and allele frequency in Chinese population

Cohort No. APOE genotypes (No.) Accuracy (%) Alleles (%)

ε2/ε2 ε2/ε3 ε2/ε4 ε3/ε3 ε3/ε4 ε4/ε4 ε2 ε3 ε4

Zhongshan 399 2 60 6 278 51 2 100 8.77 83.58 7.65

Fujian 390 2 50 5 271 60 2 100 7.56 83.59 8.85

Huadong 369 3 43 5 265 52 1 100 7.32 84.69 7.99

Total 1158 7 153 16 814 163 5 100 7.90 83.94 8.16

Genomic DNA was extracted from peripheral blood samples obtained from three hospitals (399 samples from Zhongshan Hospital Affiliated to Xiamen University,
390 samples from Fujian Medical University Union Hospital, and 369 samples from Huadong Hospital Affiliated to Fudan University). The APOE genotypes and
allele frequency were analyzed by both Real Time PCR and DNA sequencing. The 100 % accuracy was defined when APOE genotyping using the Real Time PCR
assay showed 100 % concordance with DNA sequencing results

Table 3 Cut-off values for ΔCt calculated by ROC curve analysis

Reactions Cut-off values

ε2 reaction 9.2

ε3 reaction 10.4

ε4 reaction 11.1

The cut-off ΔCt values for the three reactions were calculated from ROC curve
analysis, which represent the threshold cycle above which a sample is
considered to be negative for the corresponding genotype analysis
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APOE genotyping by Real Time PCR
APOE genotyping by Real Time PCR includes three reac-
tions: ε2 reaction (primers ε2-Forward and ε2-Reverse), ε3
reaction (primers ε3-Forward and ε3-Reverse) and ε4 re-
action (primers ε4-Forward and ε4-Reverse). Each PCR re-
action mixture (15 μL) contained the following reagents:
1 × TaqMan® Genotyping Master Mix, 0.5 μM of each
APOE primer and APOE probe, 0.1 μM of each ACTB pri-
mer and ACTB probe, 40 ng of genomic DNA. Positive
control DNA template (ε2, ε3, ε4 plasmid DNA) and
negative control (DNA/RNA-free water) were included in
each panel of genotyping. The PCR amplification protocol
was as follows: Initial activation of AmpliTaq Gold DNA
Polymerase at 95 °C for 10 min, followed by 40 cycles with
denaturation at 95 °C for 15 sec, and annealing/extension
at 64 °C for 1 min. The fluorescence signals were collected
during the annealing/extension step. FAM signal indicates
APOE alleles and HEX signal indicates ACTB gene (in-
ternal control). The amplification was performed by using
the Roche LightCycler 480 II system (Roche).

APOE genotyping by sequencing
For validation purpose, results by the above-mentioned
APOE genotyping assay were compared with those from
DNA sequencing analysis. Briefly, APOE gene fragments
encompassing the two SNPs were amplified. The ampli-
fication reaction was carried out in a volume of 50 μL,
which cotains 1 × Premix PrimeSTAR HS, 0.2 μM of
each primer (Forward primer: 5’-AGCCCTTCTCCCC
GCCTCCCACTGT-3’ and Reverse primer: 5’-CTCC
GCCACCTGCTCCTTCACCTCG-3’), 5 % DMSO and
40 ng genomic DNA. The PCR cycling conditions were
as follows: Initial denaturation at 98 °C for 4 min
followed by 35 cycles with denaturation at 98 °C for
10 sec, annealing at 60 °C for 30 sec, extension at 72 °C
for 40 sec; then a final extension at 72 °C for 10 min. All
PCR products were purified and sequenced by Sangon
Biotech using the ABI 3730XL DNA Sequencer (Applied
Biosystems).

Ct cut-off values calculated by ROC curve analysis
The APOE genotypes of 114 human genomic DNA sam-
ples were determined either by our APOE genotyping
method or by DNA sequencing. Receiver operating char-
acteristic (ROC) curve analysis was performed to calcu-
late the cut-off values for ΔCt (calculated by subtracting
the Ct value of HEX signal from the Ct value of FAM
signal) in our APOE genotyping assay. If no amplifica-
tion curve appeared in the APOE allele-specific reaction,
the Ct value was considered as 40 for the calculation of
ΔCt. The ΔCt values of the ε2/ε3/ε4 reaction were 9.2,
10.4 and 11.1, respectively, as calculated by ROC curve
analysis using SPSS software (Table 3).
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AD: Alzheimer’s disease; ApoE: Apolipoprotein E; CAA: cerebral amyloid
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operating characteristic; SNP: single nucleotide polymorphism.
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