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Abstract 

Background:  Biomass models are useful for several purposes, especially for quantifying carbon stocks and dynamics 
in forests. Selecting appropriate equations from a fitted model is a process which can involves several criteria, some 
widely used and others used to a lesser extent. This study analyzes six selection criteria for models fitted to six sets of 
individual biomass collected from woody indigenous species of the Tropical Atlantic Rain Forest in Brazil. Six models 
were examined and the respective fitted equations evaluated by the residual sum of squares, adjusted coefficient of 
determination, absolute and relative estimates of the standard error of estimate, and Akaike and Schwartz (Bayesian) 
information criteria. The aim of this study was to analyze the numeric behavior of these model selection criteria and 
discuss the ease of interpretation of them. The importance of residual analysis in model selection is stressed.

Results:  The adjusted coefficient of determination ( R2adj. ) and the standard error of estimate in percentage (Syx%) are 
relative model selection criteria and are not affected by sample size and scale of the response variable. The sum of 
squared residuals (SSR), the absolute standard error of estimate (Syx), the Akaike information criterion and the 
Schwartz information criterion, in turn, depend on these quantities. The best fit model was always the same within a 
given data set regardless the model selection criteria considered (except for SSR in two cases), indicating they tend to 
converge to a common result. However, such criteria are not always closely related across different data sets. General 
model selection criteria are indicative of the average goodness of fit, but do not capture bias and outlier effects. 
Graphical residual analysis is a useful tool to this detection and must always be used in model selection.

Conclusions:  It is concluded that the criteria for model selection tend to lead to a common result, regardless their 
mathematical formulation and statistical significance. Relative measures of goodness of fitting are easier to interpret 
than the absolute ones. Careful graphical residual analysis must always be used to confirm the performance of the 
models.
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Background
There are different methods of calculating biomass and 
carbon storage in forests. Usually these methods com-
bine information from forest inventories and expansion 
factors or fitting linear regression models [1]. Bio-
mass models, usually fitted by linear regression (called 

allometric equations by some authors) can be used to 
obtain indirect estimates, by using tree measurement 
data (such as dbh, height, among others) coming from 
forest inventory, and are widely used for this purpose. 
Soares and Tomé [2] advocate the use of biomass equa-
tions, because the architecture of trees changes over 
time and under prevailing site conditions, altering 
the fixed proportion implicit in the expansion factors. 
Equations for biomass estimation require the examina-
tion of different models, which must be judged by some 
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statistical indicators of goodness of fit. Selecting the 
best model, in principle, is a simple task, since there are 
well known criteria for this purpose. Many tools for the 
choice of the “best model” have been suggested in the 
literature [3]. However, different objectives in modeling 
can exist besides prediction, which require an inte-
grated vision of the different model selection criteria.

Model selection has occupied the minds of many 
researchers, and a large number of publications 
devoted to this subject can be found in the literature 
[4–12]. Particularly in biomass estimation this issue is 
not deeply explored. Although model selection criteria 
for biomass estimation are widely used, a specific dis-
cussion on their significance and application has not 
been yet published.

Criteria for model selection must incorporate good-
ness of fit and parsimony, allowing that several models 
examined can be simultaneously compared [13]. Among 
the selection criteria most commonly adopted are the fol-
lowing: adjusted coefficient of determination, maximum 
likelihood test, Akaike information criterion, Akaike 
information criterion not biased to small samples, and 
Schwarz information criterion (also called Bayesian) [13]. 
There are variations of the mathematical formulations of 
these criteria in the literature, though their rationale are 
similar.

R2 (coefficient of determination) is perhaps the measure 
of fitting most widely used in linear regression modeling, 
but, according to some authors, it has been improperly 
used [14]. After the Anscombe’s publication on R2 [15], 
various criticisms have been made about the use of it 
as a model selection criterion. The author’s analysis has 
become famous, when he proposed a consideration on 
four series of different data that resulted in the same 
value of R2 in the fitting of the straight-line model, the so-
called “Anscombe’s quartet”. Kvalseth [14] has discussed 
the several potential pitfalls in using the R2 inadvertently. 
Some authors consider this measure as antiquated and 
with many restrictions [5, 11, 16].

One of R2 features is that the increase in the number 
of parameters causes a concomitant increase of its value, 
giving the false impression that a certain model is better 
than another. Another point is that models with differ-
ent numbers of coefficients cannot be compared directly 
by R2. Therefore, the adjusted R2 should be used instead 
[17]. Other statistical analyses traditionally employed 
are the size of the absolute (Syx) and the relative (Syx%) 
error of estimate, and the graphical residual analysis as 
well. Vanclay [18] suggests analyzing the data graphically, 
noting also the F-values of the regression and the statistic 
prediction sum of squares (PRESS) [12, 19].

The information criteria proposed by Akaike [20] and 
Schwarz [21] have been used and recommended for 

model selection. These alternative indices would be a bet-
ter combination of ability to detect the goodness of fit 
and, therefore, the quality of the model, as well as penal-
ize complex models that could mask the selection results.

Although this matter is of great importance for bio-
mass and carbon modeling of woody species, we have 
not found in the literature research papers devoted to 
the compare the results obtained with a variety of data 
sets, by using analyzing different criteria for selecting 
models. In this work, the behavior of six selection criteria 
are evaluated to estimate individual biomass through six 
linear regression models fitted to actual data of different 
woody species indigenous of the Tropical Atlantic Rain 
Forest in southern/southeastern Brazil.

The aim of this study was to analyze the behavior of six 
model selection criteria, typically used to judge the good-
ness of fit of the resulting equations fitted to six different 
data series with wide biomass range. Besides the sample 
size and response variable size on these criteria, we also 
examined the numeric relations between them. We dis-
cuss the ease of interpretation of the model selection cri-
teria and stress the importance of the graphical residual 
analysis to detect bias in estimates.

Methods
Data sources
Six sets of dry biomass data were used in this study, total-
ing 330 individuals of various woody species indigenous 
in the Tropical Atlantic Rain Forest in southern/south-
eastern Brazil (Table 1). Data sets 1–3 are composed of 
aboveground biomass measures (trunk + branches + foli-
age), whereas series 4–6 data come from total biomass 
(aboveground + belowground) measurements. Biomass 
was measured through destructive method (simple sepa-
ration of compartments) [22], which consisted of weigh-
ing fresh biomass in the field and further analysis in the 
laboratory to obtain the oven dry biomass.

Data sets of plants with broad range of diameter at 
breast height (1.30 m from the ground level) and of total 
heights were taken and deliberately utilized. Individual 
biomass averages ranging from 0.26  kg (Merostachys 
skvortzovii bamboo) up to 1493  kg (indigenous old-
growth tree species in mixed-species natural stand). All 
data sets had 30 plants, except for one of them (native 
species in restoration forest plantations, data set 4) with 
180 plants. The data sets 5 and 6 are subsets of the 4th 
series, with a smaller number of cases, without and with 
outliers, respectively. 2.2 data analysis.

The dependent (response) variable in the regression 
models was w (oven dry biomass) and the independent 
(input) variables were dbh (diameter at breast height or 
1.3  m above the ground—cm) and h (total height—m), 
and combinations of both, as seen below:
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The models examined in this study were:

where β0, β1, β2 are the coefficients to be determined, ln is 
logarithm neperian, ei is random error.

The models examined include formulations with 2, 3 
and 4 coefficients. The purpose of this variation was to 
evaluate the effect of model’s complexity on the behavior 
of the model selection criteria. The equations obtained 
after fitting were evaluated regarding the model selection 
criteria (Table 2) and graphical residual analysis. The sta-
tistical significance of each coefficient was examined by 
means of the t-test. The following hypotheses were for-
mulated: If H0 (βj = 0) is not rejected, then xj (independ-
ent variable) should be removed from the model, because 
this variable has not influenced on the response of w in a 
meaningful way. If H0 (βj = 0) cannot be accepted, then 
xj contributes significantly to explain the responses of w.

The equation fitting was carried out by means of the 
ordinary least squares method. For the logarithmic 
models, the values were transformed back to the origi-
nal response variable to calculate the statistical model 

(1)wi = β0 + β1 (dbh
2h)i + ei

(2)wi = β0 + β1 (dbh
2)i + ei

(3)wi = β0 + β1 (dbh)i + ei

(4)ln (wi) = β0 + β1 (ln(dbh)i)+ β2 (ln(h)i)+ ei

(5)ln (wi) = β0 + β1 ln (dbh
2h)i + ei

(6)
ln (wi) = β0 + β1 (ln (dbh)i)+ β2 (ln (h)i)+ β3 (dbh

2h)i + ei

selection criteria. In these cases, the logarithmic bias 
(discrepancy) was corrected by the Meyer’s factor (MF):

The detection of influential points in the fitting (outli-
ers) was performed by means of DFFITS and COOK [23, 
24] distance values. Normality and variance homogene-
ity were evaluated by the Shapiro–Wilk and White tests, 
respectively.

Results and discussion
Results
The relationships between dbh and height, and the 
respective biomasses, were positive, as expected, with a 
greater or lesser degree of dispersion, depending on the 
data series. The correlation of biomass with dbh was 
greater than with height, as measured by the Pearson´s 
coefficient (Fig.  1). All the linear correlations between 
biomass and dbh and h were statistically significant, so 
that these two measures can be properly used as input 
variables in biomass modeling. Some coefficients of the 
equations were not statistically significant (p < 0.01), 
indicating that the respective models could be reduced 
in number of parameters (Table 3). However, in order to 
keep consistency and avoid unnecessary complexity, we 
decided to maintain the original formulas throughout the 
analysis.

In general, the fittings for the data sets 1–3 could be 
considered satisfactory regarding R2

adj. and Syx%. How-
ever, loss of accuracy for the fitted models to data set 3, as 
indicated by the higher value of Syx% in spite of the high 

(15)MF = e0.5 Syx
2

.

Table 1  Data source for  fitting linear regression models  to biomass estimation of  different woody species indigenous 
of the Tropical Atlantic Rain Forest, Brazil

CV (%) = coefficient of variation, SE (%) = sampling error. 95% confidence interval
a  Aboveground biomass in kg
b  Aboveground biomass in g
c  Aboveground + belowground biomass in kg

Data set n Location UTM (m) Mean ± S.D. of biomass CV (%) SE (%) 95% confidence interval

1. M. skvortzovii Sendulsky bamboo 
growing in natural foresta

30 General Carneiro, Paraná State
457.589–467.617
7.085.594–7.075.828

0.26 ± 0.13 49.63 18.53 0.21–0.31

2. M. skvortzovii Sendulsky bamboo 
growing in natural forestb

30 260.59 ± 129.32 49.53 18.53 212.30–308.87

3. Native mixed-species natural 
standa

30 1493.24 ± 1449.87 97.10 36.26 951.84–2034.63

4. Mixed-species restoration planta-
tion (complete series)c

180 Seropédica, Rio de Janeiro State
637.586–640.342
7.484.977–7.483.459

16.95 ± 23.87 70.02 26.14 12.51–21.38

5. Mixed-species restoration planta-
tion (reduced series with outliers)c

30 59.64 ± 32.36 54.25 20.26 47.56–71.73

6. Mixed-species restoration 
plantationc (reduced series with-
out outliers)

30 43.40 ± 21.96 50.60 18.90 35.20–51.60
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R2
adj. (Table 4), was evidenced. We noticed a remarkable 

reduction of R2
adj. and increase of Syx% for data sets 4–6 

in comparison to the previous ones. For the data sets 4 
and 5, model fittings could be considered satisfactory if 
R2
adj. figures alone are taken into account, but in the case 

of data set 6 they could not. Considering only Syx%, 
model fitting to data set 4 could not be acceptable, 
whereas those to data set 4 and 5 could be regarded as 
fair. From these analysis we can say that R2

adj. × Syx % 
relationship is not always as clear as expected and that 
model selection criteria are affected in different ways, 
depending on the data features and the model examined. 
Thus, decision making should not be done based on only 
one measure.

The best fit equations to data sets 1 and 2 was model 2, 
considering all the model selection criteria, i.e., lowest 
SSR, Syx, Syx%, AIC and BIC values of and largest R2

adj. . 
Equation (6) was the best for data sets 3, 5 and 6, and 
model 1 gave the best results for data set 4. The model 
selection criteria did to not affect the best fit model deci-
sion, except for SSR which gave distinct results for data 
sets 5 and 6. Therefore, the best fit model does not change 
and it does not matter which criterion is being used to 
rank the goodness of fitting.

This work revealed a close relationship between the 
general model selection criteria within each data series, 
since they are all calculated on the basis of the square 

difference of actual and predicted values, the SSR. Rela-
tions among them tend to be linear for all combinations 
of selection criteria, though some deviations from linear-
ity regarding AIC and BIC were noticed (Fig. 2). The rela-
tions were direct, i.e., the larger SSR the larger the values 
of the selection criteria Syx, Syx%, AIC and BIC, and 
reverse for R2

adj. . From this analysis, it can be said that all 
selection criteria converge to a common result within the 
same data set.

The SSR values are closely related to the size of the 
response variable, considering that it is an absolute 
measure of the quadratic difference of the actual and 
estimated values. The same can be said in relation to 
Syx. Note that not only the effect of the unit of meas-
ure on data sets 1 and 2 appears on the values of these 
model selection criteria. AIC and BIC are transformed 
absolute measures of fitting and assume somewhat dif-
ferent behaviors. In the case of data sets 1 and 2, nega-
tive values are noticed for the first and positive for the 
second, suggesting that these measures do not only suf-
fer the effect of the unit of the response variable. It is 
important to note that the AIC and BIC values do not 
imply to any change in the ranking of the goodness of 
fit of the models, and hence no practical advantage in 
using them for this purpose was evidenced in this study.

The close relationship of the selection criteria did not 
apply when the data sets are analyzed altogether, even 
for the relative measures, i.e., R2

adj. and Syx% (Fig. 3). As 

Table 2  Statistical criteria for  model selection applied to  biomass estimation of  different woody species indigenous 
of the Tropical Atlantic Rain Forest, Brazil

ŵi = estimated biomass. wi = actual biomass. In AIC, AICc and BICp must be increased by 1, which refers to one degree of freedom for variance
a  According to [11]. Where n = number of data; p = number of parameters of the model (number of coefficients including the intercept + 1)

Criterion Formula

1 Sum of squares of the residuals
SSR =

n
∑

i−1

e2i =
n
∑

i−1

(wi − ŵi)
2 (7)

2 Adjusted coefficient of determination R2adj. = 1−
(n−1)
(n−p)

(1− R2)

where R2 = 1−

∑n
i−1

e2i
∑n

i−1
(wi−w̄)2

(8)

3 Relative standard error of the estimate Syx% =
syx
ȳ
100

where Syx =

√

∑n
i−1

e2i
n−p

(10)

4 Akaike information criterion [20]
AIC = −2n

(

−n
2
ln

(

1

n

n
∑

i−1

e2i

))

+ 2p

(11)

5 Akaike information criterion not biased for small 
samplesa, when (n/p) < 40 AICc = −2n

(

−n
2
ln

(

1

n

n
∑

i−1

e2i

))

+ 2p n
(n−p−1)

(12)

6 Schwartz’s information criterion [21]
BIC = −2n

(

−n
2
ln

(

1

n

n
∑

i−1

e2i

))

+ ln(n)p
(13)

7 Residuals (in %) ri =
(wi−ŵi )

wi
100 (14)
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Fig. 1  Relationship between dbh and biomass in six data series (1–6, as shown in Table 1) for different forest tree species indigenous in the Atlantic 
Rain Forest, Brazil. Series numbers are shown in Table 1
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mentioned before, we detected that fitted biomass 
equations with high R2

adj. may result in high Syx% (e.g. 
data set 4), what is not expected. Similarly, low R2

adj. 
may be followed by relatively low Syx% (e.g. data set 6). 
It means that even those relative straightforward and 
easy-to-understand criteria widely used in model selec-
tion may fail in decision making. Caution should be 
taken when using any of these model selection criteria.

Residual graphical analysis performed on all the models 
and data sets used on this study revealed important par-
ticularities of the fittings that were no apparent from the 
other model selection criteria (Figs.  4, 5). All the equa-
tions presented good general fitting criteria for data set 1, 
which could lead one to believe that any of these models 
would be reliable. However, graphical analysis detected 
the presence of bias in the residual distribution in some 
cases [e.g. Eqs. (1) and (3)]. Equation (1), for instance, 
did not present normality in the statistical test. The same 
applies to data set 2.

Biases were also evidenced in model fittings for data 
set 3. Equation (1), for example, that showed acceptable 
behavior by the general model selection criteria, gives 
biased biomass estimates and lack of normality of resi-
dues. Residual analysis revealed strong biases in data 
set 4 biomass prediction, particularly for the small-
sized individual estimates generated by the fitting of 
Eqs. (1) and (3). This was not detected by the general 
model selection criteria. All the models examined were 
negatively affected by lack of normality and heterosce-
dasticity of residuals. In other words, all the equations 
fitted to this data set, in principle, should be rejected.

In addition, biased estimates were also noticed for Eqs. 
(1)–(3) fitted to data set 5. Though model was considered 
the best fit to this data set by the model selection crite-
ria, but from the residual analysis another model should 
be chosen. Finally, residual analysis showed that all fitted 
models provide overestimation of the large-sized indi-
viduals of data set 6. However, the range of the residuals 
of the models fitted to this data set, which showed poor 
model selection indicators, indicated that the estimates 

Table 3  Coefficients of linear regression models to biomass estimation of woody species indigenous to the Atlantic Rain 
Forest, Brazil

Data set Coeff. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

1. M. skvortzovii growing in natural forest (bio-
mass in kg)

β0 0.121974 0.080625 − 0.067196 − 2.045500 − 2.440900 − 1.963500

β1 0.008520 0.063605 0.207457 1.057200 0.421600 0.854700

β2 – – – 0.115176 – 0.011440

β3 – – – – – 0.009587 ns

2. M. skvortzovii growing in natural forest (bio-
mass in g)

β0 − 67.195600 80.625200 121.974400 4.862200 4.466800 4.944300

β1 207.457000 63.605500 8.519700 1.057200 0.421600 0.854700

β2 – – – 0.115176 – 0.011440

β3 – – – – – 0.009587 ns

3. Native mixed-species natural stand β0 269.734200 ns − 190.405000 ns
0.404900

− 0.020012 − 3.187200 − 3.034100 − 4.353000

β1 0.020000 0.570500 69.121800 1.830400 0.939800 2.013600

β2 – – – 1.058400 – 1.247900

β3 – – – – – − 0.000001 ns

4. Native mixed-species restoration plantation 
(complete series)

β0 8.697100 5.597000 − 11.402400 − 1.390800 − 1.049100 − 1.332100

β1 0.016510 0.197855 4.601500 1.051500 0.647783 1.018300

β2 – – – 1.084300 – 1.073600

β3 – – – – – 0.000027 ns

5. Native mixed-species restoration plantation 
(reduced series without outliers)

β0 32.601900 31.343100 17.806700 ns 1.235600 ns 2.339400 2.038792

β1 0.009945 0.098619 2.590100 0.120959 ns 0.206500 − 0.189838 ns

β2 – – – 1.058000 – 0.915639

β3 – – – – – 0.000150 ns

6. Native mixed restoration plantations (reduced 
series with outliers)

β0 36.326800 33.347300 11.784300 ns 1.622700 2.118800 2.926700

β1 0.011285 0.137935 3.967500 0.421100 0.270000 0.060223 ns

β2 – – – 0.593400 ns – 0.289279 ns

β3 – – – – – 0.000129
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are not as bad as one can suppose from the other model 
selection criteria.

Then, invisible facts from the model selection crite-
ria could be revealed by the residual analysis, which can 
be useful either in detecting biases and/or showing the 
width of the residuals individual by individual, which is 
not possible by the general model selection criteria.

Discussion
Many distinct models have been proposed and sev-
eral model selection indicators used in biomass estima-
tion. Perhaps, in some cases the modelers and users do 
not care about the quality and reliability of such models. 
However, superficial analysis of the general model selec-
tion criteria may lead to critical errors.

Table 4  Criteria for  selecting linear regression models to  biomass estimation of  some woody species inigenous 
in the Atlantic Rain Forest, Brazil

Number in parenthesis represent the ranking for the best fitting models

SSR sum of squared residuals, R2adj. adjusted coefficient of determination, Syx residual standard deviation, Syx% residual standard deviation in percentage, AIC Akaike 
information criterion, BIC Schwartz’s information criterion

Data set Model SSR R2
adj.

Syx Syx% AIC BIC

1. M. skvortzovii growing in natural forest 
(biomass in kg)

1 0.048772 (3) 0.8958 (3) 0.0417 (3) 16.02 (3) − 185.73 (3) − 182.45 (3)

2 0.038193 (1) 0.9184 (1) 0.0369 (1) 14.17 (1) − 193.07 (1) − 189.79 (1)

3 0.055108 (4) 0.8823 (4) 0.0444 (4) 17.02 (4) − 182.07 (4) − 178.79 (4)

4 0.057474 (5) 0.8727 (5) 0.0461 (5) 17.71 (5) − 178.13 (5) − 174.12 (5)

5 0.063102 (6) 0.8652 (6) 0.0475 (6) 18.22 (6) − 178.00 (6) − 174.72 (6)

6 0.039924 (2) 0.9147 (2) 0.0378 (2) 14.49 (2) − 191.74 (2) − 188.46 (2)

2. M. skvortzovii growing in natural forest 
(biomass in g)

1 48,772 (3) 0.8958 (3) 41.74 (3) 16.02 (3) 228.73 (3) 232.02 (3)

2 38,193 (1) 0.9184 (1) 36.93 (1) 14.17 (1) 221.40 (1) 224.68 (1)

3 55,108 (4) 0.8823 (4) 44.36 (4) 17.02 (4) 232.40 (4) 235.68 (4)

4 57,474 (5) 0.8727 (5) 46.14 (5) 17.71 (5) 236.34 (5) 240.34 (5)

5 63,102 (6) 0.8652 (6) 47.47 (2) 18.22 (6) 236.46 (6) 239.74 (6)

6 39,924 (2) 0.9147 (2) 37.76 (6) 14.49 (2) 222.73 (2) 226.01 (2)

3. Native mixed-species natural stand 1 5,422,069 (3) 0.9079 (3) 440.05 (3) 29.47 (3) 370.07 (3) 373.35 (3)

2 4,300,629 (2) 0.9269 (2) 391.91 (2) 26.25 (2) 363.35 (2) 366.40 (2)

3 6,385,976 (5) 0.8915 (5) 477.57 (5) 31.98 (5) 374.98 (5) 378.26 (5)

4 6,702,675 (6) 0.8819 (6) 498.24 (6) 33.37 (6) 379.10 (6) 383.11 (6)

5 6,002,299 (4) 0.8980 (4) 463.00 (4) 31.01 (4) 373.12 (4) 376.40 (4) 

6 3,228,136 (1) 0.9452 (1) 339.54 (1) 22.74 (1) 354.51 (1) 357.79 (1)

4. Native mixed restoration plantation 
(complete series)

1 24,955 (4) 0.7539 (4) 11.84 (4) 69.87 (4) 891.74 (4) 898.12 (4)

2 25,745 (5) 0.7461 (5) 12.03 (5) 70.96 (5) 897.34 (5) 903.73 (5)

3 28,006 (6) 0.7238 (6) 12.54 (6) 74.02 (6) 912.50 (6) 918.89 (6)

4 19,337 (1) 0.8082 (1) 10.45 (1) 61.67 (1) 847.82 (1) 857.40 (1)

5 21,009 (2) 0.7928 (2) 10.86 (2) 64.11 (2) 860.76 (2) 867.14 (2)

6 24,333 (3) 0.7601 (3) 11.69 (3) 68.99 (3) 887.19 (3) 893.58 (3)

5. Native mixed-species restoration planta-
tion (Reduced series without outliers)

1 7307 (2) 0.7778 (1) 15.25 (1) 25.58 (1) 168.35 (1) 171.63 (1)

2 8274 (3) 0.7219 (3) 17.06 (3) 28.61 (3) 175.07 (3) 178.36 (3)

3 9034 (6) 0.6912 (4) 17.98 (4) 30.15 (4) 178.22 (4) 181.50 (4)

4 8402 (4) 0.6556 (5) 19.33 (5) 32.41 (5) 178.27 (5) 182.07 (5)

5 8950 (5) 0.6492 (6) 19.51 (6) 32.70 (6) 177.19 (6) 180.33 (6)

6 7070 (1) 0.7363 (2) 16.62 (2) 27.86 (2) 173.48 (2) 176.76 (2)

6. Native mixed-species restoration planta-
tion (reduced series with outliers)

1 6516 (1) 0.4590 (2) 16.15 (2) 37.22 (2) 171.79 (2) 175.07 (2)

2 8154 (3) 0.3874 (3) 17.19 (3) 39.61 (3) 175.51 (3) 178.79 (3)

3 9054 (4) 0.3312 (6) 17.96 (6) 41.38 (6) 178.15 (5) 181.43 (4)

4 9713 (5) 0.3549 (4) 17.64 (4) 40.64 (4) 178.65 (6) 182.66 (6)

5 10,274 (6) 0.3374 (5) 17.88 (5) 41.19 (5) 177.87 (4) 181.15 (5)

6 7732 (2) 0.4766 (1) 15.89 (1) 36.61 (1) 170.79 (1) 174.07 (1)
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Some model selection criteria are particular interesting 
and useful. Interpretation of R2

adj. and Syx% values is 
straightforward and allows us to understand whether the 
fitting is good or not, while the other criteria sometimes 
are not so friendly. This does not necessarily mean that 

these are ideal criteria for model selection and that are 
free of possible misleading interpretations, as shown here 
and emphasized also by the literature.
R2
adj. and Syx% are not affected by the magnitude of the 

response variable, once they are relative measures. In 

Fig. 2  Relationship between selection model criteria for biomass estimation of woody species indigenous in the Atlantic Rain Forest, Brazil
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turn, SSR and Syx vary with biomass unit in a direct way, 
i.e., these statistics are directly affected by the dimension 
of the dependent variable. AIC and BIC values are also 
affected by the size of the dependent variable, but the 
changes in values do not maintain a direct relationship 
with the magnitude of the dependent variable. It happens 
because such information criteria are logarithmic trans-
formations of SSR. It was observed that when the bio-
mass values are in kg, the corresponding AIC and BIC are 
negative and when in grams become positive. AIC cannot 
be used to compare models tested for different sets of 
data [11]. The same can be said to BIC. Moreover, they 
cannot be used to compare models fitted for the same 
data set but with different units of the response variable. 
This should be taken into account in model selection.

Some absolute model selection measures (e.g. AIC and 
BIC) may not be sensitive to the existence of outliers. 
This indicates that these measures may not be sensitive 
enough to capture the effect of such abnormal data on 
model fitting. Outliers are not uncommon in modeling 
forest biomass and impossibility of detecting outliers is 
very problematic. This was one of the arguments against 
the R2 in Anscombe’s [15] work and by other authors who 
criticized this criterion.

It is fundamental at this point to highlight the impor-
tance of the residual analysis on the selection of regres-
sion models for plant biomass estimation. This analysis is 
very helpful in verifying the presence of bias in model fit-
ting. Taking data set 4 as an example we are able to real-
ize serious biased estimation of small-sized individuals, 
which was not evidenced from another manner (Figs. 4, 
5). Although general criteria can be very helpful for 
model selection, the presence of outliers and bias in esti-
mates can only be detected through the residual analysis. 
Residual analysis can used to evidence whether a model 

is adequate and/or help to discriminate the best fit when 
various models are fitted to the same data set.

Model selection are related one each other. This is con-
ditional to the formulation of the information criteria 
examined. If it is assumed here that the parameters of 
the model can be estimated by the maximum likelihood 
method in ordinary linear regression models [13, 25]:

where ln
[

L
(

θ̂p
∣

∣y
)]

 is the maximum likelihood for the 
parameters of the model.

Assuming this relationship, the close practical relation-
ship between the information criteria and R2

adj. can be 
readily noticed, in spite of the theoretical difference 
among them (Fig. 2).

The literature is prolific in works criticizing the use of 
the coefficient of determination as a useful criterion for 
selecting models. Figueiredo Filho et  al. [26] claim that 
there is no substantive significance in the use of R2 as 
indicative of adjustment of a model. Many researchers 
have abandoned completely the use of the coefficient of 
determination, mainly after the publication by Anscombe 
[15].

Several authors have presented alternatives, making 
apology to a criterion and criticism to others. According 
to Vismara [16], criteria have been sought to assess the 
best model by approximation to describe data, among 
several possibilities, with different functional relations 
and with different numbers of parameters. The author 
describes the advantages of using the AIC and suggests 
that it could be an excellent tool for selecting empirical 
models for predictions in the forest environment.

Burnham and Anderson [11], in turn, point out that 
AIC represents a new paradigm in the selection of mod-
els from empirical data and that the model selection 
based on the so-called “information theory” represents a 
quite different approach in the statistical science in com-
parison to the usual hypothesis tests.

Despite the favorable or unfavorable positions of the 
several authors to one or another criterion, it is evident 
that the criteria present similarities in their practical 
applications, in spite of differences in their mathematical 
formulations and the theoretical basis behind them. This 
study shows that R2

adj. and AIC are related one each other. 
No clear practical advantage of using AIC or BIC in 
model selection was evidenced in this research. AIC and 
BIC are tremendously affected by the size of the data set 
in use, which makes it more difficult to use the approach 
in a broader and more generic analysis of model fitting 
Although R2, according to the literature, presents many 

(8)ln

[

L
(

θ̂p
∣

∣y
)]

=

(

−n

2
ln

(

1

n

n
∑

i−1

e2i

))

Fig. 3  Relationship standard error of estimate and coefficient 
of determination of linear regression models fitted to biomass 
estimation of woody species indigenous in the Atlantic Rain Forest, 
Brazil
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Fig. 4  Residual analysis for linear regression models fitted to biomass estimation of woody species indigenous in the Atlantic Rain Forest, Brazil
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Fig. 5  Residual analysis for linear regression models fitted to biomass estimation of woody species indigenous in the Atlantic Rain Forest, Brazil
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limitations for use in model selection [5], the other crite-
ria may show similar pitfalls.

Model selection criteria are general indicators of the 
behavior of the theoretical model against empirical data. 
They tend to give a good indication of the goodness of 
fit to the extent that the data have a regular pattern, i.e., 
without great dispersion and outliers, and that logical 
models are tested against the actual data. It is also impor-
tant to point out that in regression modeling, as in any 
other sampling scheme, it is definitely important to use 
an amount of data that is representative of the real world. 
Perhaps the great sin of Anscombe’s work has been to 
force an illogical adjustment of the model to a database 
consisting of only 11 values, and with outliers. The prob-
lem is in the data set itself and not in R2. The database 
and the philosophy behind model fitting are more rele-
vant in this sense.

On the other hand, the great merit of Anscombe’s work 
was to highlight the importance of graphical data analysis 
before performing any model fitting. In this context, the 
graphical analysis of the residuals should be considered as 
the tool to help the modeler to select one among the vari-
ous tested models. The importance of the residuals analy-
sis is widely addressed by Dubbelman [27] and Cook and 
Weisberg [24]. Just looking at the R2

adj., it can be con-
cluded that the fittings made to the data set 4 could be 
good (at least reasonable), but when we observe the distri-
bution of residuals is evident the weakness of the predic-
tions. By observing the values of AIC and BIC one could 
inadvertently conclude that there is not much difference 
of fitting for data sets 5 and 6. It would not be possible to 
identify the presence of outliers in the series 6.
R2
adj., taking the criterion of Theil (1961), is based on 

the assumption that one of the specified models is cor-
rect. In this case, if σ̂ 2

j =
SQRj
(n−k)j

 is the estimate σ2 of the 
jth model, then E(σ̂ 2

j ) = σ 2 for the correct model, but is 
≥ σ2 for the model poorly specified. According to 
Maddala [28], a model that has all the explanatory varia-
bles of the correct model, but also a number of irrelevant 
variables will result in (σ̂ 2

j ) = σ 2. Thus, the choice of the 
model based on σ2 minimum leads on the average to 
choose the correct model [29]. How to minimize σ2 
means maximize R2

adj., therefore, the best model is the 
one with the highest R2

adj., i.e., the rule of R2
adj. maximum.

Maddala and Lahiri [29] indicate that the main prob-
lem with this rule is that the model that has all the 
explanatory variables of the correct model, but also a 
number of irrelevant variables will also result in 
E(σ̂ 2

j ) = σ 2. Thus, only taking this rule does not allow 
you to choose the correct model. Ebbeler [30] discussed 
regarding this aspect, concluding that the probability of 
choosing the correct model is considerably smaller than 

1, when another model includes a number of irrelevant 
variables. The effect of omission of important variables or 
inclusion of irrelevant variables is widely discussed by 
Gujarati [17] and Greene [31]. We found that the F-test 
of the analysis of variance for the equation informs the 
statistical significance of the adjusted equation, which is 
at the same time a measure of the statistical significance 
of R2. According to Gujarati [17], the F-test is given 
by :F =

SSE/(k−1)

SSR(n−k)
=

(

n−k

k−1

)(

SSE

SST−SSE

)

=

(

n−k

k−1

)(

SSE/SST

1−(SSE/SST )

)

, 

being R = SSE
SST , the value of F can be calculated by: 

F =

(

n−k
k−1

)(

R2

1−R2

)

=

(

R2/(k−1)

(1−R2)/(n−k)

)

, being SSE the sum 
of squares explained and SST the total sum of squares. 
The assumptions made for the statistical test are the same 
as those proposed for the F test. The F test is a compre-
hensive test of the equation and in the majority of cases 
taken into account as a criterion in the choice of an equa-
tion; therefore this only reinforces the notion that the 
value of R2 should not be simply dismissed as a criterion 
in the choice of an equation.

The literature on model selection has brought to light a 
number of statistical tests that can be performed for this 
purpose. There is not ideal criterion for model selection, 
especially for tree biomass. This depends on the objec-
tives of the modeling and of the data you have at hand [5, 
32]. Therefore, it is essential that in model fitting, particu-
larly for biomass of woody plants, that certain basic steps 
should be followed, namely: (1) Make a broad explora-
tory data analysis; (2) Study the behavior of variables and 
their trends; (3) Select appropriate models to be tested, 
which should describe the relations of cause and effect 
between the variables, even if empirically made; (4) Use 
the various selection criteria for models to achieve the 
best choice, particularly the graphical analysis of residu-
als; (5) Use the fitted equations with parsimony, avoiding 
to extrapolate their estimation ability.

It was evidenced that no statistical test, alone, has been 
able to indicate the equation to be used. Even when the 
overall tests were combined, they ended up running into 
difficulties especially when evaluated the individual tests 
for the coefficients. In addition, even when analyzed 
together, comprehensive test and individual test, in some 
cases, the selected equation could not meet some of the 
assumptions tested for validation of the classic model of 
linear regression. This indicates that the choice of equa-
tions must pass through three stages. The authors sug-
gest, in this work, to start with the evaluation of the 
assumptions of linear regression, followed by the analysis 
of individual coefficients (significance of the coefficients 
and standard deviation) and the assessment of the overall 
quality of the adjustment (taking a series of statistics) and 
finally to perform the residual analysis, in order to find 
the best specifications for the model.
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If the main concern of the linear regression analysis is 
only the statistical inference on the coefficient estimates, 
to explore the method of least squares would be good 
enough. However, linear regression analysis involves the 
inference about the equality between the estimators and 
a population sample. For this reason, it should be verified 
which are the delineated hypotheses for a classical linear 
regression model, which are addressed in detail by Guja-
rati [17], Greene [31] and Wooldridge [33].

In general, it is not usually assumed, when modeling 
biomass, that the statistical model to be fitted to data is 
in the first moment known, so that the only issue to be 
addressed in modeling would be the estimation of the 
coefficients. Thus, the choice of models for biomass is 
performed after the statistical analysis of the adjustments. 
Usually the first evaluation is made on the statistics’ over-
all quality of the equation. However, it was verified that 
these do not take into account some basic assumptions of 
the linear regression model, for example: average random 
error equal to zero, homoscedasticity of errors, absence 
of autocorrelation between the errors, proper specifica-
tion of the regression model and absence of multicollin-
earity. The heteroscedasticity and autocorrelation depend 
on particular values of explanatory variables in the sam-
ple [29]. These two constraints are easy to be violated, 
especially when modeling forest biomass; the reasons for 
doing so are obvious. What is expected of the residuals 
in an equation is that they should behave with the same 
properties as the real errors, i.e., the errors should have 
zero mean, constant variance and be serially independ-
ent; residuals also should assume these properties.

One of the hypotheses of the classic model of linear 
regression is that the errors êi in equation have common 
variance σ2, being this hypothesis known as homosce-
dasticity. When the errors do not have constant variance 
they present heteroscedasticity. One way to detect heter-
oscedasticity is to build a graph of predicted residuals to 
check whether there is any systematic pattern in the dis-
tribution of residuals that suggests the heteroscedasticity 
of the errors [29]. Moreover, statistical tests to check for 
heteroscedasticity are available, as example, the test pro-
posed by White [34], which involves the regression in all 
explanatory variables, their squares and cross-products.

The main consequences of heteroscedasticity in esti-
mators of least squares are that they do not present bias, 
but they are inefficient and the main problem is that the 
estimates of the variances are skewed, invalidating, as a 
result, the tests of significance. Maddala [29] presents the 
proof of these two hypotheses. Therefore, a fundamental 
review to be conducted at a first moment in the selection 
of models for biomass is to evaluate the homoscedasticity. 

Therefore, a fundamental review to be conducted at a 
first moment in the selection of models for biomass is to 
evaluate the homoscedasticity. For cases of detection of 
heteroscedasticity in forest biomass, the solution to this 
problem would be to turn the series in logs.

Another assumption of the classical linear regression 
model is the absence of multicollinearity—term used by 
Frisch [35], i.e., it implies that two or more independ-
ent variables should not be correlated linearly between 
themselves. If they are, then not all parameters are esti-
mable. In the case of modeling biomass, this is a hypoth-
esis hardly likely to be violated, since the independent 
variables used are not linearly correlated because, in 
most cases, they can be combined variables (the example 
of dbh2h). However, if we still want to check, an appro-
priate test would be the inflation factor of the variance. 
Maddala [29] has discussed at length about this hypoth-
esis of the classic linear regression model.

An important hypothesis that must be evaluated in lin-
ear regression modeling is whether errors are or not nor-
mally distributed. A good way to test this hypothesis is 
to use the Shapiro–Wilk test, widely discussed by Huang 
and Bolch [36]. Commonly, when we are modeling tree’s 
biomass this problem will appear, due to the nature of 
the data. One of the ways suggested by Maddala [29] is 
to escape from not normality, i.e., transform the data so 
that the assumption of normality will remain valid. One 
of many possible ways to make an asymmetric distribu-
tion become symmetric is to raise y to a power or apply 
the log. Tukey [37] covers in detail the processing of data. 
The author suggests that the changes help to make the 
model approximately linear, errors more homoscedastic 
and normally distributed. The author shows a great fam-
ily of transformations, as well as later did Box and Cox 
[38]. For Box and Watson [39], studying the robustness 
of the tests of regression coefficients, when the errors are 
not normal, they argue that the empirical distribution of 
the explanatory variable x is approximately normal, the 
usual tests will hold the significance levels assumed.

In view of these facts, it is suggested that the evalua-
tion of the modeling of biomass should start by two 
basic assumptions of the model classic linear regression: 
homoscedasticity and normality. The individual analysis 
of the coefficients is a good technique to start the evalu-
ation of equations after this process, because it makes no 
sense to keep in the model coefficients that are not statis-
tically significant. As a result, the choice of the equation 
must pass by the statistics of the overall quality of the 
adjustment and the conclusion made after a deep analysis 
of the residuals.
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Conclusions

1.	 The model selection criteria ( R2
adj., Syx, Syx%, AIC 

and BIC) are useful as general indicative of goodness 
of fit;

2.	 These criteria keep relations among them within the 
same data set, because they are based on the root 
mean square of the difference between the actual and 
predicted values;

3.	 No practice advantage of the use of AIC and BIC in 
comparison to the adjusted coefficient of determina-
tion, despite the eloquent defense of these informa-
tion criteria by various authors and the criticism to 
the traditional R2;

4.	 The model selection criteria may fail in not detecting 
biases and other special data and fitting features that 
are only possible through the examination of residu-
als;

5.	 In biomass modeling, it is recommended to perform 
a detailed exploratory data analysis, a pre-selection 
of logical models to be tested and use several model 
selection criteria, including necessarily a careful 
residual analysis.
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