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Abstract

Background: Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by a wide clinical
spectrum and non-specific conventional magnetic resonance imaging (MRI) signs. As substrate reduction therapy
with miglustat is now used in almost all patients, its efficacy and the course of the disease are sometimes difficult
to evaluate. Neuroimaging biomarkers could prove useful in this matter. We first performed a retrospective analysis
of volumetric and diffusion tensor imaging (DTI) data on 13 adult NPC patients compared to 13 controls of similar
age and sex. Eleven NPC patients were then studied using the same neuroimaging modalities over a mean of
5 years. The NPC composite score was used to evaluate disease severity.

Results: NPC patients showed atrophy in basal ganglia – pallidum (p = 0.029), caudate nucleus (p = 0.022), putamen
(p = 0.002) and thalamus (p < 0.001) – cerebral peduncles (p = 0.003) and corpus callosum (p = 0.006), compared to
controls. NPC patients also displayed decreased fractional anisotropy (FA) in several regions of interest – corona
radiata (p = 0.015), internal capsule (p = 0.007), corpus callosum (p = 0.032) and cingulate gyrus (p = 0.002) – as well
as a broad increase in radial diffusivity (p < 0.001), compared to controls. Over time, 3 patients worsened clinically,
including 2 patients who interrupted treatment, while 8 patients remained stable. With miglustat, no significant
volumetric change was observed but FA improved after 2 years in the corpus callosum and the corona radiata of
NPC patients (n = 4; p = 0.029) – although that was no longer observed at further time points.

Conclusion: This is the first study conducted on a series of adult NPC patients using two neuroimaging modalities
and followed under treatment. It confirmed that NPC patients displayed cerebral atrophy in several regions of
interest compared to controls. Furthermore, miglustat showed an early effect on diffusion metrics in treated
patients. DTI can detect brain microstructure alterations caused by neurometabolic dysfunction. Its potential as a
biomarker in NPC shall be further evaluated in upcoming therapeutic trials.
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Background
Neurometabolic disorders encompass a very wide
spectrum of diseases, of heterogeneous clinical and radio-
logical presentations. While their diagnosis remains diffi-
cult, treatments are emerging, emphasizing the need of
non-invasive techniques to evaluate their efficacy. Study-
ing neurometabolic diseases also contributes to the better
understanding of neurodegenerative disorders related to
metabolic dysfunction such as Parkinson disease [1] or
Huntington disease [2]. Niemann-Pick type C disease
(NPC) is a genetic lysosomal lipid storage disorder of
autosomal recessive inheritance. It results from the muta-
tion of either NPC1 (95%) or NPC2 (5%). The resulting
impairment of the processing and utilization of endocy-
tosed cholesterol leads to the accumulation of free choles-
terol and glycosphingolipids in many tissues, including the
brain. Its incidence is difficult to evaluate precisely, and
lies around 1 in 120,000 births, but is probably underesti-
mated, particularly in the adult population [3].
Diverse clinical presentations exist, ranging from a very

severe perinatal form to a neurodegenerative adult-onset
form. Neurological symptoms include mental retardation,
cerebellar ataxia with dysarthria and dysphagia, dementia
and vertical supranuclear gaze palsy (highly evocative).
Psychiatric disorders, epilepsy and dystonia may also occur.
In adults, isolated ataxic and/or psychiatric forms have been
described, underlining the complexity of the diagnosis.
Visceral involvement (liver, spleen, sometimes lungs) is also
rather frequent [3, 4]. The diagnosis of NPC was historically
made using fillipin staining but is now currently based on
elevated plasma oxysterols (cholesterol oxidation products)
[5], and confirmed by the molecular analysis of NPC1 and
NPC2 genes. A substrate reduction therapy exists for NPC
patients using miglustat, an inhibitor of glucosylceramide
synthase, hence preventing glycosphingolipids accumula-
tion. Miglustat has shown a partial clinical efficiency [6, 7].
Conventional cerebral magnetic resonance imaging

(MRI) can be normal in NPC patients or shows unspe-
cific cortical or cerebellar atrophy [8, 9]. White matter
abnormalities may be present on T2-weighted images,
especially in the severe infantile form [3, 10]. Cerebral
volumetry [8, 9, 11] and diffusion tensor imaging (DTI)
studies have been performed in NPC [9, 11, 12], but
rarely in combination [9, 12] and mainly in children, and
few neuroimaging studies have assessed the benefit of
treatment in NPC [8, 12, 13]. Accordingly, we performed
a retrospective study using both volumetry and DTI on
a large cohort of adult patients with NPC at baseline,
compared to controls, and under treatment.

Methods
Patients and controls
Initial and follow-up information was obtained retrospect-
ively. All participants provided written informed consent

for study procedures and data reporting. NPC patients
were followed between 2006 and 2016 in the Reference
Centre for Lysosomal diseases, and enrolled sequentially.
The NPC1 and NPC2 genes were sequenced as described
[14]. Patients’ functional disability was evaluated at each
clinical visit using a disease-specific disability scale for
NPC, previously validated [15]. Briefly, 6 key domains
were assessed – ambulation, manipulation, language, swal-
lowing, ocular movements and epilepsy. A composite
overall score was calculated as the sum of all 6 individual
domains and scores could range from 0 (best) to 24
(worst). The frequency of clinical and radiological follow-
up was the referring neurologist’s choice at the time, and
ranged from 6 to 12 months, in line with recommenda-
tions on clinical management of NPC [16]. Clinical score
and MRI data were retrieved at baseline before any treat-
ment by miglustat (Y0), and after 1 (Y1), 1.5 (Y1.5), 2
(Y2), 3 (Y3), 4 (Y4), 4.5 (Y4.5), 5 (Y5) and 9 (Y9) years of
treatment. If treatment by miglustat was interrupted, clin-
ical and MRI data were retrieved at 1.5 and 4.5 years after
treatment initiation. Controls were healthy subjects who
were selected in order to be of similar age to patients.
They were part of a control cohort built up for a previous
DTI study, and were chosen in order to have a similar
mean age, sex ratio and ethnicity than our patients [17].

Brain imaging
MRI acquisitions were performed on 1.5 and 3 T MR
units (General Electric, I, USA) using a standard
protocol applied for the exploration and follow-up of
neurometabolic patients at our institution. A standard
3D T1-weighted image (TR = 9.5 ms, TE = 3 ms, matrix
= 256 × 256, field of view (FOV) = 256 × 256 (n = 77),
250 × 250 or 512 × 512 (n = 34), 240 × 240 or 220 × 220)
was acquired for localization of brain regions and
volumetric analysis. DTI was performed in some patients
(b value = 1000 s/mm2, 12 directions (6 directions in 2
patients), matrix = 256 × 256, FOV either 240 × 240,
280 × 280 or 380 × 380, TR = 12000 ms, TE = 80 ms) to
evaluate the integrity of white matter microstructure.
Volumetry and DTI analysis were run using the FMRIB
Software Library (FSL) (https://www.fmrib.ox.ac.uk/fsl).
The voxel-based-morphometry (VBM) tool of FSL was

used on the 3D T1 images for brain extraction and
segmentation. The segmented images were then non-
linearly registered to a study-specific grey matter tem-
plate, smoothed and a statistic map was created using a
threshold-free cluster enhancement (TFCE) approach.
Region of interest (ROI) analysis was also performed,
and segmentation of cortical and subcortical structures
was automated with FreeSurfer 5.3 (https://surfer.n
mr.mgh.harvard.edu). Brain volumes were normalized to
the total intracranial volume of each subject to eliminate
the bias from differences in skull sizes.
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For DTI analyses, quality control of DTI images was
performed by visual inspection for spikes and other arti-
facts. Eddy correction was performed to correct for the
effects of head movement and eddy current induced
geometric distortions. DTI provides information on
microstructure integrity using metrics such as fractional
anisotropy (FA) and radial diffusivity (RD). FA measures
the global diffusion where lower values correspond to
reduced diffusion and thus reduced fiber bundles. RD
measures diffusion across the fibers and increased values
usually indicate myelin injury. The diffusion tensor
model was fitted to generate FA maps. Thus, we
extracted FA and other diffusion metrics such as RD and
axial diffusivity from different ROI (based on the JHU-
atlas). We also performed statistical analysis using the
voxel-wise manner with the tract based spatial statistics
(TBSS) tool of FSL. First, the FA-maps were non-linearly
transformed to the MNI space, and an average FA image
corresponding to the mean FA was created. A threshold
skeletonized mean FA image was created onto which all
subjects’ FA was projected before cross-subject voxel-
wise statistics were performed using FSL’s randomise.
Multiple comparison correction was performed with a
threshold of p < 0.05. Radial diffusivity data were studied
in the same manner.

Quality control
All MRI were acquired during routine clinical follow-up.
This resulted at times in a loss of quality, precision and
homogeneity compared to research MRI, as illustrated
by the difference in FOV and matrix across images. All
images were visually and manually checked and not
included if quality was inappropriate: (i) only axial or
non-3D images making segmentation not possible or
unreliable (n = 2); (ii) images with severe motion artifacts
that made them too poor to evaluate (n = 1 for T1
analysis and n = 7 for DTI).

Statistical analyses
Means were compared with Mann and Whitney test,
correlations were studied with Spearman coefficient. For
multiple tests, the Holm-Bonferroni method of correc-
tion was applied. To compare MRI data under treatment
at different times and with untreated patients, we used

homogenous groups of patients who had several MRIs-
for instance, patients with only one baseline MRI were
compared to controls but excluded from the “baseline”
group for comparisons with treated patients over time.

Results
At baseline, volumetric data were available for 13 NPC
patients while DTI metrics were available for 8 NPC
patients. Their clinical and demographic characteristics
are shown on Table 1. Eleven NPC patients were then
followed over a mean of 5 years (1–9 years) with MRI
available at different time-points, as one patient had just
been diagnosed and another patient was lost to follow
up. These 11 patients were treated with miglustat, but
two interrupted their treatment after 6 months, the first
patient because of a severe weight loss and the second
patient due to major digestive and psychiatric side
effects. Follow-up time extended up to 9 years. The 2
patients who interrupted treatment had baseline MRI,
and radiological follow-up at 1.5 and 4.5 years. Among
all patients with MRI available for follow-up, 3 worsened
clinically: one with sustained miglustat therapy and the 2
patients who interrupted treatment. All of the others
had a global stabilization-i.e., loss or gain in overall
score ≤1 (Table 2).
For volumetric analyses at baseline, the control group

(n = 13) had a mean age of 35 (±12) years and a sex-ratio
comparable to patients (M/F: 7/6). Eight NPC patients
had radiological follow-up at 1 (n = 6), 1.5 (n = 3), 2 (n =
6), 3 (n = 3), 4 (n = 4), 4.5 (n = 3), 5 (n = 4) or 9 (n = 3)
years. Analyses with VBM and ROI methods both showed
global atrophy and decreased volume in the basal ganglia
of NPC patients compared to controls (Fig. 1, Additional
file 1: Table S1). The mean volume (% of total intracranial
volume ± SD [min-max]) of superior cerebral peduncles
was smaller in the patients group compared to con-
trols – 0.01% ±0.002 [0.01–0.02] vs. 0.02% ± 0.002 [0.01–
0.02], p = 0.003 – as well as the anterior corpus callosum
– 0.04% ± 0.01 [0.02–0.07] vs. 0.06% ±0.01 [0.04–0.09], p
= 0.006. When looking at the evolution of the volume of
regions of interest in patients treated with miglustat, a sig-
nificant atrophy was found over time in the thalamus, pal-
lidum, and amygdala (data not shown). There was a

Table 1 Characteristics of NPC patients at baseline

Volumetry (n = 13) DTI (n = 8)

Age (years) (±SD, min-max) 35 (±14, 20–65) 35 (±14, 20–65)

Age at onset (years) 18 (±14, 5–56) 16 (±10, 5–30)

Disease evolution prior MRI (years) 17 (±12, 2–35) 19 (±14, 2–35)

NPC composite score 9 (±3, 3–15) 9 (±3, 3–15)

SD: standard deviation; M: male; F: female. Disease evolution prior to MRI
represents disease duration (i.e., time from first symptom) before baseline MRI

Table 2 Clinical evolution of NPC patients using the NPC
composite score [12]

Patient 1 2 3 4 5 6 7 8 9 10 11

Baseline NPC score 10 10 9 7 3 5 10 11 10 10 15

Last NPC score 10 13 8 10 8 5 10 12 10 10 15

Time range (year) 5 9 4 4 4.5 1 9 2 5 2 9

Sustained treatment + + + - - + + + + + +

Eleven patients had a clinical follow-up ranging from 1 to 9 years. Clinical
stabilization was defined as a variation in the total score ≤ 1. Patients 2, 4 and
5 worsened, but only patient 2 had not interrupted treatment with miglustat
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tendency to slower atrophy in caudate nucleus, putamen
and corpus callosum in treated patients (n = 3) com-
pared to patients who withdrew treatments (n = 2) but
that was not significant (Fig. 2a and b). We found no
significant correlations between volume changes and
clinical scores. There was no significant difference

either in volume changes between patients who wors-
ened clinically and patients who stabilized.
For DTI analyses, the control group (n = 8) had a

mean age of 34 years (±14), and a sex-ratio comparable
to patients (M/F: 5/3). Four NPC patients had radio-
logical follow-up at 1, 2, 3, 4 (n = 4), 4.5 (n = 2), 5 (n = 4)
and 9 (n = 3) years. At baseline, TBSS analyses found sig-
nificantly decreased FA in the posterior corona radiata
and left forceps major (Fig. 3). ROI analyses found a sig-
nificantly decreased FA in the corpus callosum, anterior
corona radiata and internal capsule, posterior thalamic
radiations, cerebellar peduncles, cingulate gyrus, and
longitudinal and fronto-occipital fasciculii (Table 3). RD
was globally increased in NPC patients compared to pa-
tients (0.00062 ± 0.00003 [0.00064–0.00065] vs. 0.00075
± 0.00007 [0.00070–0.00081, p < 0.001). After 2 years of
treatment with miglustat, TBSS analyses showed signifi-
cantly increased FA in the corpus callosum, forceps
minor and superior region of corona radiata, as well as
significantly decreased RD in the corpus callosum
(Fig. 4). ROI analyses also showed increased FA after

Fig. 1 Atrophy of the basal ganglia from NPC patients compared to healthy controls. Statistical map using FSL-VBM showed voxels with significant volume
changes in the caudate nucleus (solid arrow) and the thalamus (dotted arrow)

Fig. 2 a Volume changes over time in the corpus callosum, according
to treatment. Atrophy tended to be faster in the 2 untreated patients
compared to the 8 patients treated with miglustat; b Volume changes
over time in the caudate nucleus, according to treatment. The 2
untreated patients tended to have a faster basal ganglia atrophy
compared to the 8 patients treated with miglustat

Fig. 3 Reduced FA in NPC compared to controls. Statistical map
using FSL-TBSS showed voxels with significantly decreased FA in the
posterior corona radiata (dotted arrow) and the forceps major of the
corpus callosum (solid arrow)
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2 years of treatment in the right hippocampal cingulum
(0.321 ± 0.170 vs 0.308 ± 0.546, p = 0.029) and in the
anterior corona radiata (0.431 ± 0.178 vs 0.349 ± 0.180,
p = 0.029). However, such difference was no longer
observed at further time points (years 3, 4, 5 and 9)
compared to baseline MRI. FA in the corona radiata
tended to worsen more rapidly in non-responding or
untreated patients (Fig. 5a). Moreover, the overall
score and the dysphagia score seemed more likely to
stabilize if the change in FA was minor (Fig. 5b).

Discussion
The novelty of our work lies in the following points: (i)
this study is the largest performed in adult NPC patients
using two different neuroimaging modalities; (ii) the
whole brain was analyzed and not only regions of inter-
est; (iii) most patients had follow-up scans under treat-
ment. As suggested by visual inspection from brain MRI
of NPC patients [4, 8–10], our volumetric analyses
showed that NPC patients display cerebral atrophy com-
pared to healthy controls, especially the corpus callosum
and the cerebral peduncles. Treatment with miglustat
failed to prevent further atrophy of the basal ganglia
over time. However, it is unclear how volume changes
reflect disease severity and/or therapeutic efficacy in

NPC since no correlation between clinical and MRI met-
rics were found in our cohort. Likewise, changes in brain
volumes and clinical expression of neurological condi-
tions are not always related as shown in neurodegenera-
tive disorders such as Alzheimer disease [18]. Thus, it
remains to be established whether brain volumetry can
generate clinically relevant biomarkers in NPC, espe-
cially in longitudinal research studies. On the other
hand, DTI analyses showed decreased FA in NPC
patients compared to controls, especially in the corpus
callosum, as previously shown [12, 19], but also the
internal capsule, the corona radiata and the cingulate
gyrus-with a possible correlation with clinical manifesta-
tions for the two latter. The greater changes observed in
RD suggest a preferential alteration of the myelin sheath
in NPC patients. Overall, the DTI changes identified in
NPC patients in key white matter regions may directly
reflect cerebral metabolic alterations. These data are
coherent with recent work in NPC dedicated to white
matter analysis [20]. Of note, treatment with miglustat
led to an early, although transient, improvement of DTI
metrics.
This study has some limitations. First, due to their

acquisition in a clinical setting, some data did not pass
quality control requirements and were discarded.

Table 3 Changes in FA in NPC patients compared to controls

ROI NPC (m ± SD [min-max]) Controls (m ± SD [min-max]) p

Global mean 0.436 ± 0.023 [0.391–0.468] 0.469 ± 0.023 [0.423_0.502] 0.028

Anterior corona radiata L 0.365 ± 0.048 [0.299–0.446] 0.405 ± 0.030 [0.365–0.444] 0.083

R 0.358 ± 0.035 [0.316–0.421] 0.409 ± 0.031 [0.438–0.531] 0.015

Anterior limb of internal capsule L 0.449 ± 0.029 [0.409–0.507] 0.484 ± 0.029 [0.456–0.543] 0.028

R 0.450 ± 0.025 [0.415–0.496] 0.500 ± 0.029 [0.456–0.543] 0.007

Cingulate gyrus L 0.386 ± 0.027 [0.342–0.424] 0.431 ± 0.031 [0.392–0.467] 0.002

R 0.359 ± 0.025 [0.321–0.389] 0.409 ± 0.024 [0.373–0.444] 0.015

Body corpus callosum 0.473 ± 0.044 [0.408–0.533] 0.531 ± 0.054 [0.448–0.608] 0.032

ROI analysis found significantly decreased FA in NPC patients in the corpus callosum, the corona radiata, the internal capsule and the cingulate gyrus in particular.
m : mean; SD : standard deviation; min : minimum; max : maximum, L : left; R: right

Fig. 4 FA increase and RD decrease after 2 years of treatment with miglustat. Statistical map using FSL-TBSS showed voxels with significant differences
in FA and RD, at baseline and after 2 years of treatment, in the corpus callosum (arrow in the left FA image and RD) and the superior region of corona
radiata (arrow in the right FA image)
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Second, combining data from different field strengths
can bias the outcome of semi-automated methods
such as VBM analyses. Still, data acquisition in
clinical routine can be implemented in a multicentric
setting with a more systematic radiological follow-up.
Third, the sample size of the study is relatively small,
a problem inherent to any rare neurometabolic
disease, although greater than previously reported in
adults with NPC [8, 9, 12]. Last, it can be difficult to
establish the relevance of neuroimaging parameters in
NPC as (i) there is a lack of natural history data prior
to miglustat, (ii) a vast majority of patients are now
treated with miglustat, preventing us from assembling
an untreated control group and, (iii) the clinical
impact of miglustat is relatively weak [6, 7], so that a
strong biomarker effect is less likely.

Conclusion
Overall this work suggests that DTI can provide relevant
biomarkers of disease progression in NPC, including in
a clinical setting, but should be confirmed in prospective
studies, especially if drugs with a greater effect on
disease progression become available.

Additional file

Additional file 1: Table S1. Changes in volumetry in NPC patients
compared to controls. ROI analysis found significantly decreased volumes
in NPC patients in the corpus callosum, the basal ganglia and the
superior cerebral peduncle in particular. m : mean; SD : standard
deviation; min : minimum; max : maximum, L : left; R: right. (DOCX 82 kb)

Abbreviations
DTI: Diffusion tensor imaging; FA: Fractional anisotropy; NPC: Niemann-Pick
type C; RD: Radial diffusivity

Acknowledgments
We thank Actelion for an educational grant.

Funding
MM was supported by the JNLF (Journées de Neurologie de langue
Française). JNLF was not involved in the design of the study, nor in the
collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
Please contact author for data requests.

Authors’ contributions
MM and FM were involved in conception and design of the research project,
in analysis and interpretation of the data, and writing of the first draft of the
manuscript. DG and FM were involved in conception and design of the
research project. YN and FS were involved in the acquisition of clinical data
and MM, IA, DG and FM were involved in the acquisition, analysis and

Fig. 5 a FA variation in NPC patients who deteriorated over time versus stabilized patients. The 8 stable patients tended to have a slower FA
decrease than the 3 patients who deteriorated. b FA and clinical variations in NPC patients according to treatment. The 2 untreated patients
tended to present with larger FA variations, along with clinical aggravation, compared to the 8 patients treated with miglustat who featured
relatively minimal FA and clinical score variations

Masingue et al. Orphanet Journal of Rare Diseases  (2017) 12:22 Page 6 of 7

dx.doi.org/10.1186/s13023-017-0579-3


interpretation of the neuroimaging data. All authors read and approved the
final manuscript.

Competing interests
Authors declare no financial or non-financial competing interests in relation
with this manuscript.

Consent for publication
Not applicable (manuscript contains no individual person’s data).

Ethics approval and consent to participate
Authors declare that this work received all necessary ethical approvals and
that patients involved all consented to participate.

Author details
1Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC University
Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris,
France. 2Department of Neurology, AP-HP, Pitié-Salpêtrière University
Hospital, Paris, France. 3AP-HP, Pitié-Salpêtrière University Hospital, Reference
Centre for Lysosomal diseases, Paris, France. 4MedDay Pharmaceuticals, 96
Boulevard Haussmann, Paris, France. 5Department of Neuroradiology, AP-HP,
Pitié-Salpêtrière University Hospital, Paris, France. 6Department of Genetics,
AP-HP, Pitié-Salpêtrière University Hospital, Paris, France. 7University Pierre
and Marie Curie, Neurometabolic Research Group, Paris, France.

Received: 28 November 2016 Accepted: 25 January 2017

References
1. Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med.

2013;19:983–97.
2. Adanyeguh IM, Rinaldi D, Henry PG, Caillet S, Valabregue R, Durr A, Mochel

F. Triheptanoin improves brain energy metabolism in patients with
Huntington disease. Neurology. 2015;84:490–5.

3. Vanier M. Niemann-Pick disease type C. Orphanet J Rare Dis. 2010;5:16.
4. Sévin M, Lesca G, Baumann N, Millat G, Lyon-Caen O, Vanier M, et al. The

adult form of Niemann-Pick disease type C. Brain. 2007;130:120–33.
5. Jiang X, Sifhu R, Porter FD, Yanjanin NM, Speak AO, te Vruchte DT, et al. A

sensitive and specific LC-MS/MS method for rapid diagnosis of Nieman-Pick
C1 disease from human plasma. J Lipid Res. 2011;52:1435–45.

6. Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE. Miglustat for treament
of Nieman-Pick C disease : a randomised controlled study. Lancet Neurol.
2007;6:765–72.

7. Fecarotta S, Romano A, Della Casa R, Del Giudice E, Bruschini D, Mansi G, et
al. Long term follow-up to evaluate the efficacy of miglustat treatment in
Italian patients with Niemann-Pick disease type C. Orphanet J rare Dis.
2015;10:22.

8. Bowman E, Walterfang M, Abel L, Desmond P, Fahey M, Velakoulis D.
Longitudinal changes in cerebellar and subcortical volumes in adult-onset
Niemann-Pick disease type C patients treated with miglustat. J Neurol.
2015;262:2106–14.

9. Walterfang M, Fahey M, Desmond P, Wood A, Seal MI, Steward C, et al.
White and gray matter alterations in adults with Niemann-Pick disease type
C. Neurology. 2010;75:49–55.

10. Héron B, Valayannopoulos V, Baruteau J, Chabrol B, Ogier H, Latour P, et al.
Miglustat therapy in the French cohort of paediatric patients with Niemann-
Pick disease type C. Orphanet J Rare Dis. 2012;7:36.

11. Lee R, Apkarian Kn Sol Jung E, Yanjamin N, Yoshida S, Mori S, et al. Corpus
callosum diffusion tensor imaging and volume measures are associated
with disease severity in pediatric Niemann-Pick disease type C1. Pediatr
Neurol. 2014;51:669–74.

12. Scheel M, Abegg M, Lanyon L, Mattman A, Barton J. Eye movement and
diffusion tensor imaging analysis of treatment effects in a Niemann-Pick
Type C patient. Mol Genet Metab. 2010;99:291.

13. Sedel F, Chabrol B, Audoin B, Kaphan E, Tranchant C, Burzykowski T, et al.
Normalisation of brain spectroscopy findings in Niemann-Pick disease type
C patients treated with miglustat. J Neurol. 2016;263:927–36.

14. Millat G, Baïlo N, Molinero S, Rodriguez C, Chikh K, Vanier MT. Niemann-Pick
C disease: use of denaturing high performance liquid chromatography for
the detection of NPC1 and NPC2 genetic variations and impact on
management of patients and families. Mol Genet Metab. 2005;86:220–3.

15. Pineda M, Perez-Poyato MS, O’Callaghan M, Vilaseca MA, Pocovi M,
Domingo R, et al. Clinical experience with miglustat therapy in pediatric
patients with Niemann-Pick disease type C : a case series. Mol Genet Metab.
2010;99:358–66.

16. Patterson MC, Hendriksz CJ, Walterfang M, Sedel F, Vanier MT, Wijburg F,
Group NCGW. Recommendations for the diagnosis and management of
Niemann-Pick disease type C : an update. Mol Genet Metab. 2012;106:330–44.

17. Van der Eerden AW, Khalilzadeh O, Perbarg V, Dinkel J, Sanchez P, Vos PE, et
al. White matter changes in comatose survivors of anoxic ischemic
encephalopathy and traumatic brain injury : comparative diffusion-tensor
imaging study. Radiology. 2014;270:506–16.

18. Basso M, Yang J, Warren L, MacAvoy MG, Varma P, Bronen RA, et al.
Volumetry of amygdala and hippocampus and memory performance in
Alzheimer’s disease. Psychiatry Res. 2006;246:251–61.

19. Trouard TP, Heidenreich RA, Seeger JF, Erickson RP. Diffusion tensor imaging
in Niemann-Pick Type C disease. Pediatr Neurol. 2005;33:325–30.

20. Davies-Thompson J, Vasavur I, Scheel M, Rauscher A, Barton JJS. Reduced
Myelin Water in the White Matter Tracts of patients with Niemann-Pick Type
C. Am J Neuroradiol. 2016;37:1487–9.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Masingue et al. Orphanet Journal of Rare Diseases  (2017) 12:22 Page 7 of 7


	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Patients and controls
	Brain imaging
	Quality control
	Statistical analyses

	Results
	Discussion
	Conclusion
	Additional file
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

