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hypophosphatemia (XLH)
Francis H. Glorieux1*  , Lynda F. Bonewald2, Nicholas C. Harvey3 and Marjolein C. H. van der Meulen4 

Abstract 

In recent years, much progress has been made in understanding the mechanisms of bone growth and development 
over a lifespan, including the crosstalk between muscle and bone, to achieve optimal structure and function. While 
there have been significant advances in understanding how to help improve and maintain bone health in normal 
individuals, there is limited knowledge on whether these mechanisms apply or are compromised in pathologi-
cal states. X-linked hypophosphatemia (XLH) (ORPHA:89936) is a rare, heritable, renal phosphate-wasting disorder. 
The resultant chronic hypophosphatemia leads to progressive deterioration in musculoskeletal function, including 
impaired growth, rickets, and limb deformities in children, as well as lifelong osteomalacia with reduced bone quality 
and impaired muscle structure and function. The clinical manifestations of the disease vary both in presentation and 
severity in affected individuals, and many of the consequences of childhood defects persist into adulthood, causing 
significant morbidity that impacts physical function and quality of life. Intervention to restore phosphate levels early 
in life during the critical stages of skeletal development in children with XLH could optimize growth and may prevent 
or reduce bone deformities in childhood. A healthier bone structure, together with improved muscle function, can 
lead to physical activity enhancing musculoskeletal health throughout life. In adults, continued management may 
help to maintain the positive effects acquired from childhood treatment, thereby slowing or halting disease progres-
sion. In this review, we summarize the opinions from members of a working group with expertise in pediatrics, epide-
miology, and bone, joint and muscle biology, on potential outcomes for people with XLH, who have been optimally 
treated from an early age and continue treatment throughout life.
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Background
X-linked hypophosphatemia (XLH) (ORPHA:89936) is a 
rare, heritable, progressive, and lifelong disorder caused 
by increased circulating levels of fibroblast growth fac-
tor 23 (FGF23), a phosphate-regulating hormone that 

leads to reduced renal phosphate reabsorption and con-
sequent abnormal bone mineralization. The resultant 
chronic hypophosphatemia causes abnormalities in the 
metabolism of both bone and muscle in association with 
other systemic defects [1]. The musculoskeletal effects 
of defective bone and tooth mineralization and growth 
plate abnormalities usually lead to clinical manifestations 
in early childhood. The most frequent skeletal presenta-
tion in children is rickets, which is associated with slow 
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growth, lower limb deformity and delayed walking with 
a waddling gait [2]. These manifestations continue into 
adolescence, with many of the resultant consequences of 
defects persisting into adulthood, after growth has ceased 
[3]. Following growth plate closure, the mineralization 
defects persist in adults with XLH due to years of chronic 
hypophosphatemia, and they continue to experience 
significant morbidities, including muscle wasting and 
osteoarthritis (OA), resulting in a significant reduction 
in physical function and quality of life [4, 5]. Optimiz-
ing bone quality and bone mineralization by maintaining 
phosphate homeostasis from early childhood is, there-
fore, important to improve long-term outcomes of peo-
ple with XLH. Initiation of treatment as early as possible 
in life is recommended, as this approach will optimize 
final body height [6].

Recent research has advanced our understanding of 
skeletal pathology, and the interaction between muscle 
and bone in healthy individuals, as well as accumulating 
evidence to elucidate the long-term outcomes of ade-
quate treatment of common musculoskeletal diseases. 
However, large-scale natural history studies in rare met-
abolic bone disorders, such as XLH, are distinctly lack-
ing. This presents a challenge to illustrate the importance 
of optimizing musculoskeletal health in children and 
adolescents, and the subsequent benefits and improved 
prognosis of patients in later life.

The current burden of disease observed in adult 
patients with XLH suggests that delayed/late diagnosis, 
delayed treatment initiation, and inadequate manage-
ment during childhood and adolescence may contribute 
to adverse long-term outcomes in these patients. A thor-
ough understanding of bone and muscle physiology, both 
from a physical and a metabolic perspective, may provide 
some answers that could be applied clinically for future 
management of rare metabolic bone disorders, and to 
optimize treatment options and outcomes.

This review paper presents the expert views of the 
authors, based on a series of working group sessions in 
2019 that were sponsored and funded by Kyowa Kirin 
International. The aim of the meetings was to elucidate 
the consequences of optimizing bone and muscle health 
in children and adolescents with XLH, and to discuss 
what impact treatment during various stages of life could 
potentially have on the prognosis and long-term out-
comes of these patients.

The focus of this review is to provide a brief synopsis 
of XLH and current treatment strategies; provide an aca-
demic review of the physical and metabolic aspects of 
normal bone and muscle, including bone–muscle cross-
talk; and discuss the implications of optimal treatment on 
the long-term musculoskeletal sequelae of XLH, which 
may also influence other rare metabolic bone disorders.

With an understanding of this information, an expert 
opinion on the long-term outcomes based on optimiz-
ing musculoskeletal health in children and adolescents 
with XLH is provided. In the context of this review, we 
also highlight areas for future research to gain a better 
understanding of the burden of XLH and improve future 
management.

Overview of XLH
Etiology and pathogenesis
XLH is a rare, heritable, X-linked dominant, phosphate-
wasting disorder that affects approximately 5 in 100,000 
people [7, 8]. XLH is caused by inactivating mutations in 
the phosphate-regulating endopeptidase homolog on the 
X chromosome (PHEX) gene, leading to enhanced secre-
tion of the phosphaturic hormone FGF23. The ensuing 
renal phosphate wasting, reduced intestinal phosphate 
absorption, and low active vitamin D ultimately results 
in chronic hypophosphatemia [7, 8]. This phosphate 
insufficiency affects bone mineralization significantly, 
with low bone turnover and poor bone quality causing 
rickets in children and osteomalacia in adults [9]. The 
systemic effects of XLH usually lead to clinical mani-
festations in early childhood, but the presentation can 
vary between individuals. The complex musculoskeletal 
and other system manifestations in childhood include 
rickets, impaired growth with skeletal deformities, bone 
pain, muscular dysfunction, craniosynostosis, and den-
tal disorders [7, 10]. In adults, persistent osteomalacia 
and secondary complications, including early-onset OA, 
enthesopathies and spinal deformities, can significantly 
impair quality of life [10, 11]. In addition, many patients 
may have muscle function deficits, such as muscle 
weakness, that may be related to insufficient quantities 
of adenosine triphosphate due to chronic hypophos-
phatemia [12, 13].

Progressive and lifelong disease
If the underlying pathophysiological processes leading 
to the skeletal manifestations of XLH in early childhood 
are not treated optimally, these defects progress into ado-
lescence and adulthood, resulting in substantial pathol-
ogy. Once adolescents with XLH enter puberty and the 
epiphyseal growth plates close, the key radiological fea-
tures of rickets are no longer evident, despite continued 
hypophosphatemia throughout life. Although longitudi-
nal bone growth stops after puberty, bone mass contin-
ues to be accumulated into early adulthood.

Complete phenotypic rescue in XLH is rarely 
achieved despite optimal treatment with current strate-
gies. The remaining symptoms can affect multiple sys-
tems, demanding continued multidisciplinary specialist 
care for comprehensive management [10]. Therefore, 
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optimizing bone mineralization and bone quality by 
maintaining phosphate homeostasis throughout life is 
the aim to improve long-term outcomes in patients with 
XLH.

Treatment of XLH
Familial cases of XLH should be identified within the first 
months of life based on family history. Early diagnosis 
is a key challenge in de novo cases of XLH, which occur 
in approximately 20–30% of patients, with rickets as the 
most frequent presentation [10, 14]. Immediate initiation 
of treatment following diagnosis is important and should 
be commenced as soon as possible to improve long-term 
outcomes [6, 15].

A consensus statement with the clinical practice rec-
ommendations for the diagnosis and management of 
XLH was published in 2019 [8]. For more than 40 years, 
children have been treated with multiple daily doses of 
oral phosphate combined with vitamin D analogs, such 
as calcitriol and alfacalcidol (conventional therapy), with 
the aim of improving bone mineralization and healing 
rickets to correct bone deformities and maximize growth 
[3, 16–18]. Conventional treatment administration has 
not been standardized and is variable in both dose and 
frequency depending on the practicing clinician [19]. 
This therapy does not aim to maintain normal phosphate 
levels due to the short half-life of phosphate and the risk 
of inducing hyperparathyroidism. Moreover, the regimen 
is burdensome for both patients and families [16, 18]. 
Conventional therapy may improve rickets, but less so 
osteomalacia, and has variable effects on skeletal growth. 
Despite optimal oral therapy with conventional therapy 
in children with XLH, growth in affected children is often 
still compromised, which impacts the quality of life in 
both children and adults [5, 20]. A recent study of 38 chil-
dren with XLH demonstrated ongoing evidence of radio-
logical and biochemical disease activity on conventional 
therapy [21].

In adolescents and young adults following growth 
plate closure, treatment with phosphate supplements 
and active vitamin D analogs is often stopped, because 
subjective and skeletal benefits are thought to be lacking 
and the psychological burden increases, which contrib-
utes to poor adherence and lack of follow-up [2, 3, 22]. In 
adults with XLH, supplementation with oral phosphate 
and vitamin D analogs is only recommended for symp-
tomatic patients because of limited efficacy related to a 
slower rate of bone turnover and concerns over safety 
risks, despite persistence of hypophosphatemia for life [3, 
8, 18]. Therefore, many adults do not continue treatment; 
recent surveys indicate that 15–33% of adult patients 
were not using any form of conventional therapy [4, 5, 
23].

More recently, burosumab, a fully human monoclo-
nal antibody against FGF23 targeting renal phosphate 
reabsorption, was approved for the treatment of XLH in 
both children and adults in several countries, including 
USA, Canada, and the EU, with differing conditions of 
approval [24–26]. Unlike the fluctuating levels of serum 
phosphate due to the short half-life of oral phosphate and 
multiple daily dosing of conventional therapy, burosumab 
can achieve sustained levels of serum phosphate within 
the normal range using a once or twice monthly injec-
tion in adults and children, respectively [27]. Given the 
importance of serum phosphate in normal skeletal bone 
growth and development, correction of serum phosphate 
levels can be anticipated to lead to improvement of bone 
mineralization defects and reduce the underlying com-
plications of the disease, thereby improving long-term 
outcomes and quality of life [19, 21]. Clinical trials of 
burosumab have shown encouraging results in adults and 
children with XLH [24–26, 28, 29]. However, data are 
limited on the use of burosumab in treating adolescents 
and young adults with XLH from the age of 13–17 years 
old [30]. Additionally, long-term information regard-
ing the use of burosumab in adults who were previously 
treated in childhood and adolescence is not available [2]. 
Conclusive recommendations on the use of burosumab 
in XLH are premature, and further real-world data on 
the long-term effectiveness and safety will be required for 
future updates of the clinical guidelines [8, 21].

Lifelong implications of the deficits 
of musculoskeletal development and function 
in XLH
Growth
One of the major clinical manifestations of XLH in chil-
dren is impaired growth; abnormalities of skeletal miner-
alization cause rickets and bone deformities, particularly 
bowing of the weight-bearing lower limbs. Children born 
with XLH have decreased growth velocity by 1  year of 
age, and their growth progressively declines during child-
hood compared with normal children, which is more 
evident during periods of rapid growth in toddlers and 
during puberty [5, 15, 31, 32].

Healthy skeletal growth during early and late childhood 
is important to optimize bone health in adulthood [33, 
34]. The disordered mineralization in XLH is a general-
ized defect with a large amount of unmineralized bone 
matrix of both trabecular and cortical bone and is not 
limited to the surface of the bone. Periosteocytic lesions 
cause the distinctive mineralization defects within the 
mineralized bone [19]. It has been suggested that, in 
XLH, these lesions are not related to the hypophos-
phatemia but occur as a direct effect of increased FGF23 
expression [35]. This may be one of the reasons why 
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conventional therapy does not improve mineralization of 
the periosteocytic lesions, resulting in sub-optimal treat-
ment outcomes [19].

Commencing treatment with oral phosphate and vita-
min D analogs in early infancy in XLH patients, and 
before significant growth retardation, improves adult 
height outcomes and decreases disease activity when 
compared with starting treatment later [6]. Moreover, 
in a 64-week Phase II study involving children with XLH 
aged 1 − 4  years, treatment with burosumab prevented 
early deceleration in linear growth [28]. In the only Phase 
III head-to-head study comparing the efficacy and safety 
of switching children with XLH treated with conven-
tional therapy to burosumab versus continuing with oral 
phosphate supplementation and calcitriol/alfacalcidol, 
improvements in length and height z scores were demon-
strated [25]. No significant changes in these parameters 
were observed in the group that had received prior con-
ventional therapy for a mean duration of 4.3  years [25]. 
This result is consistent with previous findings in which, 
despite optimal treatment with oral phosphate and vita-
min D analogs, 25–40% of patients with well-controlled 
XLH still had slow gains in linear growth [18], suggesting 
that inhibition of excess FGF23 may be pivotal in normal-
izing skeletal growth and improving bone metabolism 
[36].

Peak bone mass
Peak bone mass (PBM) is defined as the maximum 
amount of bone tissue accrued during an individual’s 
lifetime once normal growth has ceased and the skeleton 
has fully matured [37, 38]. The acquisition of bone mass 
is important for optimal bone health, particularly during 
the critical childhood growth years and maturation [39, 
40] (Fig.  1). Almost half of adult bone mass is attained 
during adolescence, with 25% being acquired between 
12 and 15 years of age [41]. The final PBM is reached in 
early adulthood, with the exact timing varying by skeletal 
site and gender. Bone mass is influenced by environmen-
tal effects during early development, which may lead to 
changes that persist into adulthood [42, 43]; lifestyle fac-
tors during growth may also influence PBM [38].

The influence of XLH on adult skeletal mass is not com-
pletely characterized and studies report variable results. 
In a study of 19 adults with XLH aged 20–66  years, 
most of whom had not received medical treatment 
since puberty, axial (trabecular) bone mass tended to be 
increased, whereas the peripheral (cortical) bone mass 
was decreased [44]. Despite these trends, most untreated 
adults with XLH have normal indices of bone mass. Stud-
ies using dual-energy X-ray absorptiometry (DXA) in 
patients with XLH also suggest that bone mineral den-
sity (BMD) is increased at the spine, but not at cortical 

sites [45]. DXA is a two-dimensional measurement of a 
three-dimensional structure that only reflects BMD and 
does not provide information on compartment-specific 
BMD and bone quality [46, 47]. Additional calcifications 
and enthesopathy may also influence these measure-
ments, with resultant artefactual increases, and therefore 
DXA should be interpreted with caution in patients with 
XLH. The DXA findings are also supported by studies in 
patients with XLH using peripheral quantitative com-
puted tomography (pQCT), which can be used to assess 
bone geometry, microarchitecture, and compartment-
specific volumetric bone mineral density (vBMD) [48]. 
Because cortical vBMD largely reflects the average degree 
of mineralization of cortical bone tissue, this parameter 
could be useful to study the skeletal effects of XLH and to 
assess the consequences of treatment modalities on the 
changes in bone mineralization. In a study using pQCT, 
vBMD increased for trabecular bone in the lumbar spine 
but was somewhat decreased for cortical bone at the 
radial diaphysis [49]. The lower cortical vBMD likely 
reflects the underlying mineralization defects that may 
not be completely corrected by therapy with oral phos-
phate supplementation and vitamin D analogs [49]. In 
patients with XLH, these defects of the tissue matrix are 
thought to create a “vicious cycle”, in which the softer tis-
sue leads to greater strain, increased osteocyte stimula-
tion and increased formation of poor-quality bone, which 
may explain why these patients may have normal or even 
increased levels of BMD [47].

Quantitative ultrasound (QUS) is a convenient non-
invasive, cost-effective, and radiation-free technol-
ogy that may be utilized for bone mass and quality 
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assessment in the future. Studies in adults confirm that 
the information provided by QUS measurements is partly 
independent of BMD. More recently, the bidirectional 
axial transmission modality of QUS has been used to elu-
cidate changes in cortical bone properties that contribute 
to bone stiffness and strength [47]. In a recent pilot study 
in children with XLH using this modality, a reduction in 
mechanical competence of cortical bone and in the clini-
cal phenotype was shown, despite all patients being on 
conventional treatment [47]. As a regular complemen-
tary radiation-free monitoring tool in children, QUS may 
provide valuable information on bone quality to optimize 
treatment of patients with XLH in the future.

Whole bone mechanical properties
Whole bone morphology is an important determinant 
of skeletal mechanics during locomotion and in applied 
loading models [50–52]. Any developmental changes in 
bone size and shape can alter the induced stresses and 
strains on the skeleton during loading [53]. Whole bone 
mechanical properties are influenced by structural and 
geometric features, such as cortical thickness, spatial dis-
tribution of trabecular bone, cross-sectional area (CSA), 
and bone size and shape, as well as by changes that 
occur with ageing and disease [54]. Mechanical loading, 
in addition to genetic, environmental, and nutritional 
factors, plays an important role in determining bone 
strength, which is critical for optimal bone health and 
quality of life [54, 55].

In the case of low or reduced levels of loading, bone 
strength decreases at rates of up to 2.5% per month, 
whereas regular exercise leads to increases in bone 
strength [56]. In children, the effects of physical activ-
ity can be seen in a relatively short period. Prepubes-
cent children randomized to jumping exercises 3 days a 
week had significantly increased bone mineral content in 
the femoral neck and lumbar spine after only 7 months 
compared with those randomized to stretching exercises 
[57]. Figure  2 summarizes data across many adaptation 
experiments in murine models to illustrate that altered 
mechanical loading during skeletal development pro-
duces concomitant changes in bone size [58], which has 
also been seen in human subjects [55, 59]. These differ-
ences persist during ageing. The greatest effects of altera-
tions of loading on bone are seen during growth. When 
loading is increased or decreased after skeletal matu-
rity, the effects are smaller and are primarily seen in the 
endosteum, not the periosteal envelope [55, 59].

These features of mechanical loading are particu-
larly relevant to growth in XLH, in which muscle struc-
ture and function are compromised, thereby reducing 
the load applied to the skeleton during development [7, 
13]. In a study of 34 patients with XLH, muscle density 

and volume were lower and associated with lower bod-
yweight-related peak muscle force and power when 
compared with age- and gender-matched controls [13]. 
Patients with XLH and no lower-leg deformities dem-
onstrated better muscle function than those with severe 
deformities but, in both cases, this function was still sig-
nificantly below that of controls, suggesting that limb 
deformity is only one of several contributing factors to 
reduced muscle function in XLH [13]. Additionally, in 
a cohort of 21 adults with XLH, muscle strength, power 
and aerobic fitness were impaired, and lower body func-
tion appeared to be more affected than other compo-
nents of physical function [60]. The muscle function 
deficit in XLH would be expected to lead to weaker bones 
in these individuals because muscle force is strongly cor-
related to bone  strength in healthy subjects [61]. How-
ever, bone mass and size at the distal tibia were increased 
in a study of 30 patients with XLH, when  compared 
with controls. A higher bone mineral content in the dis-
tal  tibia, even with decreased muscle power, was mostly 
explained by a higher bone CSA [61]. This  increase in 
bone was  accompanied by a deficit in muscle function, 
despite  muscle CSA being unaffected, suggesting that 
muscle tissue material properties could be compromised 
[50]. Therefore, bone mechanosensing may be compro-
mised and bone–muscle interactions are likely altered as 
discussed below.

Mechanosensing osteocytes are involved in the regu-
lation of bone mass in XLH, and the distinctive peri-
osteocytic lesions may have functional implications for 
bone homeostasis [19, 62]. A hypomineralized matrix 
and greater bone deformation in XLH would lead to 
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disturbed mechanosensing by the osteocytes with load-
ing. This is a result of the bones being softer because of 
the undermineralization of the osteocyte perilacunar 
matrix, which may contribute to the higher trabecular 
bone mass found in patients with XLH [19]. In theory, 
the higher strain would induce osteocytes to send signals 
of bone formation, but the bone produced is hypomin-
eralized due to reduced phosphate leading to a vicious 
cycle.

Bone–cartilage crosstalk and OA
Mechanical loading can increase bone mass but also has 
a significant impact on joints. Joint tissues are sensitive 
to the mechanical environment, with mechanical load-
ing being one of the most important external factors for 
cartilage homeostasis and for regulating the develop-
ment and long-term integrity of the joint [63, 64]. How-
ever, abnormal loading may have a negative effect on the 
joints, with resultant cartilage degradation from both dis-
use and overuse [63].

OA represents a group of multifactorial joint diseases 
characterized by degeneration of articular cartilage, syn-
ovial inflammation, and changes in periarticular and sub-
chondral bone, and is considered a disease of the entire 
joint [65, 66]. It is not merely a process of wear and tear, 
but rather an abnormal remodeling of bone and joint fail-
ure, involving both genetic and acquired factors includ-
ing age, gender, prior joint injury, and mechanical factors 
such as malalignment and abnormal joint shape [65, 67]. 
OA is associated with changes to bone mass and/or stiff-
ness of the subchondral bone, altering the stresses that 
are transmitted to the cartilage.

The start of early OA and the later progression of the 
disease are thought to be two distinct pathophysiological 
processes [68]. During the initiation and early-stage OA, 
the subchondral bone mass is reduced and is associated 
with lower tissue modulus [66]. Changes in joint shape 
and load transmission may be caused by the increase in 
bone remodeling, thereby predisposing to progressive 
loss in cartilage [66]. In late-stage progression of OA, the 
subchondral bone densifies and becomes sclerotic with-
out a decrease in bone formation, but the subchondral 
bone stiffness is low and is accompanied by a decrease 
in mineralization [68, 69]. The development of OA is 
also associated with abnormal or misaligned mechanical 
forces, together with increased bone remodeling [68].

In XLH, adults are affected by early-onset and accel-
erated OA in the weight-bearing joints. The incidence 
of OA in this group has been highlighted in two clinical 
studies. In the Phase III placebo-controlled study using 
burosumab, the baseline characteristics revealed that 
68.7% and 63.4% of participants had a history of orthope-
dic surgery and OA, respectively [70]. In a second Phase 

III single-arm study investigating the effects of buro-
sumab on histomorphometric measure of osteomalacia, 
57% of subjects had OA at study entry [26].

OA in XLH may be driven by the skeletal biomechan-
ics, which will be affected by bone material properties 
and bone shape. The extent to which XLH influences the 
shape of the hip joint is unknown and could be a predic-
tor of the development of OA that may ultimately require 
arthroplasty. An active shape model that more precisely 
quantifies the deforming effects of OA on the proximal 
femur may be used in early stages of the disease to iden-
tify individuals who are at the highest risk of develop-
ing OA and may require surgery. An active shape model 
could, therefore, be useful as an imaging biomarker in 
patients with XLH to assess effects of long-term treat-
ment in hip OA [71].

Metabolic aspects of muscle–bone interactions
Historically, the nature of muscle–bone crosstalk was 
believed to be purely mechanical, with mechanical load-
ing being a key mechanism linking both muscle and bone 
through a central promoting role of physical activity [72]. 
However, bone and muscle are now also understood to 
act as secretory endocrine organs, affecting the func-
tion of each other [73]. Muscle produces factors that: (1) 
can have a positive or negative effect on bone depending 
upon the level of physical activity; (2) enhance the effects 
of mechanical loading; and (3) delay the effects of ageing 
[73, 74].

Patients with XLH present with excess FGF23 expres-
sion and chronic hypophosphatemia, which mediate 
many of the clinical manifestations related to both the 
physical and metabolic effects of the musculoskeletal sys-
tem [7]. Despite having normal muscle size, muscle den-
sity along with peak muscle force and power are reduced 
in patients with XLH [13]. The muscle deficits in XLH are 
likely to be caused by phosphate insufficiency rather than 
the direct effect of high FGF23 levels [75].

The skeletal muscle secretome accounts for various 
molecules that affect bone, including insulin-like growth 
factor 1 (IGF-1); basic fibroblast growth factor 2 (FGF2); 
interleukins (IL-6, IL-8, IL-15); irisin; myostatin; osteo-
glycin; family with sequence similarity 5 member C 
(FAM5C); transmembrane protein 119 (Tmem119); and 
osteoactivin [72, 76].

In addition, β-aminoisobutyric acid (BAIBA) has been 
identified as an osteocyte survival factor produced by 
skeletal muscle during exercise that protects against 
glucocorticoid-induced osteocyte apoptosis [77]. Levoro-
tatory β-aminoisobutyric acid (L-BAIBA) is also a regula-
tor of FGF23 expression in bone and, therefore, may play 
a role in phosphate metabolism [78, 79].
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Even though studies on the potential effects of bone 
on muscle metabolism are sparse, a few osteokines have 
been identified. Prostaglandin E2 (PGE2) and Wnt3a 
are secreted by osteocytes, and osteocalcin and IGF-1 
are produced by osteoblasts. Together with sclerostin, 
which is secreted by osteocytes, these osteokines may 
have an impact on skeletal muscle cells [72]. In vivo stud-
ies show that osteocytes produce factors that decrease 
muscle mass and function with age, suggesting that dur-
ing growth and development, osteocytes produce factors 
that have a positive effect on muscle mass and function, 
with increased contractile force and size [80].

PHEX and dentin matrix acidic phosphoprotein-1 
(DMP-1) are two of a range of biomarkers for osteocyte 
differentiation. These proteins are expressed in late oste-
oblasts/early osteoid osteocytes while they are embed-
ding in the osteoid matrix [81, 82]. Matrix extracellular 
phosphoglycoprotein (MEPE) and FGF23 are expressed 
later in the maturing osteocyte in mineralizing bone [83, 
84]. DMP-1 and PHEX downregulate FGF23 [85]; MEPE 
increases FGF23 levels indirectly via inhibition of PHEX 
enzymatic activity [86, 87]. FGF23 is also regulated by 
serum phosphate levels independent of the actions of cal-
citriol [84, 88]. In XLH, the loss-of-function mutations 
of the PHEX gene dramatically increase FGF23 produc-
tion in bone, and the resultant hypophosphatemia causes 
a decrease in bone mineralization [81, 82]. The presence 
of hypomineralized periosteocytic lesions that accumu-
late osteopontin is one of the characteristic hallmarks of 
XLH [19, 62, 89]. They are never seen in other hypophos-
phatemic disorders, clearly indicating that the osteocyte 
is a central target in XLH. Although osteopontin secre-
tion is elevated in hypophosphatemic rickets and acts 
locally to delay mineralization, no direct link has been 
made between high FGF23 and high osteopontin levels. 
Several factors are likely involved in these hypomineral-
ized lesions within the bone extracellular matrix [62, 90].

Enthesis development is also impacted in XLH. 
Enthesopathy occurs where fibrocartilage mineralizes 
at tendon insertion points, which can appear in patients 
with or without phosphate treatment [7]. The effects of 
FGF23 on fibrocartilage mineralization are unclear and 
further research is required to understand how soft tissue 
mineralizes. In XLH, it is not known if the calcification of 
the fibrocartilage is a compensatory response to weaker 
bones [7].

Expert opinion on optimizing musculoskeletal 
health in XLH by restoring phosphate homeostasis
Limited treatment options are available for rare genetic 
musculoskeletal disorders such as XLH, and gaps of 
knowledge persist in natural disease history, long-term 
risks, disease management, and quality of life in those 

affected [91]. The limited awareness among healthcare 
professionals regarding these disorders is compounded 
by natural variability in clinical presentation and disease 
burden. Therefore, it may take years for an appropriate 
diagnosis and for the patient to access quality special-
ist care. These issues are worsened by limited research 
funding in rare diseases. The James Lind Alliance (JLA), 
hosted by the National Institute for Health Research, is 
a non-profit initiative providing a transparent approach, 
supervised by an impartial JLA adviser, that brings 
patients, carers and healthcare professionals together for 
a research priority setting partnership (PSP) [91]. One of 
these partnerships applied the JLA method to a group of 
rare musculoskeletal disorders in adults, including XLH, 
to identify the most important research directions in 
diagnosis, treatment, and long-term management. They 
reported that one of the main overarching knowledge 
gaps appears to be the need for better understanding of 
rare metabolic bone disease progression in adulthood 
[91]. This recommendation, together with the absence of 
data on long-term outcomes of XLH, led to several work-
shops with the authors to provide their expert opinion on 
optimizing musculoskeletal health and in identifying key 
areas that may affect the long-term prognosis of XLH, 
based on current research, knowledge of the pathophysi-
ology of the disease, and current treatment options.

In XLH, the persistent hypophosphatemia with result-
ant clinical manifestations and complications of abnor-
mal musculoskeletal development, play a significant 
role in the disease burden [5]. If phosphate levels can be 
restored during the pivotal timeframe of skeletal growth, 
it is anticipated that musculoskeletal benefits acquired 
during childhood could persist later in life, particularly if 
these involve more permanent features such as impaired 
growth and/or skeletal deformity.

Therefore, the prognosis in later life of optimally 
treated children with XLH should be significantly 
improved compared with those who are inadequately 
treated or undertreated, although this effect may be dif-
ficult to quantify over a set time period. Enduring ben-
efits of correcting phosphate homeostasis and improving 
bone mineralization during childhood will be related to 
skeletal improvements obtained during the pivotal phase 
of skeletal growth and maturation:

•	 Greater treatment efficacy starting as early as possi-
ble in children with XLH underpins improved skel-
etal development and causes growth to peak and may 
change the long-term growth trajectory.

•	 Bone geometry observed in patients with XLH 
reflects adaptation to poor bone tissue properties; 
associated joint deformities are likely to contrib-
ute to the development of precocious OA in adult-
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hood. However, with early and optimal treatment, 
improved bone mineralization and bone shape dur-
ing early growth should help to prevent or reduce 
bone deformities. Avoiding or correcting deformities 
is expected to result in ameliorating the chronic phe-
notype of OA, stiffness, and enthesopathy, thereby 
reducing pain and improving mobility throughout 
the patient’s lifetime.

•	 Increased bone mineralization, reduction in limb 
deformities, and improved muscle function should 
lead to increased levels of physical activity. The 
improvement in musculoskeletal health, with a 
reduction in muscle weakness, may positively impact 
the long-term quality of life in all patients, with bet-
ter mobility and a reduction in pain and stiffness fur-
ther promoting physical activity.

Discontinuation of therapy after growth plate clo-
sure will lead to the inevitable reoccurrence of chronic 
hypophosphatemia. While it is reasonable to predict that 
patients treated through childhood would have a longer 
window of improved skeletal health and life quality in 
adulthood, increasing poor skeletal mineralization, oste-
omalacia, and the impact on muscle function will lead to 
a return of clinical manifestations:

•	 One of the first effects of the return of hypophos-
phatemia would be the appearance of muscle weak-
ness and fatigue. If phosphate is not corrected, the 
subsequent extended muscle weakness can affect not 
only bone health but also overall metabolism. The 
original muscle phenotype may revert on the cessa-
tion of treatment, with decreased physical activity 
leading to additional adverse effects.

•	 Enthesopathies may increase, possibly as a result of 
increases in inflammation.

•	 Elevated FGF23 and low phosphate levels will 
inhibit mineralization of newly formed bone matrix 
in adults, and the softening of the bone matrix may 
result in abnormal biomechanical loading and shape 
changes of the lower limbs, even if not as severe as 
those in untreated individuals. The development of 
OA is likely to be earlier than in the general popula-
tion. However, OA will possibly be delayed in adult 
patients with XLH who were treated optimally earlier 
on in life.

Based on the discussion above, optimal and early 
treatment of XLH throughout childhood, ideally seek-
ing to restore phosphate homeostasis and thus correct 
the hypophosphatemia, should have long-lasting ben-
efits in adulthood. The impact of lifelong treatment on 
bone mineralization and bone quality should reduce the 

incidence and severity of musculoskeletal defects, and 
therefore delay the onset of precocious complications of 
the disease. In adolescents and adults after growth plate 
closure, continued treatment should at least maintain or 
further improve bone mineralization and reduce osteo-
malacia. This treatment may have a significant impact on 
the long-term sequelae of the disease and improve overall 
quality of life during their lifespan.

Conclusions
In children with XLH, the importance of early interven-
tion and treatment to achieve better outcomes is well 
established. However, the long-term benefits of opti-
mizing musculoskeletal health in children with XLH 
have been less well documented. The optimal long-term 
outcomes of children and adolescents with XLH need 
to be ensured to improve morbidity, promote good 
quality of life, and maintain adequate physical function 
into adulthood.

Further studies to better understand the natural dis-
ease history, long-term risks, disease management, and 
quality of life in those affected by rare metabolic diseases 
are warranted. While the impact of optimizing treat-
ment with burosumab is not yet known for the long-term 
outcomes of children with XLH, new areas of research, 
including pathophysiology of bone, muscle, and joints, as 
well as crosstalk within the bone–muscle–joint axis, may 
shed light on what could be achieved in the future.

Appropriate therapy and management to improve 
phosphate homeostasis early on in life in individuals 
with XLH may offer the possibility to alter the clinical 
trajectory, thereby changing the course of the disease. 
In addition, continuation of treatment that targets the 
pathophysiology of the disease into adulthood is likely 
to address the ongoing progressive musculoskeletal dis-
ease seen in patients with XLH and maintain the ben-
efits acquired during childhood.
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