
Magnussen and Carillo Negrete ﻿Carbon Balance Manage  (2015) 10:21 
DOI 10.1186/s13021-015-0031-8

METHODOLOGY

Model errors in tree biomass estimates 
computed with an approximation to a missing 
covariance matrix
Steen Magnussen1* and Oswaldo Ismael Carillo Negrete2

Abstract 

Background:  Biomass and carbon estimation has become a priority in national and regional forest inventories. 
Biomass of individual trees is estimated using biomass equations. A covariance matrix for the parameters in a bio-
mass equation is needed for the computation of an estimate of the model error in a tree level estimate of biomass. 
Unfortunately, many biomass equations do not provide key statistics for a direct estimation of model errors. This study 
proposes three new procedures for recovering missing statistics from available estimates of a coefficient of deter-
mination and sample size. They are complementary to a recently published study using a computationally intensive 
Monte Carlo approach.

Results:  Our recovery approach use survey data from the population targeted for an estimation of tree biomass. 
Examples from Germany and Mexico illustrate and validate the methods. Applications with biomass estimation and 
robust recovered fit statistics gave reasonable estimates of model errors in tree level estimates of biomass.

Conclusions:  It is good practice to provide estimates of uncertainty to any model-dependent estimate of above 
ground biomass. When a direct approach to estimate uncertainty is impossible due to missing model statistics, the 
proposed robust procedure is a first step to good practice. Our recommended approach offers protection against 
inflated estimates of precision.

Keywords:  Linear regression, Nonlinear regression, Weighted regression, Residual variance, Robust estimation, 
Parametric bootstrap
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Background
The importance of forest biomass for the global car-
bon cycle is widely recognized [1–4]. The imperative of 
maintaining global levels of forest biomass and slowing 
regional rates of decline [5] has fostered international 
cooperation, initiatives, and projects to this end [6–8].

A large number of countries have agreed to implement 
an accounting system for forest carbon and to report on 
national-level annual gains and losses [9–11].

With few exceptions, the forest carbon accounting sys-
tem has a national forest inventory at its core, and a suite 
of models to expand and transform inventory data to 

forest carbon [12–14]. Carbon components not fully cov-
ered by an inventory are typically estimated from activity 
data (e.g. harvest, disturbance, and erosion) and mod-
els fitted to data from research studies of, for examples: 
litter-fall; litter-decomposition; fine-root turnover; seed 
production; and dead and downed-woody debris.

An estimate of the uncertainty in a carbon balance has 
become a routine requirement [15, 16]. When the core 
inventory data comes from a probability sample, the 
uncertainty arises from three sources: observational and 
measurement errors [17–19], sampling errors, and errors 
in model parameters [12, 20]. The live above-ground for-
est tree biomass (AGB) accounts for the largest contribu-
tion to the forest carbon balance [21, 22].

In situ determination of AGB is extremely costly 
and destructive. A model‒dependent approach with 

Open Access

*Correspondence:  steen.magnussen@nrcan.gc.ca 
1 Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 
1M5, Canada
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13021-015-0031-8&domain=pdf


Page 2 of 14Magnussen and Carillo Negrete ﻿Carbon Balance Manage  (2015) 10:21 

prediction of biomass from a biomass equation, with 
easy-to-measure explanatory variables, is the only practi-
cally feasible alternative [21, 23].

The development of a complete set of regional, species- 
and stratum-specific biomass models constitutes a heavy 
financial outlay that cannot be met in many parts of the 
world. As a substitute for models fitted to local data, an 
analyst may decide to use the most suitable off-the-shelf 
biomass equation [21, 23–36].

It is, of course, very difficult to ascertain whether an 
off-the-shelf model is suitable for a particular application 
or not [37]. It remains a risky proposition to use exter-
nally fitted models without any form of validation or re-
calibration to local conditions [38]. An adopted model 
generates the desired predictions of above-ground bio-
mass but a valid estimate of the associated covariance 
of model-parameters is needed to compute an estimate 
of the uncertainty in a prediction [12, 39, p. 73, 40]. A 
model-bias can only be quantified in a validation with 
actual observations of above-ground biomass and the 
predictors in a model [41, pp. 172 and 232, 42].

Although we have a plethora of equations for above-
ground biomass as a function of, for example, stem diam-
eter at a reference height of 1.3 m above ground level [21, 
26, 31, 43], information regarding the covariance matrix 
of model parameters is often missing. Available fit statis-
tic is generally limited to one or more of the following: 
standard errors of estimated parameters, the coefficient 
of determination, the standard deviation of lack-of-fit 
residuals, and sample size [44].

This study demonstrates methods for recovering a 
covariance matrix for model parameters in a biomass 
equation from fit statistics restricted to: sample size 
(n) and the coefficient of determination (R2) [44]. Our 
non-use of a possibly available estimate of the standard 
deviation of empirical residuals rests with its sensitivity 
to outliers [45], a strong dependency on the sampling 
design [39, p. 55], the distribution of the response and 
explanatory variables in the study that gave us the equa-
tion of interest. Wayson et  al. [44] proposed a Monte-
Carlo approach to recover missing estimates of the 
covariance among parameters in a biomass equation. 
The key idea in their approach is to generate a distribu-
tion of pseudo-data that mirrors, to the extent possible, 
a known or assumed distribution of explanatory vari-
ables in the sample trees behind an equation. The tenet 
behind our approach is different. It is rooted in survey 
sampling [39]. Hence, the recovered estimates of uncer-
tainty are assumed compatible with estimates that could 
have been obtained from a sample taken from the popu-
lation, for which we desire estimates of biomass. It is fully 
recognized that our recovery is neither perfect nor unbi-
ased. However, supported by our results, we argue that 

our approach is consistent with the main objective of any 
recovery procedure: to estimate model errors in popula-
tion estimates of biomass as opposed to a rediscovery of 
‘lost’ estimates of model errors.

Our demonstrations include examples with equations 
and data from the first German national forest inventory 
in 1987 (BWI-1) [40, 46] and the 2004–2009 Mexican 
National Forest Inventory [47–49]. We discuss limita-
tions to our approach, and recommend a robust recovery 
method. We also emphasize the need to develop new and 
fully documented biomass equations for important spe-
cies in regions where they are currently lacking.

Results
Examples from Germany
Substitutes for missing covariance matrices for the bio-
mass models in Table 1 are listed in Table 2. For refitted 
matrices, there were three rejections of the null hypoth-
esis of equality (actual = refitted) at the 5 % level of sig-
nificance. For the recovered matrices there were one 
rejection, and for the robust recovery there were zero 
rejections. A distinct pattern emerged when compar-
ing refitted, recovered, and robust variances. Refitting 
appears to overestimate the variance in a regression 
parameter; by approximately 70  % for the first param-
eter and approximately 35  % for the second parameter. 
In contrast, the recovered variances were, on average, 
smaller than the actual variances (5 and 16  %, respec-
tively). Robust estimates of variance were closer to actual 
estimates of variance than refitted and recovered esti-
mates. Substitute covariance matrices for the nonlinear 
models were, in general, closer to the missing (actual) 
covariance matrix than a substitute covariance matrix for 
a linear model.

Taking into consideration that the relative error in the 
regression coefficient to diameter DBH or DBH2 is six to 
twelve times smaller than the relative error in the regres-
sion coefficient to 

√
DBH×HT or

√
HT, a bias in the 

former is much more serious than in the latter. For un-
weighted linear and nonlinear equations, the robust pro-
cedure appears as the most attractive. As well, the strong 
impact of errors in the first regression coefficient on a 
tree-level estimate of AGB amplifies concerns surround-
ing the overestimation of model-errors encountered with 
the refitting procedure.

For the weighted least squares equations, the estimates 
of the substitute covariance matrix are in Table 3. Gen-
erally the results were worse entailing larger differences 
between estimated substitutes and actual covariance 
matrices. The refitted matrices were worst with five out 
of six significant departures from the actual matrices, and 
in terms of seriously overestimating the variances. The 
best results were obtained with the recovered matrices 
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(two rejections of the null hypothesis of no difference). 
Yet there is an average overestimation of the first variance 
by 23 % and an average underestimation of the second by 
25  %. Considering the larger contribution to the model 
error variance from the former, the overestimation is a 
concern. A robustly recovered matrix was in four cases 
significantly different from the actual covariance matrix 
and overestimated variances by 72 and 24 %.

Recovering an estimate of the residual variance was, 
as expected, easier than recovering a covariance matrix. 
The relative error in recovered estimates of the residual 
standard error varied from approximately −20 to +35 %. 

Two of eight estimates were significantly different from 
the actual values (F-ratio test, P = 0.02), for the remain-
ing six, the level of significance was 0.10 or greater.

Attempts at a recovery of the covariance matrices for 
the generalized above-ground biomass Eqs.  13–15 in 
Table 1 [26] failed, regardless of method. With the recov-
ery methods, the estimated standard deviations of the 
three regression parameters were 2–8 times greater than 
those listed in Table 3 of Muukkonen [26]. Had we used 
the tabled values of the root mean squared error in lieu of 
the recovered substitute, the estimated errors would have 
been approximately 30–70 times too small. The failure is 
easy to explain: the fit-statistics of the generalized model 
apply to the set of models that are generalized. Footnotes 
to Table 3 in Muukkonen [26] carefully explain the con-
strained interpretation of the table entries. Due to the 
poor accuracy of the recovered generalized covariance 
matrices they were not used to gauge the error-propaga-
tion to estimates of tree-level AGB.

All recovery procedures are fraught with numerical 
problems due to co-linearity among regression coeffi-
cients (correlations coefficients varied between −0.87 
and −0.97), and large differences in accuracy of param-
eter estimates. For example, the matrix condition num-
ber varied between 14.1 and 14.9, and determinants were 
less than 10−5 suggesting a serious potential of amplified 
estimation errors when inverting a covariance matrix [50, 
51]. Challenges of this nature will also be encountered in 
applications of the proposed procedures.

A summary of the effect of replacing a missing (actual) 
covariance matrix with a substitute approximation on the 
model-error in an estimate of the mean per tree AGB (kg) 
is provided in Table 4. With the un-weighted linear mod-
els the relative model error in the average tree-level esti-
mate of AGB is 7–12 % (column ACT in Table 4). Model 
errors in estimates based on a nonlinear un-weighted 
equation were approximately 2–3 % points lower.

Weighted regressions were uniformly superior with the 
lowest relative errors. Results with the substitute covari-
ance matrices followed—by and large—these trends with 
estimates within one to 6 % points from results with the 
actual estimate of covariance. In the case of weighted 
regressions: two poor results with the refitting procedure 
with PINE data, and two for the robust recovery with 
BEECH data, stands out as examples of inflated estimates 
of model-error. The remaining estimates of error appear 
reasonable; yet do not indicate that one recovery proce-
dure is substantially and consistently better than the pre-
sented alternatives.

Examples from Mexico
For Guazuma ulmifolia and Ochroma pyramidale the 
substitute estimates of the parameter error variances 

Table 1  Species group above-ground forest tree biomass 
(AGB kg tree−1) equations

Sample size is 50 trees per species group.
a  BWI-1987 Predictions of AGB times a uniformly distributed random error 
[0.9,1.1] fitted to DBH (mm) and HT (dm).
b  Generalized AGB equations from Table 8 (Temperate zone) in Muukkonen P 
and Heiskanen J [76]. DBH is in centimeters (cm).
c  Amount of variation in predicted AGB values captured by the generalized 
equation.

Data were selected from 335 plots from the 1987 (West) German national 
forest inventory (BWI-1987). Plots were dominated by one of the three species 
groups. Selected trees have a DBH ≥ 7 cm, and were selected with a probability 
proportional to their basal area at breast height (basal area factor of 4), [77, ch. 8].

Species # Equation
ÂGB =

R̂
2

σ̂
2
e

103 kg
Wts

BEECHa 1 0.901DBH2 − 6.382
√
DBH× HT 0.96 75.3 n.a.

2 (

9.645DBH− 0.648
√
HT

)2 0.95 79.2 n.a.

SPRUCEa 5 0.447DBH2 − 1.189
√
DBH× HT 0.98 18.7 n.a.

6 (

0.634DBH− 0.426
√
HT

)2 0.98 18.2 n.a.

PINEa 9 0.450DBH2 − 0.014
√
DBH× HT 0.98 14.5 n.a.

10 0.658DBH2 − 0.124
√
DBH× HT 0.98 14.5 n.a.

BEECH 3 0.887DBH2 − 6.487
√
DBH× HT 0.96 74.4 DBH−2

4 (

10.127DBH− 1.167
√
HT

)2 0.95 75.3 DBH−2

SPRUCE 7 0.492DBH2 − 1.409
√
DBH× HT 0.97 19.0 DBH−2

8 (

0.689DBH− 0.064
√
HT

)2 0.97 18.7 DBH−2

PINE 11 0.479DBH2 − 1.927
√
DBH× HT 0.97 14.7 DBH−2

12 0.690DBH2 − 0.205
√
DBH× HT 0.97 14.5 DBH−2

BEECHb 13 Exp
[

0.006+ 10.933 DBH
DBH+21.216

]

0.99c n.a. n.a.

SPRUCEb 14 Exp
[

−1.694+ 10.825 DBH
DBH+11.816

]

0.99c n.a. n.a.

PINEb 15 Exp
[

−2.688+ 10.745 DBH
DBH+8.062

]

0.99c n.a. n.a.
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were, not statistically significant from the actual esti-
mates of error (Table 5). This is spite of overestimating, 
by a factor of approximately two, the variances in the 
regression parameters for G. ulmifolia. The relative small 
sample sizes of 18 and 16 trees limit our power to declare 
practically important differences significant. In case of 
Inga vera and Trichospernum mexicanum the substitute 
variances were two to four times larger than the pub-
lished estimates. Each recovery procedure led to inflated 
estimates of variance. The basic recovery method holds 
a slight edge over the other two. We did not attempt a 
weighting scheme in the recovery procedure as the log 
transformation of AGB and DBH in most cases remove 
variance heteroscedasticity in the original scale of the 
residuals. Power functions as used for Quercus spp. are 
extremely sensitive to the weighting schemes used in the 
German examples. Besides, the original biomass equa-
tions were not obtained by weighted least squares [52] so 
we did not employ a weighted recovery scheme.

Substitute estimates of the residual standard error were 
considerably and statistically significantly smaller (30–
240  %) than the published values. These results paired 
with the inflation of the variance of regression coeffi-
cients suggest a much smaller variation of the explana-
tory variables in the samples from the national inventory 
than in the sample used for fitting. A uniform distribu-
tion of the explanatory variables in the model fitting sam-
ple [53] could explain our results.

Tabled estimates of the residual standard errors for the 
three Quercus spp. Were three to four times smaller than 
recovered estimates. We noted that even a small reduc-
tion of 1–2 % in the published value of R̂2 would bring the 
two sets of estimates within approximately 20 % of each 
other. Power functions are notorious in this regard.

When the uncertainty in biomass equation parameters 
was propagated to tree-level estimate of AGB, we obtained 
the average relative per tree model-errors in Table 6. Over-
all, the relative model errors in the average per tree AGB in 

Table 4  Relative model errors (%) in estimates of the mean per tree above-ground tree biomass with actual (ACT), refit-
ted (REFIT), recovered (RECOV), and  robustly recovered (RREC) covariance matrices for  the parameters in  the biomass 
equations in Table 1

Species Model Weights? ACT REFIT RECOV RREC

BEECH LIN No 11.5 14.0 12.3 12.8

NLIN No 8.7 9.1 8.0 8.4

LIN Yes 4.7 8.8 7.8 11.6

NLIN Yes 4.4 6.6 6.9 9.4

SPRUCE LIN No 9.8 8.4 7.2 7.4

NLIN No 7.0 6.6 5.4 5.6

LIN Yes 6.2 10.0 5.4 7.4

NLIN Yes 5.6 8.5 4.8 6.6

PINE LIN No 6.9 5.9 4.9 5.1

NLIN No 5.3 4.7 3.8 4.0

LIN Yes 4.8 22.3 3.5 4.3

NLIN Yes 4.2 19.0 3.0 3.8

Table 5  Actual, refitted, and recovered variances of regression coefficients in Eqs. 1–7 in Table 8

Actual covariance matrices are based on sample sizes listed in Table 8. Pi (i = 1, 2, 3) is the probability under H0 of: (1) actual = refitted; (2) actual = recovered; (3) 
actual = robust.

Eq
#

Actual Refitted Recovered Recovered
(robust)

P1

×100

P2

×100

P3

×100

1 (0.04, 0.01) (0.08, 0.01) (0.07, 0.01) (0.10, 0.02) 56 74 49

2 (0.55, 0.42, 0.020) (2.64, 1.39, 0.044) (2.36, 1.25, 0.039) (2.88, 1.52, 0.048) 0.2 0.1 0.1

3 (0.27, 0.048) (0.29, 0.041) (0.26, 0.039) (0.35, 0.053) 99 98 96

4 (0.084, 0.017) (0.33, 0.049) (0.29, 0.043) (0.37, 0.06) 2 5 1

5 n.a. (0.32, 7.1)10−3 (0.20, 9.4)10−3 (0.23, 10.6)10−3 n.a. n.a. n.a.

6 n.a. (0.61, 4.7)10−1 (0.42, 32.2)10−2 (0.12, 9.0)10−1 n.a. n.a. n.a.

7 n.a. (0.98, 16.8)10−3 (0.29, 19.4)10−3 (0.74, 29.4)10−3 n.a. n.a. n.a.
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G. ulmifolia appears too low, despite an apparent overesti-
mation of the errors in the model parameters. Refitting of 
a missing covariance matrix via the parametric bootstrap-
ping generated unrealistic large estimates of relative errors 
in Quercus laeta and Quercus spp. Numerical instability 
of the covariance matrix, small sample sizes, and random 
multiplicative residuals with a large variance is a recipe for 
poor results. As expected, the robust recovery produces 
the largest estimates of relative errors.

Discussion
The need for forest biomass equations has increased 
sharply over the past decades in response to efforts 
directed at quantifying stock and stock-changes in for-
est carbon and the potential for bioenergy extraction 
[21, 42, 54]. Ideally there would be an equation for each 
tree species and region with distinct growth forms and 
management regimes [55, 56]. We are still far from this 
ideal. Even the equations we have are generally based on 
very limited sampling within a relatively small area and 
range of tree sizes [21]. This is understandable in light 
of the high costs of producing a biomass equation [21, 
26, 57]. Biomass estimates for large trees are therefore 
fraught with problems of applicability of available bio-
mass equations.

In the computation of forest biomass in a large region, 
country, or even a continent, it is common practice to use 
a suitable biomass equation for a particular species and 
growth region [58–60]. In most cases, there is no sepa-
rate calibration of chosen biomass equations.

On this background, national and regional estimates 
of above-ground biomass should be regarded as no 
more than first-order approximations [16]. The require-
ment [11] to quantify or at least assess uncertainty in a 
national or regional estimate of forest biomass has pre-
cipitated a need for estimates of errors in the parameters 
of employed biomass equations. For a large number of 

equations, this information is partially or entirely missing 
[31, 44].

In a context of model-dependent estimation of for-
est tree biomass and model-errors in these estimates, a 
covariance matrix of the model parameters is needed [12, 
40]. When this statistic is missing a substitute is needed. 
Wayson et al. [44] proposed a computationally intensive 
method for generating a large number of pseudo data of 
the dependent and independent variables in a biomass 
equation. Samples are then drawn repeatedly and the 
model is refitted each time. The sampling aims at mim-
icking the actual sampling process (if known) of the origi-
nal data behind a biomass equation.

Our proposed procedures for computing a substitute 
for a missing covariance matrix are computationally faster 
and make direct use of data of the explanatory variables 
sampled from the population targeted for an estimation 
of biomass. The distribution of the explanatory variables 
used to compute (recover) a covariance matrix plays a 
pivotal role in both approaches. If the actual distribution 
behind an equation differs from the distribution in the 
recovery process, a covariance matrix different from the 
actual (but unknown) will emerge from a recovery proce-
dure. We saw several examples of this in our examples, but 
an equal number of examples where a substitute matrix 
was not statistically different from the target matrix. Way-
son et al. [44] do not report at this level of details, but we 
surmise that they encountered similar issues. It is now a 
question of whether these differences are relevant or not. 
We argue, that sampling the explanatory variables from 
the target population vouch for estimates adapted to the 
application domain rather than to a small sample of trees 
with unknown representation in the target population.

The most intuitive approach to recover a missing 
covariance matrix is a variant of the parametric bootstrap 
[61]. In the textbook version of a parametric bootstrap, n 
pseudo observations of Y are generated a large number of 
times (say B) by adding a random draw from the observed 
empirical regression residuals to the n model predictions 
obtained from the original regression model and the 
observed explanatory variables. The regression model is 
then refitted B times to the pseudo observations of Y. At 
the end, the analyst has B replications of the covariance 
matrix of the model parameters. Without observed resid-
uals, this approach is not feasible. Instead, our recovery 
by refitting resorted to random sampling of the explana-
tory variables from the target population for biomass 
estimation, and residuals from a distribution deemed 
realistic to the case at hand (e.g. a gamma distribution for 
multiplicative residuals). Although this method in many 
cases was as good as with alternative approaches, it was 
equally clear that it entails a considerable risk of poor 
results. A risk traced to random interactions between 

Table 6  Estimates of  mean AGB kg tree−1 and  relative 
errors (%) in  estimates in  mean AGB for  seven Mexican 
species

Estimates are based on tree data provided by the Mexican NFI (see Table 9). 
The errors are derived with refitted (REFIT), recovered (RECOV), and robustly 
recovered (RREC) covariance matrices for the parameters in the biomass 
equations in Table 8.

Species ˆAGB REFIT RECOV RREC

Guazuma ulmifolia 54 5.0 4.7 5.4

Inga vera 198 8.6 8.2 9.0

Ochroma pyramidale 50 11.8 11.2 12.8

Trichospernum mexicanum 51 13.9 13.1 15.1

Quercus castenea 75 23.2 28.6 33.9

Quercus latea 129 101.7 23.9 30.7

Quercus spp. 135 53.0 13.1 13.8
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residuals and the explanatory variables. For that reason 
we do not recommend a recovery by model refitting with 
simulated residuals.

The examples from Germany confirmed that in pres-
ence of heteroscedasticity in the model residuals, a 
weighting with the inverse to the presumed residual vari-
ance can be effective [62, ch. 2.11, 63, ch. 2.1]. To carry 
this efficiency through to a recovered covariance matrix, 
a weighting scheme applied to the original biomass equa-
tion should be replicated in a recovery procedure.

A matrix recovery based on the average (vector) gradi-
ent of the model parameters with respect to the explana-
tory variables was, in the balance, better suited for the 
purpose of estimation of model errors in tree-level bio-
mass estimates. A robust variant of the recovery is easy to 
compute and—despite expected and observed larger esti-
mates of model-errors—we recommend this procedure as 
a prudent choice. For the purpose of reasonable estimates 
model-errors in tree-level estimates of biomass, it is not 
a strict requirement that a recovered covariance matrix 
is close to the actual but missing matrix. Most of our 
estimates, but especially those obtained with the robust 
recovery procedure, seem reasonable [13, 16, 20, 57, 64]. 
Our resampling of explanatory variables from inventory 
data representing the population targeted for an estima-
tion of biomass, ensures that the mean of the explanatory 
variables will be close to the mean in the target popula-
tion. Ceteris paribus, this will counter the aforementioned 
inflation of model-parameter variances [39, ch. 5.4].

An attempt to recover a covariance matrix can end 
in failure. A failure was demonstrated with the general-
ized biomass equations for beech, pine, and spruce in the 
temperate zone [26, Table  1]. A failure is pre-ordained 
when estimates of R2 and a root mean squared errors are 
incompatible with the biomass equation applied to actual 
data. Our experience should raise awareness of potential 
pitfalls in published fit-statistics for a generalized equa-
tion, unless they reflect a proper meta-analysis [65].

Throughout we have treated published fit statistics as 
known entities. It would have been preferable to con-
sider an empirical Bayesian recovery procedure [66]. The 
coefficient of determination is pivotal in our proposed 
procedures. Its sampling variance can only be estimated 
from the data supporting a biomass equation [67]. To 
recognize sampling variance in R2, a recovery is repeated 
a large number of times, each with a random draw from 
an anticipated distribution of R2, to create an empirical 
Bayes posterior distribution of the recovered statistic. 
The recovery procedure by Wayson et  al. [44] contains 
elements of a Bayesian approach.

Although a recovered covariance matrix affords an esti-
mate of the model error in a tree level biomass estimate, the 
model-error is conditional on a correctly specified model. 

If a published biomass equation is the result of an intensive 
model and variable screening process, we must expect opti-
mism in published statistics and model-bias [68].

We have demonstrated the recovery of a missing covari-
ance matrix without too much concern about sample size. 
Clearly, a biomass equation derived from a small sample 
size has a relatively high risk of model bias due to a high 
influence of individual observations [62, p. 170]. It is not 
possible to give a definite recommendation about the mini-
mum sample size for our robust recovery procedure. How-
ever, a first approximation can be gained from the following 
example: If we have fitted a linear regression model with 
three parameters, and we wish to declare a standardized 
regression residual of 3 as significant at the 5  % level (an 
indication that the model is unduly influenced by residuals 
of this magnitude), we need a sample size of approximately 
55 [69]. Thus an application of our recovery procedure for 
regression models supported by less than 55 trees should 
proceed with caution and attention to robustness.

In large sample inventories the model errors in point 
estimates of biomass will often dominate sampling errors 
[12, 40]. Fortunately, when estimating a temporal change 
in biomass and carbon stock between two inventories, 
model errors in a difference all but cancel [Ibid]. Thus 
applying recovered conservative (robust) estimates of a 
missing covariance matrix will have little impact on the 
estimate of model errors in a difference.

We have demonstrated that reasonable (robust) esti-
mates of model-errors in estimates of tree-level biomass 
can be derived from a minimum of two available fit sta-
tistics for a biomass equation: the coefficient of deter-
mination, and sample size. To complete an estimation of 
model-errors an analyst need access to forest inventory 
sample data of the explanatory variables from the popula-
tion targeted for biomass estimation.

Conclusions
It is good practice to provide estimates of uncertainty 
to any model-dependent estimate of above ground bio-
mass. When a direct approach to estimate uncertainty is 
impossible due to missing model statistics, the proposed 
robust procedure is a first step to good practice. Our rec-
ommended approach offers protection against inflated 
estimates of precision.

Methods
The biomass model
The model we consider for above-ground live tree bio-
mass is parametric and can be expressed as

where yi is the above-ground forest tree biomass (AGB 
in kg) of the ith tree, f is a known function (linear or 

(1)yi = f (xi;b)+ ei
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nonlinear), xi is a p  ×  1 row vector of regressor vari-
ables including an intercept (if any), b is a q × 1 vector of 
model parameters, and ei is a residual error. For a linear 
model p = q.

A model f fitted to n observations of xi and yi(i = 1,…, 
n) allows a prediction of the expected biomass in the, 
say, jth tree 

(

ŷj
)

 from knowledge of xj and the estimated 
parameters b̂. In the application context of a forest inven-
tory (survey) the model in (1) is used to predict AGB for 
out-of-sample trees. An estimator of the approximate 
out-of-sample model error variance in an estimate of 
AGB for a tree j with a known (measured) vector xj of 
explanatory variables is [70, ch. 6.3]

where σ̂ 2
e  is an estimate of the variance of lack-of-fit 

residuals (ei) of the trees used to fit the model in (1), and 
∂f (xj|b)∂−1b is the vector of derivatives (gradients) with 
respect to the model parameters, and ˆcov

(

b̂

)

 is an esti-
mate of the covariance among model parameters. All 
gradients are evaluated at the least squares estimate of 
b. A superscript ‘t’ denotes the transpose of a vector or a 
matrix. When the model is linear in b the derivatives in 2 
reduces to the vector x.

The q × q covariance matrix for b̂ is [63, p. 17]

The estimation problem
It is clear from (2) that we cannot estimate the error in 
an out-of-sample estimate of the AGB in a single tree 
unless we have reasonable estimates of σ̂ 2

e  and ˆcov
(

b̂

)

. 
Note, when we wish to estimate the error in an average 
of AGB in a large number (m) of trees, the contribution 
to the error from the residual variance can be ignored as 
it declines at a rate of m−1, the second term, however, is 
only averaged over m [62, pp. 28–30].

When we are tasked with estimating the error vari-
ance in (2) but do not have estimates of σ̂ 2

e  or ˆcov
(

b̂

)

 
we have to recover reasonable substitutes. Equations 
(2) and (3) implicitly suggest how to obtain substitutes 
σ̃ 2
e  for σ̂ 2

e  and cõv
(

b̂

)

 for cõv
(

b̂

)

 when we at least know 
the sample size n used to estimate the parameters in the 
biomass model in (1), and the coefficient of determina-
tion R̂2 or, preferably, the adjusted coefficient of deter-
mination [62, p. 91].

(2)V̂
(

ˆAGBj

)

= σ̂ 2
e +

∂f
(

xj|b
)

∂b

t

ˆcov
(

b̂

)∂f
(

xj|b
)

∂b

(3)

côv(b) = σ̂ 2
e

(

F̂
t
F̂

)−1

with F̂ =
{

∂f (x1|b)
∂b

, . . . ,
∂f (xi|b)

∂b
, . . . ,

∂f (xn|b)
∂b

}t

Recovery of missing fit statistics
A basic recovery of a substitute for cõv

(

b̂

)

 begins with 
B random samples (without replacement) of size n of x 
taken from an inventory sample from the population for 
which tree-level predictions of AGB via (1) are desired. 
For each of the B samples, one first computes

where V(zj) denotes the variance of zj = f
(

xb,j|b̂
)

, and 
R̂2 is a known estimate of the coefficient of determina-
tion. Then cõvb

(

b̂

)

, b = 1, . . . ,B is estimated as in (3). 
The average over the B replications of σ̃ 2

e  and cõv
(

b̂

)

 now 
serves to approximate the error variance in AGB of a sin-
gle tree (see (2)). Implicit in this estimator of residual var-
iance is the assumption of a homogenous error-structure.

It is clear from (4) that the estimate σ̃ 2
e  depends on the 

sampling distribution of f
(

xb,j|b̂
)

 which may be quite dif-
ferent from the distribution in the original sample used 
in model fitting. Most biomass functions are fitted to an 
approximate uniform distribution of the explanatory vari-
ables, as it achieves large-sample optimality for model fit-
ting [39, ch. 7.5]. However, for typically small sample sizes 
in biomass studies, this no longer holds. Our repeated 
sampling from the target population assuage more robust 
and realistic estimates of the desired covariance matrix. 
Albeit under the proviso that the reported coefficient of 
determination has not been maximized by a combination 
of model- and variable-selection procedures, and a sam-
pling design that C. paribus favors a linear model.

Recovery via refitting
A recovered estimate of the residual variance (see (4)) 
can be used in a parametric bootstrap [71] to recover 
a substitute for a missing covariance matrix cõv

(

b̂

)

. 
The refitting begins with n random draws of residuals 
(ej

*, j = 1, …, n) from a t-distribution with n − q degrees of 
freedom. Pseudo data y∗j = f

(

xj|b̂
)

+ e∗j  is then used to 
re-estimate the parameters b̂∗ and the associated covari-
ance matrix cõv(b∗). This process is repeated B times; the 
mean of the covariance matrices is now the substitute to 
use in computing an error of AGB via (2).

Adding a random residual to a biomass prediction ŷj 
can make yj

* negative in violation of AGB ≥ 0. Should that 
occur we recommend computing yj

* from ŷj × e∗j  where 
ej

* is a random draw from a gamma distribution with 
parameters ν and ν−1 (i.e. with mean 1.0 and variance 
ν−1). The parameter ν can be found by using Goodman’s 
formula for the exact variance of V

(

ŷi e
∗
i

)

 [72]. However, 

(4)

σ̃ 2
e,b = V

(

f
(

xb,j|b̂
))

×
(

R̂−2 − 1

)

,

j = 1, . . . , n, b = 1 . . . ,B
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in our examples this formula did not give us real-valued 
solutions of ν. By solving the equation in [5] for ν we 
obtained a good first-order approximation.

Recovery of off‑diagonal elements in cõv
(

b̂

)

In some cases estimates of errors in b̂ are available, but 
without estimates of covariance. In this scenario a substi-
tute covariance matrix can be recovered from

Robust recovery
A recovered substitute cõv

(

b̂

)

 may differ substantially 
from the target covariance matrix cõv

(

b̂

)

 when the dis-
tribution of xj in the samples taken from the population 
targeted for a prediction of AGB differs from the distri-
bution of xi in the original—but unknown—sample used 
for model-fitting [39, ch. 5.4]. To mitigate this prospect, 
we propose a robust recovery of cõv

(

b̂

)

. It is borrowed 
from Gallant AR [63] and given in (7)

where ẽi is a random draw from a t-distribution with 
⌊0.5 n⌋ degrees of freedom and variance σ̃ 2

e . The choice of 
degrees of freedom for the t-distribution is arbitrary; it 
reflects the fact that most sample sizes supporting a tree 
biomass model are in the range of 6–30 [21]. A halving of 
these sample sizes results in increases of 3–21 % in 95 % 
percentiles from a student’s t-distribution. Robust alter-
natives to the correlation coefficients in [6] can be com-
puted with a weighting of gradients proportional to the 
inverse of abs(ẽi).

A weighted recovery
In regressions with a positively valued dependent vari-
able (y), it is not uncommon to observe an increase in 
the variance of regression residuals with an increase in y 
[73, ch. 5.1]. A weighted least squares (WLS) approach to 
model-fitting would be appropriate. If f (xi; b) was fitted 
using WLS the recovery of a substitute for côv

(

b̂

)

 should 
also employ a weighting scheme. Equation [8] provides 
an example.

(5)V
(

ŷi e
∗
i

)

= V
(

ŷi
)

+ ν−1
(

¯̂y2 + V
(

ŷi
)

)

(6)

cõv
(

b̂k , b̂l �=k

)

= cõrr

(

∂f
(

xj|b
)

∂bk
,
∂f

(

xj|b
)

∂bl

)

b≡b̂

×
√

vãr(bk)vãr(bl), k , l = 1, . . . , q

(7)

cõvrobust

(

b̂

)

=
(

F̂
t
F̂

)−1

×
(

n
∑

i=1

ẽ2i

(

∂f (xi|b)
∂b

)(

∂f (xi|b)
∂b

)t
)

b≡b̂

(

F̂
t
F̂

)−1

where W is an n  ×  n diagonal matrix of sum-to-
one weights w1, …, wn. In tree biomass models, the 
weights would typically be proportional to the inverse 
of, say, DBHj

2 which gives the following weights 
wj = TDBH2 × DBHj

−2 where TDBH2 is the sum of DBHj
2 

over the n trees. A robust alternative to [8] is obtained by 
a straightforward extension of [7].

A weighting scheme is also needed when trees for 
model-fitting were selected by an unequal probability 
selection scheme. Weights should then be proportional 
to the inverse of the sample inclusion probability [73, p. 
41].

The number B of resampling replications
The value of B was determined adaptively by monitor-
ing the Monte Carlo error as a function of B [74]. In our 
examples we fixed B to 800. With this value of B, the 
Monte Carlo error in the determinant of cõv

(

b̂

)

 was less 
than 4 %.

Comparing recovered and actual covariance matrices
A recovered substitute for a covariance matrix may vary 
considerably from an unknown target estimate when 
the joint distribution of the explanatory variables in 
the sample used for fitting differs from the joint-distri-
bution in the target population for model application. 
In our demonstrations we knew, in most cases, the 
actual estimates of the missing covariance matrix. It is 
therefore of interest to test the hypothesis of equality 
between a recovered substitute and the actual estimate. 
We use Box’s M-test to obtain a Chi square test-statistic 
and the probability of this test statistic under the null 
hypothesis of no difference [75, p. 281]. The same test 
was applied in examples where only the covariance in b̂ 
are unknown.

Applications
Examples from Germany
We demonstrate the above recovery procedures with 15 
biomass equations (Table 1) and data (HT, DBH) from 
335 plots in the first German national forest inventory 
(BWI-1987). Note, the data represent trees selected 
with probability proportional to their basal area. Their 
mean HT and DBH are therefore larger than the mean 
of trees selected with equal probability. However, 
for purpose of a demonstration, this fact is deemed 
unimportant.

There are four equations (linear, nonlinear, weighted, 
un-weighted) for each of three species (BEECH, PINE, 
SPRUCE). Each equation (no. 1–12) were derived from 

(8)cõvwt

(

b̂

)

= σ̂ 2
e

(

F̂
t
WF̂

)−1



Page 11 of 14Magnussen and Carillo Negrete ﻿Carbon Balance Manage  (2015) 10:21 

a sample size of n =  50 randomly selected trees from 
five BWI plots. The five plots were excluded from any 
recovery procedure. In the model fitting, BWI predic-
tions of tree AGB (kg per tree) multiplied with a random 
uniformly distributed error on the interval [0.9, 1.1] 
were used as the dependent variable and diameter at a 
reference height of 1.3  m (DBH) and tree height (HT) 
were used as predictors. A summary of the BWI data 
is in Table  7. The remaining three biomass equations 

(no. 13–15) are generalized species specific AGB equa-
tions from Muukkonen and Heiskanen [76]. They are 
assumed applicable throughout the temperate zone. An 
analyst may prefer a generalized biomass equation over 
a local/regional model derived from a relatively small 
sample size and potentially from a sub-population with 
a different relationship between AGB and the explana-
tory variables than in a population targeted for estima-
tion of AGB.

Examples from Mexico
Four linear (on a log–log scale) biomass equations [53] 
with published estimates of R̂2

adj, σ̂e, and standard errors 
of the regression coefficients are used to demonstrate 
the recovery procedures. The equations (no. 1–4) are in 
Table 8. Three non-linear biomass equations for Quercus 
spp. [52] with unknown standard errors of the regression 
coefficients were also included (no. 5–7).

The recovery procedures are demonstrated with data 
from the 2004–2009 Mexican national forest inventory 
[47, 48]. Specifically, 132 sample plots and 1,843 trees 
with known DBH and HT were included (Table 9).

Table 7  Means of DBH, HT, and AGB of trees from the 1987 
German National Inventory used in this study

Standard deviations are in parentheses. Note, the mean applies to the 
population from which 50 trees were selected at random for model-fitting and 
B = 800 sets of 50 trees were selected for the recovery process (a tree used for 
model fitting was disallowed in the recovery process). See Table 1 for details on 
sample tree selection.

Trees DBH (cm) HT (m) AGB (kg/tree)

BEECH 1,595 35 (15) 25 (7) 1,111 (1,110)

SPRUCE 2,221 30 (12) 24 (7) 492 (460)

PINE 1,221 33 (12) 23 (6) 1,100 (410)

Table 8  Above-ground forest tree biomass (AGB kg tree−1) equations for five species and a species group in Mexico

Equations 1–4 are from Douterlungne D, Herrera-Gorocica AM, Ferguson BG, Siddique I and Soto-Pinto L [53]. Equations 5–7 are from Aguilar et al. [52].

Species # Equation R̂
2 σ̂e

kg
Sample
size

Guazuma ulmifolia 1 log
(

ˆAGB
)

= −1.62+ 2.12 log (DBH) 0.97 0.48 18

Inga vera 2 log
(

ˆAGB
)

= −4.04+ 4.00 log (DBH)− 0.29 log (DBH)2 0.97 0.39 15

Ochroma pyramidale 3 log
(

ˆAGB
)

= −2.45+ 2.30 log (DBH) 0.90 0.96 16

Trichospernum mexicanum 4 log
(

ˆAGB
)

= −2.82+ 2.42 log (DBH) 0.96 0.40 16

Quercus castenea 5 ˆAGB = 0.0416DBH2.7154 0.97 11.6 38

Quercus latea 6 ˆAGB = 0.0333DBH2.6648 0.92 12.8 7

Quercus spp. 7 ˆAGB = 0.0342DBH2.7590 0.93 15.7 45

Table 9  Summary of tree size (mean DBH cm, mean HT m), stem density of species groups (N ha−1), and model-depend-
ent predictions of above-ground forest tree biomass (AGB Mg ha−1) in the Mexican NFI (2004–2009) plots

Table entries in parenthesis are standard deviations.

Species State Stratum Trees nplots DBH HT N × ha−1

Guazuma ulmifolia Chiapas Mediana subperennifolia 177 12 12.9 (5.1) 5.5 (2.4) 201

Inga vera Chiapas Alta pernnifolia 37 12 17.1 (9.5) 12.0 (4.1) 103

Ochroma pyramidale Chiapas Alta pernnifolia 144 20 13.9 (6.2) 10.1 (2.6) 49

Trichospernum mexicanum Chiapas Alta pernnifolia 612 48 13.9 (6.5) 9.6 (3.3) 156

Quercus castenea Michoacàn Bosque de encino 416 17 16.6 (7.7) 7.1 (2.6) 612

Quercus latea Michoacàn Bosque de pino 37 4 17.2 (8.5) 9.5 (3.2) 231

Quercus spp. Michoacàn Bosque de encino 420 19 16.6 (7.7) 7.0 (2.6) 553
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Application of recovered statistics
The above recovery procedures are motivated by the 
need to supply inventory estimates of AGB with an esti-
mate of sampling and model errors. The latter is not 
possible without published or recovered substitutes for 
missing values of σ̂e and cõv

(

b̂

)

.
Under a simple random sampling design, the model 

error variance in an estimate of a species specific AGB 
Mg  ha−1—in a stratum or a population of interest—is 
obtained by scaling an estimate of the average model 
error in a tree-level estimates of AGB with an estimate of 
stem density [40]. The estimator of model error variance 
per tree in species s with a recovered covariance matrix 
becomes

where ns is the number of trees in species s in the inven-
tory sample, and an over-bar indicates an average over 
the ns trees. Let �̂s denote the inventory estimate of the 
stem density in species s. The model error variance in 
an estimate of AGB Mg  ha−1 for species s is hereafter: 

�̂
2
s Ṽ

( ˆ
AGBs

)

+
( ˆ
AGBs

)2

V̂
(

�̂s

)

 [70, p. 228], if we assume 
a zero covariance between stem density and AGB. Under 
an assumption of independence of model errors across 
species, the model error variance for a group or all spe-
cies combined are computed as the sum of the variances 
of individual species. When a single biomass equation is 
used for more than one species there will be a covariance 
of model errors among species sharing a biomass equa-
tion [12]. We have restricted results to species specific 
per tree model errors estimated from [9]. The rationale 
for bringing these estimates here is that it is easier to 
gauge whether an estimate of model errors in a tree-level 
estimate of AGB is reasonable or not. It is much harder 
to interpret the effects of model errors in the parameters 
of a biomass equation. Even if a recovered covariance 
matrix or a recovered residual variance is not on target, 
the estimated average error obtained via [9] may still be 
reasonable and a realistic substitute for the error that 
could otherwise not be estimated.
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