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Abstract 

Background:  Design and analysis of clinical trials for rare and ultra-rare disease pose unique challenges to the 
practitioners. Meeting conventional power requirements is infeasible for diseases where sample sizes are inherently 
very small. Moreover, rare disease populations are generally heterogeneous and widely dispersed, which complicates 
study enrollment and design. Leveraging all available information in rare and ultra-rare disease trials can improve both 
drug development and informed decision-making processes.

Main text:  Bayesian statistics provides a formal framework for combining all relevant information at all stages of the 
clinical trial, including trial design, execution, and analysis. This manuscript provides an overview of different Bayesian 
methods applicable to clinical trials in rare disease. We present real or hypothetical case studies that address the key 
needs of rare disease drug development highlighting several specific Bayesian examples of clinical trials. Advantages 
and hurdles of these approaches are discussed in detail. In addition, we emphasize the practical and regulatory 
aspects in the context of real-life applications.

Conclusion:  The use of innovative trial designs such as master protocols and complex adaptive designs in 
conjunction with a Bayesian approach may help to reduce sample size, select the correct treatment and population, 
and accurately and reliably assess the treatment effect in the rare disease setting.

Keywords:  Small sample, Clinical trial, Prior distribution, External control, Meta-analytic predictive approach, SMART​, 
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Background
The Orphan Drug Act defines a rare disease as one that 
affects less than 200,000 individuals in the United States, 
while the European Union defines a rare disease as one 
that affects 1 per 2000 individuals or fewer [1]; combined 
there are somewhere between six to ten thousand rare 
diseases [2]. Although individually rare, collectively, 

rare diseases affect 400–700 million persons globally at 
any point in time [3]. However, fewer than 10% of rare 
diseases have approved treatments leaving an urgent 
unmet medical need for rare disease patients and their 
families [4]. A 2018 review from the US, EU, and Japan 
reports 28,526 clinical trials studying 1539 drugs for 1535 
rare diseases; over half (51%) of these trials were in the 
setting of rare cancers [5]. Although clinical trials are 
underway, there are unique challenges to rare disease 
research such that trials investigating drugs for rare 
diseases tend to enroll fewer patients, are more likely to 
be non-randomized, and are more often open label than 
non-rare disease trials [6].
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A main challenge in drug development for rare diseases 
is linked to the challenge of generating robust evidence 
from clinical trials with limited sample size. Certain 
diseases are so rare that enrolling a reasonable number of 
patients is difficult when patients are recruited worldwide 
and over several years. Results from any such small trial 
enable limited interpretation of the treatment effect 
due to the lack of precision. Small participant numbers 
tend to correspond to a small number of endpoint 
events. This situation is often referred to as the “zero-
numerator problem” [7]. Traditional statistical methods 
yield overly conservative results in such situations. Given 
these challenges, alternative design choices that ensure 
utilization of all available (trial internal and external) data 
on treatment efficacy and safety should be considered 
to maximize the ability to draw clinically relevant 
conclusions. Bayesian methods have been suggested as a 
framework to investigate interventions in small samples. 
Bayesian methods provide an intuitive probability that 
the treatment effect lies in an effective range which has 
important clinical interpretability and can provide more 
practical results when studying treatments in small 
samples [8–11]. These methods have gained significant 
interest in clinical trials generally [12–17], particularly 
rare disease trials [8, 17–21]. Yet, Bayesian methods have 
been criticized for the subjective aspects of selection 
of prior distributions that summarize our previous 
knowledge, lack of software for efficient implementation, 
and the necessary time, effort and incentive for 
statisticians and clinicians required to learn, implement 
and interpret Bayesian methods [22].

Small population clinical trials have been the focus 
of much methodological research activity, regulatory 
guidelines, and patient advocacy in the last two decades 
[23]. However, real-life applications of novel methods 
are still rare [24]. In this paper, we present the usefulness 
of Bayesian design and analyses in rare disease settings 
while acknowledging the complexity and potential issues 
of such a framework. This paper is unique as it presents 
real or hypothetical case studies that address the key 
needs of rare disease drug development highlighting 
several specific Bayesian examples of clinical trials. These 
examples illustrate the elicitation of prior distributions 
using external data, development of the Bayesian 
model to address key questions of clinical interest, 
process of simulations to describe frequentist operating 
characteristics, and the presentation and communication 
of results. Additionally, we include code to implement 
some of the methods as the Additional file 1. The goal is 
not to derive the statistical intricacies of Bayesian trials, 
but to show utility of the approaches with concrete 
examples. This manuscript will help a broad set of 
researchers to feel empowered while implementing these 

designs and analyses and improve treatment selection for 
patients with a rare disease.

The paper is structured as follows. In “Utility of 
Bayesian methods to address design and analysis 
challenges in rare disease” section, we highlight the 
aspects of Bayesian statistics helpful for rare disease 
clinical trials. A number of examples are discussed in 
“Case studies illustrating applicability and execution of 
Bayesian methods” section to show its utility in real-life. 
“Implementation aspects of using Bayesian methods in 
rare disease trials” section discusses some operational 
aspects followed by a concluding discussion.

Main text
Utility of Bayesian methods to address design and analysis 
challenges in rare disease
Clinical trials have historically been analyzed using 
frequentist statistics. Frequentist analysis depends 
heavily on a frequency definition of probability based 
on long-run properties of repeated experiments, which 
is grounded in the concept of the p-value. Challenges of 
frequentist analysis include difficulty comprehending the 
proper meaning of the p-value and confidence intervals, 
inability to estimate the probability of clinical benefit, 
and no straightforward mechanism for combining 
external information with internal trial data [25, 26]. 
Bayesian statistics are inherently well-suited to address 
these challenges.

Bayesian statistics are particularly relevant in rare 
disease research because many trials are too small to 
show nominal statistical significance. As opposed to 
the focus on p-values, Bayesian statistics provide the 
probability of a clinically meaningful treatment benefit 
(e.g., the probability that treatment A has at least a 10% 
greater response rate than treatment B is 85%). This 
probability directly addresses the key scientific question 
regarding the benefit of treatment A over treatment 
B and is appealing to clinicians, patients, and other 
stakeholders.

Moreover, the Bayesian approach provides a formal 
framework to incorporate external information into the 
statistical analysis of a clinical trial. External information 
includes, but is not limited to, historical data from 
previous trials, published literature, ongoing trials, and 
other real-world data [27]. There is an intrinsic interest 
in, and need for, leveraging all available information in 
rare disease clinical trials to ensure an efficient design 
and analysis. Including external information is ethically 
appealing as it allows for trials with smaller sample 
sizes or unequal randomization (e.g., more subjects on 
treatment than control) and enables a single, otherwise 
underpowered trial to provide sufficient information 
for robust decision-making. Efficient designs also help 
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prevent the erroneous abandonment of an intervention 
for which confident conclusions about efficacy require 
additional data. Applications of using external data 
in clinical trials are seen in earlier phases of drug 
development [28–30], occasionally in Phase III trials 
[31], and in special areas such as medical devices (FDA, 
2010a, [32]), orphan indications [33] and extrapolation in 
pediatric studies [34]. Recently, the 21st Century Cures 
Act [35] and Prescription Drug User Fee Act (PDUFA) VI 
[36] encouraged the use of complex clinical trial design, 
including Bayesian designs. Several recent regulatory 
documents [37–39] discussed the opportunities and 
challenges of using external information in trial design 
and analysis. External data and/or expert opinion 
are first used to construct a prior distribution of the 
parameter of interest (see Fig.  1). Then, the current 
trial data (summarized with a mathematical function 
known as the likelihood) is analyzed using the prior, 
and a corresponding posterior distribution (i.e. updated 
information) is then used for trial reporting and decision 
making. The Bayesian approach aligns with clinical 
practice in the sense that results from a Bayesian trial 
are interpreted considering prior knowledge based on 
known mechanisms of effect and previously available 
information. In the next subsection we discuss specific 
examples of Bayesian methods for the design and analysis 
of rare disease clinical trials to further illustrate their 
utility.

Case studies illustrating applicability and execution 
of Bayesian methods
Here, we illustrate the usefulness of a Bayesian approach 
through specific examples in rare disease trials. We focus 
on the use of external control data through the meta-
analytic prior, multi-stage designs, platform studies, 
and disease progression modelling. Other areas where 
Bayesian methods are applicable to rare disease research 
include seamless Phase II-III studies [40, 41] and Phase II 
proof of concept studies [42, 43]. The studies we present 
here are either hypothetical, based on ideas ongoing at 
the time this manuscript was written, or have ended and 
published results.

Use of external control data in the designing phase III trial 
for Progressive Supranuclear Palsy (PSP)
We present a hypothetical pivotal Phase III design of a 
new drug in Progressive Supranuclear Palsy (PSP). The 
goal of this hypothetical trial is to reduce the number 
of subjects in the placebo arm using data from three 
completed randomized studies and increase efficiency. 
The design uses a meta-analysis-based approach with 
additional considerations such as practical feasibility 
and regulatory requirements. PSP is a degenerative 
neurological disorder that causes progressive impairment 
of balance and walking; impaired eye movement, 
especially in the downward direction; abnormal muscle 
tone; speech difficulties; and problems related to 
swallowing and eating. The PSP Rating Scale (PSPRS) is 
a disease specific quantitative measure of disability and 
attempts to include all the important areas of clinical 
impairment in PSP [44–46]. It measures disability across 
28 items in six domains: daily activities (by history), 
behavior, bulbar, ocular motor, limb motor and gait/
midline. Mean change from baseline PSPRS score at 
week 52 is accepted as a primary outcome measure 
of a clinical trial by clinicians and regulatory agencies 
when evaluating a new therapy for PSP. A four-point 
improvement over placebo in mean change from baseline 
at 52  weeks (treatment effect δ = 4) is considered 
clinically meaningful. A traditional frequentist design 
with 1:1 randomization to a placebo and treatment 
arm would require 85 patients per arm to conduct an 
adequately well controlled trial (one-sided α = 2.5%, 
power = 90%, mean change from placebo = 4, assumed 
standard deviation = 8). We explore an alternative 
Bayesian design with 2:1 randomization in favor of the 
experimental treatment (85 for experimental therapy 
arm and 43 for the placebo arm) which is ethically and 
practically appealing as this helps to reduce the number 
of subjects in the placebo arm.

An informative prior for the mean change in PSPRS at 
week 52 for the placebo arm is derived using placebo data 

Fig. 1  Bayesian statistics provide a systematic approach to combine 
all available evidence. The prior illustrates knowledge known before 
the trial and is based on historical data from old trials, published 
literature, ongoing trials, and other real-world data, while the data is 
collected during the current clinical trial and provides the likelihood 
of the treatment effect. The prior and data are combined to produce 
the updated information or posterior distribution of the treatment 
effect, which is used to quantify results and infer conclusions. For 
example, here we see from the posterior distribution that there is 
99% probability that the treatment effect is greater than 10
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from the three randomized Phase II studies conducted 
previously in PSP and the meta-analytic-predictive 
(MAP) approach [47, 48]. The MAP framework provides 
a mathematical structure to link parameters of interest 
in the external data (e.g., mean change in PSPRS at 
week 52 for the placebo arm in three phase II trials) and 
use the extrapolation principle to predict the possible 
outcomes for the current trial which can be used as a 
prior in the analysis. The key assumption of this approach 
is exchangeability or similarity of external control 
information with the current trial. Exchangeability 
enables the current trial to ‘borrow strength’ from 
external data sources using a hierarchical model which 
takes into account the heterogeneity between current 
trial and external data. The overall degree of borrowing 
depends on the variance parameter of the hierarchical 
model, which is known as the “between-trial data source 
heterogeneity parameter.” Specification of this variance 
parameter requires special attention in practice to ensure 
an appropriate result. This is especially important when 
the number of external trials is small. We suggest a 
weakly informative prior for between-trial heterogeneity 
that covers a wide range of plausible endpoint outcomes 
and the variability associated with it [12, 49, 50].

The three Phase II studies used as external information 
in this example are similar in terms of population, 
inclusion/exclusion criteria, and other important study 
characteristics. Table  1 summarizes the mean change 
in PSPRS score for the placebo group in the three trials. 
Using the MAP approach, the predictive distribution 
for the mean change in PSPRS score at week 52 in a new 
study is derived, leading to an estimated mean of 10.8 
(and a 95% credible interval of 8.4 to 13.4). For ease of 
use and interpretation, we approximate this predictive 
distribution assuming a normal density with matching 
mean and standard deviation for this example. The 
result of this process is the MAP prior with a normal 
(mean = 10.8, sd = 1.19) distribution. Alternatively, 
a mixture of normal distributions can be used to 
approximate the predictive distribution [39] accurately. 

Further details of the MAP prior derivation are included 
in the Additional file 1.

Although the external and new populations are 
assumed to be similar or exchangeable to allow one 
of them to inform the other, they are not the same and 
important differences, not known a priori, might exist. 
Therefore, along with informative priors, we also need 
to incorporate a certain degree of skepticism. This 
can be achieved using robust mixture priors which 
is a combination of informative and non-informative 
priors [48]. It allows for dynamic borrowing of prior 
information; the analysis learns how much of the external 
data to borrow in the prior based on the consistency 
between the external information and the trial data. 
Mixture priors have been proposed in different contexts 
(e.g., bridging studies, historical controls, pediatric 
extrapolation) and are relevant for rare disease studies. 
Further robustification of the MAP prior in our PSP 
example to handle conflict between external and trial 
placebo data is provided by including a non-informative 
Normal (mean = 15, sd = 10) prior with 50% weight to the 
MAP prior to reflect considerable heterogeneity between 
the Phase II and Phase III population and to control 
inflation of the false positive rate. This prior is used as the 
historical data prior for the placebo group in the primary 
analysis. As no relevant external information is available 
for the experimental treatment, a non-informative prior 
(normal distribution with parameters mean = 0 and 
sd = 10) is used for mean change from baseline to week 
52 in PSPRS for the experimental treatment group.

In a clinical trial setting, an important step of design 
is assessing the operating characteristics; typically, this 
has included frequentist concepts such as type I error 
and power [15]. All analyses for our example were 
conducted in R version 4.0 [54] with the package RBesT 
1.6.1 [55] (see Additional file  1: Appendix  1 for the 
detailed implementation); computations are very fast 
using RBesT due to using an analytical method rather 
than time consuming simulations. Figure  2 represents 
type I error and power of the proposed design with and 
without a robust MAP prior. Study success is declared if 
there is considerable chance of a positive treatment effect 
(P(δ > 0|data) > 0.975), where δ represents the difference 
in mean change from baseline in PSPRS at 52  weeks 
between treatment and placebo group.

In the left panel of Fig. 2, we see that, in contrast to the 
(informative) MAP prior (solid line), the robust MAP 
prior (dotted line) does not lead to an excessive increase 
of type I error when there are conflicts between trial 
placebo data and external sources. The maximum type I 
error is 6.3%. For power (right panel of Fig. 2), the MAP 
prior and the robust MAP prior offer considerable gains 
compared to the traditional frequentist design (grey 

Table 1  Available Phase II data for the control group for a 
hypothetical pivotal Phase III design of a new drug in Progressive 
Supranuclear Palsy

PSPRS is the PSP Rating Scale (PSPRS) which is a disease specific quantitative 
measure of disability

Study N Mean change from 
baseline to week 52 in 
PSPRS

Standard error

Boxer et al. [51] 153 10.9 0.99

Tolosa et al. [52] 31 11.4 1.13

Höglinger et al. [53] 59 10.5 1.00
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horizontal dashed line) with the same sample size on 
the treatment arm, if the true mean change in PSPRS is 
in the range of prior support (true mean change PSPRS 
at 52  weeks between 9 and 13). The power gain is 
impressive (as high as 14%) compared to the traditional 
design if external placebo and trial placebo data are 
consistent. In case of conflict (true mean change PSPRS 
at 52 weeks > 12), the inflation of type I error for the MAP 
prior is clearly much stronger compared to the robust 
version. For very clear prior-data conflict (true mean 
change PSPRS at 52 weeks > 14), the power of the robust 
MAP prior is approximately the same as the traditional 
design.

In summary, this example suggests that a reduced 
sample size design with robust MAP priors containing 
a weakly informative component has good robustness 
properties and has improved power in some scenarios 
when compared to a more traditional frequentist design. 
The definition of acceptable frequentist metrics needs 
to be reconsidered for each unique trial setting. This 
includes careful judgment about how likely scenarios 
of conflict are. Other approaches include the power 
prior [56] and commensurate prior [57]. MAP prior, 
commensurate prior, and power prior share the same 

general feature that they discount historical data to 
account for heterogeneity between external and trial 
internal information.

Multi‑stage Bayesian studies
Emerging research has applied sequential, multiple 
assignment, randomized trial (SMART) designs in 
rare diseases using the Bayesian framework for analysis 
to obtain efficient treatment estimates. Two ongoing, 
international, Phase III trials, the International Penile 
Advanced Cancer Trial (InPACT, NCT02305654) [58] 
and A Randomized Multicenter study for isolated 
skin vasculitis (ARAMIS, NCT02939573) [59, 60] are 
examples of small sample SMART designs. We note these 
small sample SMART designs are motivated by different 
goals and analyzed differently than standard SMART 
designs [61, 62]. A small sample (n) SMART (snSMART) 
design (see Fig.  3, bottom) is similar to a crossover 
design (see Fig.  3, top), but treatment assignment or 
re-randomization in the second stage is restricted based 
on high risk or non-response to the initial treatment 
received in the first stage. Restricting crossover to 
only those who do not respond to stage 1 treatment 
may further increase recruitment and reduce issues 

Fig. 2  Frequentist Operating Characteristics (type I error (left panel) and power (right panel) of proposed design with meta-analytic predictive 
(MAP; solid line) and robust MAP (dotted line) priors under different scenarios for mean change from baseline in PSPRS at week 52 between 
treatment and placebo arms (δ). When δ = 0 (left panel) there is no difference between placebo and treatment, whereas when δ = 4 (right panel) 
there is a treatment difference. The plot also shows the type I error (0.025, left panel) and power (0.8, right panel) for the traditional frequentist 
design (grey dashed line)
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with non-adherence or dropout over that of standard 
crossover trials. Multiple periods or stages of treatment 
within a trial can provide within-person treatment 
differences, address multiple questions of interest and/
or provide more data from a small sample. Both InPACT 
and ARAMIS employ Bayesian approaches and plan to 
report the posterior distribution to infer about treatment 
effects, no hypothesis testing is planned.

InPACT aims to enroll 400 men in their two-stage 
design with the first stage randomization to one of 
three arms: no neoadjuvant therapy, neoadjuvant 
chemotherapy, and neoadjuvant chemoradiotherapy. 
After lymph node dissection, if patients are considered 
high risk for recurrence, they enter the second 
stage randomization to chemoradiotherapy alone 
or prophylactic pelvic lymph node dissection plus 
chemoradiotherapy. InPACT applies re-randomization 

in the design to address two main questions of interest: 
(1) if neoadjuvant therapy before surgery improves 
survival and if so, if chemotherapy or chemoradiotherapy 
is the best option and (2) for those who have a high 
risk of recurrence after surgery, if prophylactic pelvic 
lymph node dissection plus chemoradiation to the 
groin and pelvis improves survival over chemoradiation 
alone. The statistical analysis plan of InPACT proposes 
primary analyses estimating the posterior distribution 
for the hazard ratios using non-informative priors with 
secondary analyses using evidence-based priors such as 
those developed in the PSP example using previous trial 
data.

ARAMIS is a smaller two-stage trial that aims to 
enroll 90 individuals with the first randomization to 
one of three active treatment arms. After 6 months, the 
patients are assessed for response to treatment and the 
non-responders are re-randomized to one of the two 
treatments that they did not initially receive and are 
followed for an additional 6  months. ARAMIS applies 
re-randomization to obtain more information from the 
small number of individuals in the trial so that outcomes 
(response rate) can be combined across the two stages 
of the trial for more efficient first stage treatment effect 
estimates. Originally, ARAMIS was planned assuming 
a frequentist analysis ignoring the second stage data 
from some participants [60], however, the protocol was 
modified given development of more efficient Bayesian 
methods that pool information across two stages to 
estimate the first stage treatment effects for the three 
treatments of interest [63]. The revised analytic approach 
for ARAMIS places evidence- and expert-opinion-based 
prior distributions across model parameters including the 
treatment response rates and parameters in the model 
that link the stage 1 and stage 2 outcomes to estimate the 
posterior distributions of the first stage treatment effects. 
Additional methods for snSMART design variations 
have been developed that apply the Bayesian approach 
to a two-stage design to more efficiently estimate the 
treatment effect of interest [64–68].

Bayesian platform studies
Other types of multi-arm designs can be described by 
master protocols including umbrella or platform trials 
that focus on one disease but investigate several different 
experimental drugs targeting different biomarkers or 
genetic aberrations and basket trials [69–71] that typically 
test one targeted therapy across multiple diseases. Master 
protocols have mostly been used in the oncology setting 
but could be especially useful for a wide variety of rare 
diseases [72]. Umbrella or platform studies may have one 
shared control arm and multiple experimental arms or 
include multiple standard of care arms. Platform trials 

Fig. 3  Top panel: shows a 2 × 2 crossover design where a group 
of participants are randomized to a sequence of treatments to first 
receive treatment A then B or first receive B then A. Bottom panel: 
shows a small n, sequential, multiple assignment, randomized trial 
design with three treatment options like the ARAMIS design. R 
denotes randomization and A, B, C denote intervention options
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incorporate more adaptations, for example modifying 
randomization probabilities to treatment(s) based on 
accruing information, than a standard umbrella design 
[73–75], and allow therapies to enter or leave the 
platform based on emerging treatments. These multi-arm 
designs have been recommended for rare diseases based 
on a potential gain in efficiency through sharing the 
same control group, reducing the chance of assignment 
to placebo, comparing several treatments, the ability to 
pool data across treatments, and sharing trial resources 
[21]. Bayesian methods are able to provide these required 
flexibilities in the platform design [11].

Recently, a Bayesian platform trial, INHIBIT 
(NCT04303559), was proposed to investigate treatments 
to prevent and eliminate inhibitor formation in 156 
individuals with hemophilia over 6  years [76]. INHIBIT 
is a platform trial that includes two Phase III studies, a 
non-inferiority design that studies the prevention of 
inhibitors (n = 66) and a superiority design that studies 
the eradication of inhibitors in patients with severe 
hemophilia A (n = 90). Two Phase III trials within one 
protocol capitalize on the same centers, labs and visit 
timing, while allowing other drugs to enter the trials if 
they emerge over the six years expected for recruitment.

Statistical efficiency is achieved using an informative 
prior distribution that incorporates relevant historical 
data, use of posterior distribution, time-to-event 
modeling to estimate the proportion of individuals 
who develop inhibitors or eliminate inhibitors within 
48  weeks, and detailed simulation studies to identify 
operating characteristics. Information from a similar 
previous study is incorporated through an informative 
prior distribution for the standard of care treatment arm 
in the prevention study; this results in fewer individuals 
for that arm and smaller sample size for the trial (as 
similarly illustrated in the PSP example). Additionally, 
each trial includes one interim analysis after 75% of 
individuals have been enrolled for early decision making. 
This allows the trials to stop with even fewer individuals 
if there is a strong signal based on the high posterior 
probability of achieving superiority. The prevention trial 
is a non-inferiority trial (margin of 10%) that has been 
sized using a one-sided type I error rate of 5% and the 
eradication trial is a superiority trial (15% superiority) 
with a two-sided 5% type I error. The research team has 
illustrated the advantage in power of the Bayesian designs 
over frequentist designs, particularly in scenarios where 
there is a true treatment effect [76].

While the INHIBIT study design is intended to 
investigate inhibitor development among previously 
untreated patients, inhibitors also occur – much more 
rarely – among previously treated patients. In this 
setting, investigators could run into the zero-numerator 

problem or the situation of estimating the probability 
of an event that is conceivably possible but has not yet 
occurred in the data that are available [77, 78]. Due to 
small sample size, rare disease trials often face the issue of 
zero incidents for some of the important efficacy and life-
threatening safety outcomes which play an important role 
in the risk–benefit assessment of a new drug. Bayesian 
methods provide natural solutions to the problem of 
the zero-numerator problem. Though observing no 
occurrences of an event indicates low probability, it does 
not imply a zero chance. Therefore, there is scientific and 
regulatory interest in evaluating the upper limit of the 
chance of the occurrence of these important outcomes. 
One solution assumes a beta-binomial model [7, 77, 78] 
to facilitate the modeling of event data. The upper bound 
of the event rate is calculated using the 95th percentile 
of the posterior distribution of the rate under different 
informative prior distributions. The choice of the 
informative prior depends on several factors including 
available trial external data for standard of care and 
expert opinion [79]. The Bayesian approach enables the 
possibility of incorporating all available information in 
the prior while making inference about the rates of events 
of interest even with a small sample size.

Bayesian adaptive platform trial with disease progression 
modeling
Another multi-arm platform trial that incorporates 
innovative design and Bayesian methods is the Phase III 
Dominantly Inherited Alzheimer Network Trials Unit 
(DIAN-TU) adaptive platform study (NCT01760005) 
which opened in 2014. This platform study included 
two active treatment arms and a pooled, shared placebo 
arm to study treatments to slow or prevent cognitive 
decline from autosomal dominant Alzheimer’s disease 
(affects < 1% of Alzheimer’s population) [80]. Originally, 
enrollment was estimated at 210 participants, but was 
updated in October 2020 to 490. Mutation positive 
individuals were assigned to one of the two study arms 
and then randomized within that arm 3:1 to active drug. 
Mutation negative individuals were assigned to placebo 
and were not included in the primary analyses. This study 
combines a platform study design to study the effect of 
two drugs versus placebo, a shared placebo group, the use 
of natural history data to model disease progression, and 
is adaptive by including interim analyses to assess early 
efficacy within a Bayesian framework.

Natural history studies are important for understanding 
rare diseases—the cause(s), range of manifestations, 
and progression—as well as for raising awareness. 
Understanding disease progression as measured by 
clinical outcome measures over time is critical for 
successful clinical trial development. Clinical trial 
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simulators based on disease progression models have 
been utilized to make evidence‐based decisions in clinical 
trial design. Recent guidelines [81, 82] from the US Food 
and Drug Administration (FDA) have emphasized the 
utility of natural history studies in rare disease drug 
development. In the setting of rare diseases, Bayesian 
models can be used to predict disease progression based 
on endpoints envisaged in the trial under consideration. 
In addition, the Bayesian framework provides a unified 
approach for inference (i.e., efficacy of the treatment 
in trial) and prediction (i.e., future endpoints for that 
patient or disease trajectory or treatment effect for a 
similar, given patient).

Using data from the DIAN observational study, the 
DIAN-TU team constructed flexible, disease progression 
models with random effects for the estimated age 
of onset of Alzheimer’s and the individual’s healthy 
cognitive score [83]. A hierarchical Bayesian disease 
progression model uses available data collected over time 
from a natural history study and permits the estimation 
of trajectories (i.e., the time effect) for each patient, as 
well as the evaluation of patient-to-patient variability and 
heterogeneity in these trajectories. The main idea of these 
models is to show the course of disease over time along 
with identifying important patient-related factors causing 
different progression patterns. Moreover, the use of a 
predictive distribution allows individualized prediction 
to identify possible treatment responders. The framework 
is flexible enough to incorporate different kinds of time 
effects including nonlinear trends. Like other predictive 
modeling, disease progression also requires appropriate 
planning to “train” the proposed model (i.e., examine the 
features of the model via simulations) and apply it during 
“test” time (i.e., within a clinical trial) [43, 84, 85].

Interim analyses were included in the trial design 
such that data were analyzed when the last participant 
reached two years and three years follow-up. At the 
interim analyses, the trial could stop for efficacy if the 
posterior probability that the treatment slowed the rate 
of cognitive decline was greater than or equal to 0.9952. 
Sequential designs, like the INHIBIT and DIAN-TU 
study, use accumulating data to make decisions at interim 
time points in a trial and are most useful when patient 
outcomes can be measured quickly relative to patient 
accrual which is typical of many rare disease studies. A 
trial can be stopped early based on Bayesian analyses 
that provide the probability of treatment efficacy. 
Alternatively, a trial can be stopped early for futility if 
there is a high probability that treatment will not be 
found to be effective. Pre-trial simulations must be 
performed to assess trial characteristics under a variety 
of real-life settings to decide if incorporating adaptive 
components is advantageous. Additional examples of 

Bayesian interim analyses in rare disease are the Focal 
Cerebral Arteriopathy Steroid (FOCAS) trial [86] and 
the study of Suvodirsen in ambulatory patients with 
Duchenne Muscular Dystrophy (DYSTANCE 51) [87]. 
There are also methods available for a Bayesian response 
adaptive design that allocates more participants to the 
best performing arm, has higher power than a traditional 
fixed design, and has small bias and mean squared error 
of the treatment effect estimates [88].

The DIAN-TU trial did not stop at an interim analysis 
and initial results on 194 participants with follow-up up 
to 7  years were shared at conferences in 2020 [89–91]. 
Neither drug resulted in slowing cognitive decline, 
although one drug was associated with changes in 
biomarkers related to the mechanism of cognitive change 
[92]. Although the drugs were not found to be efficacious, 
the platform study illustrates many advances in trial 
design and savings in power due to disease progression 
modeling and a shared placebo group.

Implementation aspects of using Bayesian methods in rare 
disease trials
Despite the strong methodological groundwork and 
advantages in rare disease drug development, there 
are certain limitations in the uses of the Bayesian 
approach. As seen in the PSP example (Fig. 2), there is a 
potential increase in type I error when external control 
data and trial data have major conflict. This requires 
further calibration of the prior and/or a decision rule 
in confirmatory trials with more stringent error control 
requirements. In addition, the use of Bayesian trial 
design and analysis requires pro-active planning and 
discussion with regulators well in advance of the start 
of a trial. Finally, the Bayesian approach may pose an 
additional challenge regarding the communication of 
trial results to non-statisticians who are more familiar 
with traditional analysis with p-values. We elaborate on 
the following topics which require careful attention while 
using Bayesian methods in confirmatory trials: subjective 
choice information for the prior, computational burden 
to evaluate frequentist operating characteristics, lack of 
familiarity by non-statisticians, and longer time to review 
and level of scrutiny from regulatory authorities. We 
discuss some of these aspects and the efforts to overcome 
them.

Choice of prior distribution
The choice of a prior distribution is a well-known 
controversial topic in Bayesian analysis. Different choices 
of prior could lead to different conclusions about the 
trial, particularly in small sample settings such as rare 
diseases. In such situations the prior distributions may 
have larger impacts on the posterior distribution and 
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trial conclusions. One option to derive the prior is to 
elicit expert opinion. This procedure may be useful 
to translate the available expert knowledge about the 
treatment effects into the prior probability distribution 
[93–96]. A systematic elicitation approach can limit some 
of the individual biases introduced with incorporating 
expert opinion, while the distribution represents the 
level of uncertainty about the treatment effect under 
investigation. The elicitation process is usually performed 
by the statistician of the trial asking more than one 
subject experts (i.e., physicians and their investigative 
teams) to report a few summaries of treatment effect, 
generally medians, modes, and percentiles of the 
probability distribution. Finally, a prior distribution is 
constructed by using a parametric method to match 
the available information. Sensitivity analyses with 
alternative assumptions are also important to ensure 
robustness. This is particularly useful when there is major 
disagreement between experts. Recently, the SHELF 
(Sheffield Elicitation Framework) [97] method is being 
used for formal prior elicitation by some sponsors [98] 
and may be a good choice in the rare disease setting as 
well. However, the time and cost needed to engage with 
subject-matter experts must be taken into consideration 
in the trial planning. Additionally, elicitation approaches 
may be best suited for internal decision-making and 
comparative effectiveness trials, but this has some 
limitations in the registration setting as the perceived 
level of validity of expert opinion that is not grounded in 
specific data.

Alternatively, another family of methods is to employ 
an informative prior based on available historical and 
external data as described in the case studies in “Case 
studies illustrating applicability and execution of 
Bayesian methods” section. External control information 
can come from different sources including randomized 
clinical trials, registries, electronic health record, etc. Use 
of an external control to augment a concurrent control 
group (or to replace concurrent control in settings where 
randomization is considered unethical) is ethically 
and operationally appealing. In this setting, a careful 
selection of the historical trials is necessary to ensure the 
exchangeability assumption for the control parameters 
is plausible. Pocock [99] proposed a set of criteria to 
assess the similarity between external control and trial 
control data that requires taking into account many 
different aspects (ICH E10 (2001)) [100]. For example, 
the Pocock criteria consider inclusion and exclusion 
criteria, the distribution of baseline characteristics, 
disease characteristics, treatment, relevant medical 
practice, endpoint definition, and follow-up between 
the external and current data. Thorlund et  al. provided 
a checklist on similarity evaluation when using external 

controls in clinical trials [101]. The choice should not 
be biased by outcome of interest or actual analysis of 
candidate external control group data. This may happen 
for example if historical data/trials with superior results 
are preferentially omitted. As a result, it is important 
that the entire selection process of a dataset and patient-
level data be pre-specified independent of outcome 
data. Nevertheless, one must acknowledge the possible 
conflict between external control and trial control due to 
unknown factors. For example, published studies do not 
always have detailed covariate information. Therefore, 
it is important to consider analysis approaches (e.g., 
mixture prior as illustrated in the PSP example in “Use 
of external control data in the designing phase III trial for 
Progressive Supranuclear Palsy (PSP)” section) to handle 
such conflicting scenarios.

When there is little information available on which 
to base the prior distribution, a natural choice is a 
non-informative or weakly informative prior. These 
are intended to represent a minimal amount of prior 
information. Although non-informative priors may yield 
similar results to the frequentist approach, the priors may 
be difficult to interpret because they attempt to assign 
equal weight to all values of interest. Nonetheless, there 
may be other advantages to using Bayesian methods 
to get the results. Other prior distribution alternatives 
include skeptical prior distributions and enthusiastic 
prior distributions that quantify the belief that a large 
treatment effect is unlikely or likely, respectively. As the 
true effect is unknown, sensitivity analyses to alternative 
prior assumptions are vital and should be an integral 
part of analysis to ensure the robustness of study 
results [102]. It is required to ensure that the prior does 
not have unintended influence on the inference and 
trial conclusion. Finally, it is preferable to construct a 
prior distribution on a scale that has a straightforward 
interpretation for the parameter of interest. This is helpful 
when communicating results with non-statisticians.

The FDA Complex Innovative Design interaction 
guidance emphasizes the need for sponsors to include 
a detailed description of the prior specification for 
transparency [39]. This includes the rationale for 
choosing source data and/or expert opinion, methods 
for prior derivation, and the impact on the analysis via 
simulation with hypothetical trial data.

Statistical computation
A common feature of Bayesian design and analyses is 
the use of simulations to estimate frequentist operating 
characteristics (e.g., type I error, power) or to evaluate 
design parameters (e.g., timing of interim analyses, 
futility probability). Simulations are computationally 
intensive; they are also a powerful tool to virtually explore 
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thousands and thousands of potential trial scenarios 
to understand the overall behavior of the design. It 
is important to present the operating characteristics 
obtained from the simulations in the study protocol to 
maintain full transparency about design and analysis. 
Operating characteristics are also critical for studies 
intended to use Bayesian design; both the FDA complex 
innovative design interactions [39] and adaptive design 
[38] guidance suggest the need for trial simulations. 
Specialized computational algorithms are often required 
for Bayesian analysis to analyze trial data, assess prior 
probabilities at the design stage, perform simulations 
to assess the probabilities of various outcomes, and 
estimate sample size. Although Bayesian analyses are 
often computationally intensive, recent breakthroughs 
in computational algorithms and computing speed 
have made it possible to carry out calculations for very 
complex and realistic Bayesian models [103–107].

Communication
Implementing the proposed approach requires Bayesian 
expertise, which should include the ability to explain the 
approach in plain English, and technical skills related 
to concrete implementation [108, 109]. Discussing 
important features of the statistical approach with 
clinical colleagues is one of the key responsibilities of a 
statistician when designing and implementing clinical 
trials. This is even more important for trials using a 
Bayesian approach. Members of the clinical team may 
have no or very little experience with Bayesian designs 
or analyses, and it is therefore recommended that the 
main features of the approach be explained using visual 
illustrations and non-statistical language. Providing 
analysis results in both graphic and tabular form if 
often helpful. Examples include (1) figures of prior and 
posterior distribution showing reduction in uncertainty 
using simple language, and (2) a plot with the prior belief 
at the x-axis and corresponding posterior results on the 
y-axis to aid in understanding the impact of the choice 
of prior. Good preparation includes a mimicked trial 
analysis with different data scenarios to highlight various 
possible trial outcomes.

In a clinical trial, it is important that practitioners 
understand the risks and benefit of a new drug based on 
all available contextual information (clinical, pre-clinical, 
and non-clinical) at the design stage and how to interpret 
the result(s) at the end of the trial. However, many 
clinicians and scientists are not familiar with interpreting 
an effect size as a patient centric probabilistic statement 
induced by Bayesian statistics. This a major contrast 
compared to the frequentist approach where a treatment 
effect is communicated via a point estimate, confidence 
interval, and p-values. A survey conducted by the DIA 

Bayesian Scientific working group revealed that a lack 
of knowledge was the top barrier to implementing those 
methods more broadly [110]. The survey also revealed 
that in-person training was the top-ranked option and 
online training the second preference for helping non-
statisticians become comfortable with using Bayesian 
statistics. This training needs to explain how an observed 
treatment effect can be converted into a probabilistic 
statement. Interactive software such as R-shiny applets 
or Fixed and Adaptive Clinical Trial Simulator (FACTS) 
[111] can provide illustrative examples highlighting the 
use of Bayesian statistics in clinical trials. In addition, it 
is important for the training program to include a wide 
range of case studies from rare diseases to demonstrate 
the application and use of Bayesian methods to 
non-statisticians.

Regulatory perspectives
The FDA and European Medicines Agency (EMA) 
explicitly recognize the utility of Bayesian methods 
in rare disease [37–39, 112, 113]. While the use of 
Bayesian methods is appealing for practitioners, careful 
consideration should be given to near-term uses in 
appropriate regulatory and clinical contexts. For 
example, external control data may be used to augment 
randomized control arms as part of a hybrid approach 
(i.e. as opposed to a single experimental arm trial with 
only historical/external controls or a randomized clinical 
trial considering data only from concurrent controls) that 
could reduce the number of patients that are randomized 
to the control arm within a study. Given a solid rationale 
for an external control, and a careful assessment of 
whether an external control would be scientifically 
feasible, the actual implementation of the external 
control requires care and planning [114].

Several procedural best practices are advised to ensure 
robust and credible implementation of novel Bayesian 
approaches. Pre-specification of protocols and statistical 
analysis plans provide confidence that the plan could 
be independently performed or duplicated, and at a 
minimum should include:

•	 A detailed protocol with clear objectives and 
description of the study population, as well as details 
regarding data sources and critical features of the 
study design and analysis plan.

•	 The methodological approach should be specified 
in the statistical analysis plan or other companion 
document.

•	 The final statistical analysis and any sensitivity 
analyses should be clearly pre-specified and 
consistent with good statistical practice.
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Early discussions with regulators and review of key 
planning documents can often result in valuable feedback 
for sponsors using Bayesian approaches. Sponsors 
should consider soliciting regulatory feedback by means 
of protocol submissions or formal product meetings. 
For US regulatory feedback, sponsors may also explore 
opportunities for participation in the FDA’s Complex 
Innovative Trial Designs (CID) pilot program [115], 
which exists to further the use of new trial designs. A 
recent publication details several Bayesian trial designs 
reviewed under the CID pilot program, covering a range 
of possibilities discussed in this article including platform 
designs, complex adaptive designs, and external controls 
[116].

On January 18th, 2022, FDA published three case 
studies from the CID pilot program [115], which include 
aspects of the study design, summaries of the trial 
simulations performed, and discussions of the regulatory 
implications of the design and analyses. One of the case 
studies is a randomized, double-blind, phase 2 trial in 
patients with systemic lupus erythematosus (SLE), a rare 
disease with a high unmet need. Patients were assigned 
to one of four treatment groups: three different doses 
of the product or a placebo. The study pooled data 
from different dose levels in comparing the treatment 
to the placebo and used Bayesian methods to estimate 
response rates across treatment groups. The other two 
examples include a master protocol in chronic pain and 
a randomized phase III study in diffuse B-cell lymphoma 
(DLBCL), both of which borrowed information from 
external control data and used Bayesian methods for the 
design and analysis. Furthermore, the CID pilot program 
update mentions another randomized, double-blind, 
placebo-controlled study in ambulatory patients with 
Duchenne Muscular Dystrophy using Bayesian repeated 
measures and augmenting trial data with historical 
placebo data for analysis [116]. The case studies note 
several key points that arose in interactions between 
sponsors and FDA on these Bayesian designs, including 
addressing exchangeability, ensuring the parameter space 
explored in simulations was adequately broad (including 
for nuisance parameters), and the appropriate use of 
propensity scores in models that borrow external control 
information.

Conclusion
The rarity of patients is the overarching challenge for 
conducting clinical studies for rare diseases. Thus, it 
is sometimes infeasible to use traditional clinical trial 
design and analytic methods to obtain the substantial 
evidence of effectiveness regulatory agencies need to 
approve products for rare diseases. The use of innovative 

trial designs such as master protocols and complex 
adaptive designs in conjunction with a Bayesian approach 
may help to reduce sample size, choose the correct 
treatment and population, and accurately and reliably 
assess the treatment effect in the rare disease setting. 
Additional applications of the design and methods 
included in this manuscript include the extrapolation of 
adult data to a pediatric population and the assessment 
of subgroup-specific treatment effects in rare diseases.

Beyond Bayesian design of individual trials, 
Bayesian methods for meta-analysis are appealing in 
rare diseases as they can increase the precision of a 
treatment effect estimate by borrowing information 
from all available sources of clinical evidence including 
early phase trials. There are some specific challenges 
for meta‐analyses in small populations and rare 
diseases. Trials with small sample size pose more 
between-trial variability due to the difference in 
controls used, disease characteristics, and treatment 
allocation (randomized vs. non-randomized). Use of 
data sources other than from randomized controlled 
trials can generate biased treatment effect estimates, 
which poses further challenges to the interpretation 
of the meta-analyses. One solution is the use of 
generalized evidence synthesis techniques [97, 117]. 
This is an extension of the standard random-effects 
meta-analysis model incorporating a third level in 
the hierarchy to account for heterogeneity between 
study design types explicitly, as well as heterogeneity 
between individual studies with the same design.

The use of Bayesian methods and nontraditional 
study designs to inform regulatory approval of new 
drugs or expanded indications of marketed drugs is 
an exciting and active area of research. Ultimately, we 
agree with Ruberg [118] that Bayesian and frequentist 
approaches can exist harmoniously in clinical trial 
design and inference such that frequentist operating 
characteristics can be shown to be met in a Bayesian 
design, but a Bayesian analysis and interpretation may 
be most appropriate and advantageous, especially 
in rare disease settings. The fundamental goal for all 
the innovative trial designs and Bayesian methods 
presented is to effectively use all available data to make 
robust, accurate and timely decisions about the risk–
benefit profile of a drug. These, as well as improvements 
in quality of data, will likely increase in the hierarchy 
of evidence-based investigation and help advance the 
development of innovative medicines for patients with 
rare disease.
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