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Abstract 

Background  The Qinghai-Tibet Plateau is the “sensitive area” of climate change, and also the “driver” and “ampli-
fier” of global change. The response and feedback of its carbon dynamics to climate change will significantly affect 
the content of greenhouse gases in the atmosphere. However, due to the unique geographical environment char-
acteristics of the Qinghai-Tibet Plateau, there is still much controversy about its carbon source and sink estimation 
results. This study designed a new algorithm based on machine learning to improve the accuracy of carbon source 
and sink estimation by integrating multiple scale carbon input (net primary productivity, NPP) and output (soil 
heterotrophic respiration, Rh) information from remote sensing and ground observations. Then, we compared spatial 
patterns of NPP and Rh derived from the fusion of multiple scale data with other widely used products and tried 
to quantify the differences and uncertainties of carbon sink simulation at a regional scale.

Results  Our results indicate that although global warming has potentially increased the Rh of the Qinghai-Tibet 
Plateau, it will also increase its NPP, and its current performance is a net carbon sink area (carbon sink amount 
is 22.3 Tg C/year). Comparative analysis with other data products shows that CASA, GLOPEM, and MODIS products 
based on remote sensing underestimate the carbon input of the Qinghai-Tibet Plateau (30–70%), which is the main 
reason for the severe underestimation of the carbon sink level of the Qinghai-Tibet Plateau (even considered as a car-
bon source).

Conclusions  The estimation of the carbon sink in the Qinghai-Tibet Plateau is of great significance for ensuring its 
ecological barrier function. It can deepen the community’s understanding of the response to climate change in sen-
sitive areas of the plateau. This study can provide an essential basis for assessing the uncertainty of carbon sources 
and sinks in the Qinghai-Tibet Plateau, and also provide a scientific reference for helping China achieve “carbon neu-
trality” by 2060.

Highlights 

1.	 This study designed a carbon sink estimation method for Qinghai-Tibet Plateau by integrating machine learning 
and multiple scale ground- and remote sensed-based data.
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2.	 The estimated total carbon sink of the Qinghai-Tibet Plateau is 22.3 Tg C/year, accounting for about 10% of Chi-
na’s total carbon sink.

3.	 The carbon sink of former estimation maybe greatly underestimated due to the underestimation of carbon input 
in the Qinghai-Tibet Plateau.

Keywords  Qinghai-Tibet Plateau, Carbon source and sink, Multiple scale information fusion, Machine learning, 
Uncertainty assessment

Background
Terrestrial ecosystems have always been the largest nat-
ural carbon sink. Especially since the 1960s, more than 
a quarter of anthropogenic emissions have been stored 
on average [1]. Considering its importance in combating 
climate warming, accurate estimation of carbon sinks is 
crucial for assessing mitigation policies [2–4]. With the 
development of technology, significant progress has been 
made in the annual updated global carbon estimate [1, 5]. 
However, in terms of its response, such as the trend of 
atmospheric CO2 and the increase of interannual varia-
bility, climate variability and other environmental factors, 
the terrestrial carbon sink is still highly uncertain [6–10]. 
These uncertainties are the main obstacle to our ability to 
predict climate feedback and its potential impact on the 
human-natural system [11].

As a unique geomorphic unit on the earth, the Qing-
hai-Tibet Plateau (QTP) is very sensitive to global warm-
ing [12], and its warming rate in the past 50 years is twice 
the global average [13–15]. It is observed that the perma-
frost on the Qinghai-Tibet Plateau has been significantly 
degraded due to the rapid warming of the climate [12, 
16]. These changes have a significant impact on the ecol-
ogy, hydrology, biogeochemistry and engineering infra-
structure of the third pole and surrounding areas [17, 
18]. In particular, the melting of permafrost will cause the 
release of soil organic carbon (SOC) into the atmosphere, 
which will affect climate warming [19–21]. At the same 
time, the Qinghai-Tibet Plateau is considered to have a 
profound impact on the regional and global climate sys-
tem and ecological economy [22]. It is a sensitive indica-
tor of climate change and a key component of the global 
carbon (C) cycle [23]. The response of the Qinghai-Tibet 
Plateau C dynamics to climate change may significantly 
affect the concentrations of carbon dioxide (CO2) and 
methane (CH4) in the atmosphere [24, 25], thus affecting 
the pace of future climate change [26, 27].

At present, whether the Qinghai-Tibet Plateau is a 
carbon source or a carbon sink is controversial [28]. For 
example, based on ORCHIDE and TEM models, the 
Qinghai-Tibet Plateau (QTP) is estimated to be a carbon 
sink [29, 30]. The results of CASA model and empiri-
cal statistical model show that the grassland ecosystem 

in the central and southern parts of the Qinghai-Tibet 
Plateau shows weak net carbon absorption, and its net 
ecosystem productivity (NEP) is 42.03 g C/m2 year [31]. 
The research based on the traditional empirical model 
believes that the Qinghai-Tibet Plateau is a carbon source 
[32, 33]. Studies also found that the Qinghai-Tibet Pla-
teau is a carbon sink at present, but in the case of climate 
warming at the end of the twenty-first century, it will 
change from carbon sink to carbon source [34]. Koven 
et  al. [35] revealed that by the end of the twenty-first 
century, the climate was warming, and the permafrost 
ecosystem in high latitudes could shift from carbon sink 
to carbon source. Although the warming of the Qinghai-
Tibet Plateau will increase the carbon sink capacity of 
the ecosystem in the growing season, it will also increase 
the soil carbon decomposition in the non-growing sea-
son, and the degradation of the permafrost region will 
increase the carbon release of the ecosystem. This will 
also destroy the surface vegetation, causing the ecosys-
tem to change from carbon sink to carbon source in the 
growing season [12]. However, due to the high spati-
otemporal heterogeneity of the Qinghai-Tibet Plateau, it 
is challenging to simulate, evaluate and predict the spati-
otemporal dynamics of carbon flux [15, 36].

The significant uncertainty in estimating carbon sinks 
in the Qinghai Tibet Plateau is due to differences in 
methods. The estimation methods for carbon sources 
and sinks in terrestrial ecosystems include “top-down” 
atmospheric inversion method, “bottom-up” inventory 
method, vorticity correlation method, and ecosystem 
process model simulation method [19, 37, 38]. These 
methods may be limited to varying degrees by model 
parameters, number and distribution of stations, scale 
conversion and simulation accuracy, especially in the 
Qinghai Tibet Plateau region, where the differences in 
estimation results between different methods may exceed 
10 times [12, 39]. Due to the complex underlying surface 
conditions and high spatial heterogeneity of the Qing-
hai Tibet Plateau, it is difficult to localize the parameters 
of the process model [38]. Remote sensing methods are 
also not suitable for most areas of the sparsely vegetated 
Qinghai Tibet Plateau. The carbon source and sink esti-
mation method that combines remote sensing products 
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with ground observation data to ensure spatial continuity 
and quantitative accuracy is very promising [40, 41]. This 
data-driven method can retain the effective information 
of remote sensing products and sample observation data, 
capture the complex nonlinear relationship between 
input and output variables, and achieve the goal of unify-
ing different data scales, so it has high flexibility and data 
adaptability [42, 43]. Based on the data-driven method, 
new information can also be mined from data to promote 
a new understanding of the new mechanism [44]. There-
fore, the multiple scale information fusion method of car-
bon sink estimation using machine learning as a bridge to 
connect multiple-source data such as remote sensing and 
ground sample observation data is an effective solution to 
reduce the uncertainty of the results.

In order to more accurately simulate the size and spatial 
pattern of carbon sources and sinks in the Qinghai-Tibet 
Plateau, we designed a multiple scale information fusion 
method for carbon sink estimation that uses machine 
learning as a bridge to connect multiple-source data such 
as remote sensing and ground sample observation data. 
Thus, a more accurate and spatially continuous carbon 
source and sink and its spatial pattern from 2000 to 2018, 
which can reflect the regional characteristics of the Qing-
hai-Tibet Plateau, are obtained. Then, we compared the 
ecosystem carbon input and carbon output with other 
widely used similar products, and discussed the differ-
ences and uncertainties of carbon sink simulation in the 
Qinghai-Tibet Plateau.

Data sources and methods
Study area
The Qinghai-Tibet Plateau locates in western China 
(73.50–104.67° E, 25.99–39.83° N), with an area of more 
than 2.56 × 106  km2 (Fig.  1). As an Asian water tower, 
about 40% of the world’s population depends on or is 

affected by it [45]. Grassland is the main vegetation 
type in the Qinghai-Tibet Plateau. Since the twenty-first 
century, the annual average temperature in the cold-
est region of the Qinghai-Tibet Plateau has been lower 
than − 20 °C, while that in the warmest region is higher 
than 20  °C [46]. Since the mid-1950s, the Qinghai-Tibet 
Plateau has experienced significant warming, with the 
annual average temperature increasing by 0.3  °C every 
decade [30]. The spatial heterogeneity of precipitation on 
the Qinghai-Tibet Plateau is extremely high. The south-
east Qinghai-Tibet Plateau is the wettest region with an 
annual precipitation of more than 1000 mm. The annual 
precipitation in the driest area in the northwest is less 
than 50 mm [47].

Data sources
Ground observation data
NPP ground observation data are from relevant litera-
ture, and soil respiration and heterotrophic respiration 
ground observation data are from the fifth edition of soil 
respiration database [48]. Ground observation data are 
used for model construction and precision evaluation. 
The details for these ground observation list in appendix.

Spatial data
Three NPP product data sets were used in this study. 
MOD17A3H has a spatial resolution of 500  m, a time 
resolution of years and a time span of 2000–2018(NPP-
MODIS). Chen [49] estimated China’s 1  km NPP product 
(NPPCASA) from 1985 to 2015 based on CASA model. 
Institute of Geographic Sciences and Natural Resources, 
Chinese Academy of Sciences based on light energy uti-
lization model GLO_PEM estimated China’s 1  km NPP 
product (NPPGLO_PEM) from 2000 to 2010. The random 
forest model uses the high-resolution meteorologi-
cal driven data set developed by He et al. [50] for input, 

Fig. 1  Overview of the study area. a Land use types and location of site observations of ground sample in the Qinghai-Tibet Plateau; b The 
elevation of the Qinghai-Tibet Plateau and its position in China
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including air temperature, rainfall and downward short-
wave radiation. The spatial resolution is 0.1°, the tempo-
ral resolution is years, and the time span is 1979–2018. 
The product data of land cover type includes MCD12Q1, 
with a spatial resolution of 500 m, a temporal resolution 
of years, and a time span of 2001–2018. The leaf area 
index (LAI) data is from Liu et al. [51], with a spatial res-
olution of 8  km and a temporal resolution of 8d, and a 
time span of 1981–2019. Digital Elevation Model (DEM) 
includes SRTMDEMUTM products with a spatial resolu-
tion of 90 m. The global soil organic carbon (SOC) comes 
from the soil geographic database with a spatial resolu-
tion of 250 m. The global 1 km spatial resolution soil res-
piration data (RsQRFM) estimated by quantile regression 
forest model is from Stell et al. [52]. The above data were 
resampled by the nearest neighbor at a spatial resolu-
tion of 1 km, and the annual data were synthesized by the 
average method.

Methods
NPP estimate
The random forest (RF) model includes many binary 
decision trees, which are grown independently using a 
two-stage randomization program [53]. Using a boot-
strap resampling method, RF creates a tree structure 
classifier through independent and identically distributed 
random vectors, which randomly extracts quantitative 
samples as training samples. RF then constructs a deci-
sion tree model for each training sample set. The model 
obtains the final regression result by calculating the aver-
age value predicted by multiple decision trees [54]. A 
large number of theoretical and practical studies have 
proved that the RF algorithm has high accuracy and sta-
bility and has a good tolerance to outlier and noise [55]. 
Based on the NPP data observed on the ground, we built 
a random forest model by integrating the NPP data esti-
mated by remote sensing and environmental variables, 
and simulated the NPP of China from 2000 to 2018. The 
model structure is as follows:

where NPP is the net primary productivity of vegeta-
tion (g  C/m2  year) after integrating ground observation 
and remote sensing information, SRAD is short-wave 
radiation, LULC is land cover type data, DEM is digi-
tal elevation model, LAI is leaf area index, NPPmodis is 
the NPP remote sensing product of MODIS, which has 
been widely used and has high spatial resolution [56, 57]. 
Using NPPmodis and LAI to replace the traditional vege-
tation index is a new idea in this study. It can effectively 
estimate the photosynthetic capacity and growth sta-
tus of vegetation in complex environments [58, 59]. We 

(1)
NPP = f(Precipitation, Temperature, SRAD, LULC,DEM, LAI,NPPmodis)

estimate the relationship between NPP and independent 
variables through the random forest model established 
by R language. The ntree parameter in the model is set to 
1500. Since there are seven input variables in the model, 
the mrty parameter is set to six.

Rs and Rh estimate
Considering that soil respiration (Rs) has more obser-
vation data than soil heterotrophic respiration (Rh), the 
estimation of Rh is carried out in two steps. First, soil res-
piration (Rs) is estimated by random forest model, and 
then Rh is further estimated by Rs. The random forest 
model of Rs is as follows:

where Rs is soil respiration (g  C/m2  year), SOC is soil 
organic carbon, and other variables are consistent with 
NPP model (Eq. 1). The parameter of ntree in the model 
is set to 1500. Since there are eight input variables in 
the model, the parameter of mrty is set to seven. After 
obtaining the simulated value of Chinese Rs, we further 
estimate the Rh of the Qinghai-Tibet Plateau based on 
the statistical model of Chinese Rs and Rh (Eq. 3) (see the 
Additional file 1: Fig. S1 for details).

NEP estimate
Based on the estimated NPP and Rh, we calculate the 
net ecosystem productivity (NEP) of the Qinghai-Tibet 
Plateau:

where NEP is the net productivity of the ecosystem (g C/
m2yr), which is used to characterize the carbon source/
sink level of the ecosystem. When NEP is positive, it indi-

cates that the ecosystem is a carbon sink; When NEP 
is negative, it indicates that the ecosystem is a carbon 
source.

Evaluation indicators
Multiple indicators were used to evaluate the reliability of 
random forest models and the accuracy of different mod-
els. These indicators include decision coefficient, cor-
relation coefficient (r), root mean square error (RMSE), 
percent bias (PBIAS), mean absolute percentage error 
(MAPE).

(2)
Rs =f(Precipitation, Temperature, SRAD,

LULC,DEM, LAI,NPPmodis, SOC)

(3)Rh = 0.62 ∗ Rs+ 9.01R2
= 0.77

(4)NEP = NPP− Rh
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where Pi is the i-th predicted value of the evaluated ele-
ment, Oi is the i-th observed value, P is the average of the 
predicted values, O is the average of the observed values, 
and n is the total number of observations.

The flow framework of this study is shown in Fig.  2. 
The idea of this study is to first build a database based on 
multi-source spatial and remote sensing data. Next, a ran-
dom forest model is used as a bridge to connect ground 
sample observation data and spatial data to address the 

(5)PBIAS =

∑n
i=1 (pi −Oi) ∗ 100

∑n
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(6)RMSE =

√

∑n
i=1 (pi −Oi)2

N

(7)MAPE =
1

n

∑n

t=1

∣

∣

∣

∣

Oi − Pi

Oi

∣

∣

∣

∣

(8)r =

∑n
i=1 (xi − x)(yi − y)

√

∑n
i=1 (xi − x)2

√

∑n
i=1

(

yi − y
)2

system bias caused by scale differences between different 
data. Simultaneously establish two sets of random for-
est models to simulate NPP and Rs, so that the scale of 
simulated carbon input and carbon output data matches. 
Finally, multiple indicators are used to evaluate the simu-
lation accuracy of different models.

Results
NPP estimation of Qinghai‑Tibet Plateau
The carbon flux estimation model of NPP and Rs is 
constructed by using the random forest model. The 
simulation results of the model are reliable and accu-
rate (Additional file  1: Figs. S2 and S3). The R2 value 
of the random forest model based on 394 NPP ground 
samples in the Qinghai-Tibet Plateau is 0.88. The 
observed and simulated data are basically near the 1:1 
line, and the slope of the trend line is 0.81 (P < 0.001). 
The R2 value of the random forest model based on 62 Rs 
ground samples in the Qinghai-Tibet Plateau is 0.83, the 
observed and simulated data are basically near the 1:1 
line, and the slope of the trend line is 0.74 (P < 0.001). 
The results show that the random forest constructed by 
combining multiple-source data such as remote sensing 

Fig. 2  The flow framework of this study
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and ground observation can effectively estimate the key 
carbon flux of the Qinghai-Tibet Plateau.

Table  1 compares the NPP simulation results of the 
four models on the Qinghai-Tibet Plateau. In order to 
fairly compare the simulation results of each model, 
we extracted the NPP values of each model based on 
the spatial location of the observation data. The NPP 
results of the Qinghai-Tibet Plateau simulated by the 
random forest model are superior to the other three 
models. The correlation coefficient between the NPP 
simulated by the random forest model and the observed 
data of the ground sample points is 0.42, while the 
correlation coefficient between the MODIS product, 
GLOPEM model and CASA model and the observed 
NPP is 0.38, 0.24 and 0.23, respectively. From the root 
mean square error, the results of random forest simu-
lation improved 18.32% on average compared with the 
other three models. From the percentage of deviation 
and the average absolute percentage error, the random 
forest model is also more suitable for the Qinghai-Tibet 
Plateau than the other three models.

By comparing the NPP spatial pattern of the Qing-
hai-Tibet Plateau simulated by different models, we 
find that MODIS NPP products, CASA models and 
GLOPEM have a large underestimation of the NPP of 
the Qinghai-Tibet Plateau (Fig.  3). The NPP results of 
random forest simulation are generally higher than 
100  g  C/m2  year, while the NPP results of the other 
three models are generally lower than 100 g C/m2 year 
in the vast central and western regions of the Qinghai-
Tibet Plateau, especially the GLOPEM model is lower 
than 50  g  C/m2  year. We also compared the spatial 
differences between the random forest and the other 
three models. The NPP of the random forest simula-
tion is higher than the other three models in the cen-
tral and western regions of the Qinghai-Tibet Plateau, 
while there are differences in a small part of the east-
ern regions with relatively high vegetation coverage. In 
general, the NPP products of MODIS, the NPP simu-
lated by CASA model and GLOPEM model are under-
estimated to a large extent, which may seriously affect 
the accuracy of carbon sink estimation in the Qinghai-
Tibet Plateau.

Rs estimation of Qinghai‑Tibet Plateau
Table  2 shows the simulation results of the two models 
for the Rs of the Qinghai-Tibet Plateau. In order to com-
pare the simulation results of the two models fairly, we 
still extract the spatial results of the Rs of the two mod-
els based on the coordinates of the observed data. The 
results of Rs simulated by random forest model in Qing-
hai-Tibet Plateau are better than that of quantile regres-
sion forest model. The correlation coefficient between the 
Rs simulated by the random forest model and the ground 
sample observation data is 0.70, while the correlation 
coefficient between the quantile regression forest model 
and the observed Rs is 0.65. From the root mean square 
error, the results of random forest simulation improved 
7.31% on average compared with the quantile regres-
sion forest model. From the percentage of deviation and 
the average absolute percentage error, the random forest 
model is also more suitable for the Qinghai-Tibet Plateau 
than the quantile regression forest model, but the differ-
ence is not as obvious as NPP.

By comparing the spatial pattern of Rs in the Qinghai-
Tibet Plateau simulated by the two models (Fig.  4), we 
find that the quantile regression forest model has a large 
underestimation of Rs in the Qinghai-Tibet Plateau. The 
Rs simulated by the random forest model have obvious 
east–west differentiation characteristics in the Qinghai-
Tibet Plateau, and generally higher than 500 g C/m2 year 
in the east. The Rs simulated by quantile regression for-
est model also have east–west differentiation character-
istics in the Qinghai-Tibet Plateau, but the difference is 
smaller than that of the random forest model. The Rs 
in most areas of the east are between 300 and 500 g C/
m2  year. Comparing the spatial difference between the 
two models, it was found that the quantile regression 
forest models in most areas of the Qinghai-Tibet Plateau 
underestimated Rs.

NEP estimation of Qinghai‑Tibet Plateau
Based on NPP and Rs simulated by various models, we 
compared the spatial pattern of carbon source and sink 
(NEP) in the Qinghai-Tibet Plateau estimated by four 
pairs of models and their differences (Fig.  5). The NEP 
simulated by the random forest model shows that the 

Table 1  Comparison of four NPP models

r is the correlation coefficient, RMSE is the root mean square error, PBIAS is the percentage of deviation, MAPE is the average absolute percentage error, Mean is the 
average value of NPP simulated by MODIS, GLOPEM and CASA models, and Difference is the percentage of difference between Random Forest and Average

NPP MODIS GLOPEM CASA Mean Random forest Difference (%)

r 0.38 0.24 0.23 0.28 0.42  + 49.00

RMSE 258.62 323.99 264.37 282.33 230.60  + 18.32

PBIAS − 28.09 − 54.62 − 35.33 − 39.35 − 25.74  + 34.58

MAPE 88.61 105.08 81.18 91.62 68.41  + 25.33
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spatial pattern of carbon sinks in the Qinghai-Tibet Pla-
teau presents a law of east–west differentiation, and the 
spatial heterogeneity is high. The west is generally a car-
bon sink area, while the east shows a carbon source. The 
other three pairs of model results show that the Qinghai-
Tibet Plateau is a carbon source in general, and only the 

area with high vegetation coverage in the eastern part of 
the Qinghai-Tibet Plateau is a carbon sink. The results of 
spatial differences show that the carbon sink of the Qing-
hai-Tibet Plateau is underestimated to a large extent by 
the other three pairs of models except the random forest 
model. Most regions underestimate more than 50  g  C/
m2 year, which may lead to the misjudgment of whether 
the Qinghai-Tibet Plateau is a carbon sink or a carbon 
source.

Figure 6 shows that the difference in NPP estimates of 
the four models is greater than Rs, and there are differ-
ences in the amount and direction of carbon sink esti-
mates of the Qinghai-Tibet Plateau. For NPP, the random 
forest model estimates an average of 321.4  g/Cm2  year, 
while other models underestimate it between 30 and 
70%. For Rs, the average estimate of random forest model 
is about 255.3  g/Cm2  year, and the estimate of quantile 
regression forest model is relatively low, with an underes-
timation of about 5%. The random forest model estimates 

Fig. 3  Four models simulate the spatial pattern of NPP and its differences. a NPP of random forest simulation; b NPP products of MODIS; c NPP 
simulated by CASA; d NPP simulated by GLOPEM; e NPP difference between random forest and MODIS; f NPP difference between random forest 
and CASA; g NPP difference between random forest and GLOEPM

Table 2  Comparison of two Rs models

r is the correlation coefficient, RMSE is the root mean square error, PBIAS is 
the percentage of deviation, MAPE is the average absolute percentage error, 
and Difference is the percentage of difference between Random Forest and 
Quantitative Regression Forest Model

Rs Quantile regression 
forest model

Random forest Difference (%)

r 0.65 0.70 7.31

RMSE 0.73 0.59 18.92

PBIAS − 5.30 − 0.31 94.17

MAPE 15.98 10.96 31.43
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that the Qinghai-Tibet Plateau is a carbon sink in gen-
eral, and will absorb 22.3  Tg of C per year (the average 
carbon sink intensity is 68.06  g/Cm2  year). The other 
three models believe that the Qinghai-Tibet Plateau is a 
carbon source area in general. The GLOPEM estimation 
results show that the Qinghai-Tibet Plateau may emit 
144.1 Tg C (average carbon source intensity is 128.16 g/
Cm2 year) per year, the CASA model estimates that the 
Qinghai-Tibet Plateau will emit about 120 Tg C (average 
carbon source intensity is 119.65  g/Cm2  year) per year, 
and the MODIS product estimates that the Qinghai-Tibet 
Plateau will emit about 36.7 Tg C (average carbon source 
intensity is 25.75  g/Cm2  year) per year. In general, the 
accuracy of carbon flux estimation of the Qinghai-Tibet 
Plateau by different models is quite different.

Discussion
Comparison of carbon source and sink simulation methods
The top-down atmospheric retrieval method can esti-
mate the real-time changes of carbon sources and sinks 
worldwide [60], but its spatial resolution is low, and the 
retrieval accuracy is limited by the number and distri-
bution of atmospheric observation stations, which can-
not distinguish between man-made carbon emissions 
and natural process carbon emissions [61]. The bot-
tom-up ecosystem process model method can simulate 
all aspects of the carbon cycle process, and has strong 
physical interpretation ability [62], but the structure and 

parameters of the model have great uncertainty [63]. The 
assumption of ecosystem model is usually based on car-
bon balance, while in the actual natural environment, the 
ecosystem is usually in a state of non-equilibrium distur-
bance, especially under the dual impact of human activi-
ties and climate change [64–66]. In addition, the widely 
used carbon source and sink estimation method based on 
carbon flux sites or ecological sample sites has high accu-
racy and can realize long-term continuous positioning 
observation of ecosystem carbon flux on a fine time scale 
[67, 68]. However, this method is greatly affected by the 
terrain and meteorological conditions, especially in the 
Qinghai-Tibet Plateau region. In the process of scaling 
up, there are problems such as insufficient sample repre-
sentation, high cost and large spatial heterogeneity [39]. 
Satellite remote sensing products are increasingly used 
in terrestrial ecosystem carbon sink estimation because 
they can identify different underlying surface conditions, 
are suitable for large-scale carbon cycle monitoring, have 
strong real-time updating capability, high accuracy and 
spatial continuity, and have unparalleled cost-effective-
ness [69–71]. However, there is usually a scale difference 
between the ecosystem carbon flux estimated by remote 
sensing data and the carbon flux estimated based on 
sample sites, and there is a systematic deviation between 
the estimates based on remote sensing products and the 
results estimated by sample sites [72]. Direct compari-
son of carbon input and output of ecosystems with scale 

Fig. 4  The two models simulate the spatial distribution pattern of Rs and their differences. a Rs simulated by random forest model; b Rs of QRFM; c 
Rs difference between random forest and QRFM
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differences has great uncertainty in the estimation of eco-
system carbon sink, which is one of the main reasons for 
the large difference in the estimation results of different 
methods [39, 72].

Figures 3 and 4 show that other models have different 
degrees of underestimation of NPP and Rs compared 
with random forest models. One reason is that most of 
the other models use remote sensing data as the main 
input source. Although remote sensing data can ensure 
spatial continuity, the ability to capture details of the 
Qinghai-Tibet Plateau, a region with complex terrain 
and sparse vegetation, is insufficient [32, 73, 74]. There-
fore, remote sensing data in the Qinghai-Tibet Plateau is 
more suitable as a supplementary source of information 
than the main data [75]. Another important reason is 
that compared with the random forest model, these mod-
els lack the key ground sample observation information 
as a supplement. The Qinghai-Tibet Plateau has a com-
plex terrain and is extremely vulnerable to the impact of 
climate change. In recent years, the intensity of human 

activities has gradually increased [12]. The traditional 
empirical model can no longer meet the requirements 
for the simulation and assessment of the carbon source 
and sink of the ecosystem in the region, and it is more 
necessary to supplement the observation information of 
the ground sample points to improve the reliability and 
applicability of the model [75]. Therefore, we propose a 
multiple scale information fusion method for carbon 
sink estimation that uses machine learning as a bridge 
to connect multiple-source data such as remote sensing 
and ground sample observation data. This method can 
not only achieve a wide range of carbon source and sink 
spatial simulation, but also ensure a high accuracy, so it 
is more suitable for the Qinghai-Tibet Plateau than other 
models. Machine learning can explore the nonlinear rela-
tionships between multi-source data, provide more accu-
rate simulation results, and have stronger inclusiveness 
towards the data itself. It also has the characteristics of 
easy operation, economy, and applicability to multiple 
scales [76]. Therefore, compared to traditional carbon 

Fig. 5  Various models simulate the spatial pattern of NEP and its differences. a NEP1, NPP simulated by random forest model minus Rh simulated 
by random forest and linear regression model; b NEP2, NPP of MODIS minus Rh simulated by QRFM and linear regression model; c NEP3, NPP 
simulated by CASA minus Rh simulated by QRFM and linear regression model; d NEP4, NPP simulated by GLOPEM minus Rh simulated by QRFM 
and linear regression model; e Difference between NEP1 and NEP2; f Difference between NEP1 and NEP3; g Difference between NEP1 and NEP4
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sink estimation methods, it is more suitable for carbon 
sink estimation in the Qinghai Tibet Plateau.

Estimation difference of carbon sink in Qinghai‑Tibet 
Plateau
The carbon sink estimates of the Qinghai-Tibet Plateau 
vary greatly among different models (Fig.  5). It is esti-
mated that the Qinghai-Tibet Plateau is a carbon source 
or weak carbon sink through remote sensing products 

and simple linear models [77, 78]. The carbon source level 
of the Qinghai-Tibet Plateau is estimated to be 39.05 g/
Cm2 year by using the model estimated by remote sens-
ing products [32]. Due to the lack of ground sample data 
to optimize and constrain the model, these methods have 
produced a large deviation in the estimation of carbon 
sink results, especially in the Qinghai-Tibet Plateau, a 
region with complex terrain [79]. The study of combin-
ing the ground sample observation data with the model 

Fig. 6  Various models simulate the carbon sink and its component differences in the Qinghai-Tibet Plateau. a NPP simulated by four models; b The 
percentage difference between the mean NPP of random forest simulation and that of other three models; c Rh simulated by random forest model 
and quantile regression forest model; d The percentage difference of Rh mean simulated by random forest model and quantile regression forest 
model; e NEP simulated by multiple combination models; f Percentage of difference between NEP1 and NEP2, NEP3, NEP4 and their mean values
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to constrain it shows that the Qinghai-Tibet Plateau is a 
carbon sink in general, with a carbon sink level of about 
43.16 Tg C/year, and its carbon sink capacity may weaken 
in the future with the impact of climate change [36]. At 
the same time, we also emphasize that for the region with 
complex conditions such as the Qinghai-Tibet Plateau, 
more ground sample data are needed to improve the 
model of carbon sink estimation on the Qinghai-Tibet 
Plateau, otherwise the results may have a large deviation 
[80]. For example, only 46 observation data were used to 
estimate the terrestrial ecological carbon sink in China, 
and only 4 observations were made in the Qinghai-Tibet 
Plateau area, and the results obtained were more than 5 
times higher than those of other scholars [39, 81].

Our results show that the Qinghai-Tibet Plateau is a 
carbon sink, about 22.3 Tg C/year (Fig. 6), which is also 
supported by relevant studies [30, 34, 82]. For example, a 
large number of studies based on field observations show 
that the carbon sink of China’s terrestrial ecosystem is 
0.2–0.3 Pg C/year [1, 39, 68], and the Qinghai-Tibet Pla-
teau is a carbon sink in general, accounting for about 10% 
of China’s carbon sink [62, 83]. The main reason for the 
difference in the estimation of carbon sinks in the Qing-
hai-Tibet Plateau is the lack of sufficient ground sample 
observation data to optimize and constrain the model. 
The lack of observation data or a small amount of obser-
vation data may cause a large deviation in the estima-
tion results [79, 80]. Second, the applicability of remote 
sensing data in the Qinghai-Tibet Plateau is insufficient. 
Due to the complex underlying surface conditions of 
the Qinghai-Tibet Plateau itself, the remote sensing data 
may not be able to completely retrieve the vegetation 
level of the Qinghai-Tibet Plateau, resulting in a serious 
underestimate of NPP [32, 84]. Therefore, the multiple 
scale information fusion carbon sink estimation method 
designed by us, which uses machine learning as a bridge 
to connect multiple-source data such as remote sensing 
and ground sample observation data, can not only pre-
serve the spatial continuity of remote sensing data, cap-
ture spatial details, but also combine the ground sample 
observation data to optimize and constrain the model, 
making the simulation results more accurate.

Impacts, limitations, and prospects
In this study, we designed a multiple scale informa-
tion fusion method for carbon sink estimation that uses 
machine learning as a bridge to connect multiple-source 
data such as remote sensing and ground sample observa-
tion data. This method can not only preserve the spatial 
continuity of remote sensing data, capture spatial details, 
but also combine the ground sample observation data to 
optimize and constrain the model to obtain a set of spa-
tially continuous, statistically reliable carbon input and 

output data, Make the simulation results more accu-
rate. Then, based on the carbon input and output data 
of scale matching, the carbon sink level and its spatial 
pattern of the Qinghai-Tibet Plateau from 2000 to 2018 
are estimated. In addition, we quantitatively evaluated 
the carbon sink results simulated by various models, 
and discussed the differences between the models. This 
study answers the controversial question of whether the 
Qinghai-Tibet Plateau is a carbon source or a carbon 
sink, and emphasizes the importance of carbon process 
simulation in areas with complex terrain and vulnerable 
to climate change, such as the Qinghai-Tibet Plateau, 
combined with ground sample observation data. The 
research results provide an important basis for accurately 
estimating the carbon sink and its spatial distribution in 
the Qinghai-Tibet Plateau, and provide a scientific refer-
ence for helping China achieve “carbon neutrality” and 
sustainable development by 2060.

This study uses multiple-source data, including cli-
mate-driven data sets, MODIS and related vegetation 
remote sensing products, and ground sample observa-
tions. Remote sensing products are affected by mixed 
pixels, and the fusion process of spatial data at differ-
ent scales may affect the carbon sink estimation results 
[69]. In addition, although machine learning can explore 
nonlinear relationships between data, it has high require-
ments for the data itself, and abnormal data may have a 
significant impact on the results. Therefore, in the future, 
more and more representative samples are needed to 
further improve the reliability of the model [76]. Scaling 
the site data to the regional level places higher demands 
on the homogeneity of the samples, especially in the 
complex terrain of the Qinghai Tibet Plateau, where the 
uneven distribution of spatial sample points may lead to 
uncertainty in carbon si60nk estimation results in certain 
regions [41].

This study compares the key carbon fluxes of the 
Qinghai-Tibet Plateau simulated by various models, 
revealing that the Qinghai-Tibet Plateau is an impor-
tant carbon sink. In the future, in-depth evaluation of 
the response mechanism of carbon sinks and related 
environmental factors (climate and land use change) 
may be a promising work [85, 86]. Especially in the 
context of global warming, global warming may cause 
the melting of permafrost in the Qinghai Tibet Plateau 
to release more soil carbon, while increasing water 
content may also promote vegetation photosynthesis, 
resulting in greater uncertainty in the estimation of 
carbon sources and sinks in the Qinghai Tibet Plateau 
region [87, 88]. In addition, it is necessary to combine 
the CMIP6 model to estimate carbon sink changes in 
different climate change and human activity scenarios 
on the Qinghai Tibet Plateau, especially to conduct 
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research on the impact assessment of carbon sinks 
after a series of ecological projects, which can further 
provide basic support for related research on how eco-
systems respond to climate change and has important 
practical significance [37, 73, 89].

Conclusions
This study designed a multiple scale information fusion 
method for carbon sink estimation, which uses machine 
learning as a bridge to connect multiple-source data such 
as remote sensing and ground sample observation data. 
This method can not only preserve the spatial continu-
ity of remote sensing data, but also combine the ground 
sample observation data to optimize and constrain the 
model, improve the simulation accuracy, so as to obtain a 
group of spatially continuous, statistically reliable carbon 
input and carbon output data. The results derived by the 
fusion of multiple scale data revealed that the Qinghai-
Tibet Plateau, as an important ecological security barrier 
for China and even East Asia, has a carbon sink of about 
22.3 Tg C/year. Compared with the random forest model, 
the traditional CASA, GLOPEM and MODIS products 
underestimated the carbon input of the Qinghai-Tibet 
Plateau by 30–70%, while the quantile regression forest 
model underestimated the carbon output of the Qinghai-
Tibet Plateau by about 5%. These models underestimate 
carbon input more than carbon output, and may mistake 
the Qinghai-Tibet Plateau as a carbon source. This study 
provides an important basis for accurately estimating the 
carbon sink and its spatial distribution in the Qinghai-
Tibet Plateau, and provides a scientific reference for help-
ing China achieve “carbon neutrality” and sustainable 
development by 2060.
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