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Abstract

With the increasing prevalence and mortality, chronic kidney disease (CKD) has become a world public health prob-
lem. As the primary pathological manifestation in CKD, renal fibrosis is often used as a critical target for the treatment
of CKD and inhibits the progression of CKD to end-stage renal disease (ESRD). As a potential drug, natural products
have been confirmed to have the potential as a routine or supplementary therapy for chronic kidney disease, which
may target renal fibrosis and act through various pharmacological activities such as anti-inflammatory and anti-oxida-
tion of natural products. This article briefly introduces the pathological mechanism of renal fibrosis and systematically
summarizes the latest research on the treatment of renal fibrosis with natural products of Chinese herbal medicines.
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Background

Chronic kidney disease (CKD) has become a world public
health problem with the increasing prevalence and mor-
tality. In 2017, the number of patients with CKD reached
697.5 million, and the global prevalence of CKD was 9.1%
[1]. At present, the treatment of CKD is mainly based on
the use of angiotensin-converting enzyme inhibitors and
angiotensin receptor blockers. However, this does not
better prevent the progression of CKD [2]. Continuously
progressive CKD will eventually develop into end-stage
renal disease. At this time, patients can only rely on renal
replacement therapy, seriously affecting the quality of
life, so the search for better CKD treatment strategies has
become a current research hotspot.

The pathological manifestations of CKD due to differ-
ent causes may vary slightly. However, the main patholog-
ical feature is renal fibrosis driven by renal injury stimuli
such as inflammation and oxidative stress, so anti-renal
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fibrosis is widely studied as a potential CKD therapeutic
target. Traditional Chinese Medicine (TCM), as an alter-
native therapy in modern medicine, has attracted much
attention in recent years. A large number of studies have
demonstrated that natural products in TCM play a role in
anti-renal fibrosis through their anti-oxidation and anti-
inflammation pharmacological activities.

In this paper, we introduce the pathological mechanism
involved in renal fibrosis, summarize the latest research
on the treatment of renal fibrosis with natural products
in recent years, and discuss the future direction and chal-
lenges of natural products of Chinese herbal medicines
and renal fibrosis.

Pathological mechanisms of renal fibrosis

Renal fibrosis is the main pathological feature of CKD
and plays a vital role in CKD progression to ESRD. The
essence of renal fibrosis is that various injury reactions
stimulate renal resident cells, causing excessive extracel-
lular matrix (ECM) deposition, tubulointerstitial fibrosis,
and glomerulosclerosis, ultimately leading to the destruc-
tion of renal parenchyma and loss of renal function [3].
Renal fibrosis involves a series of complex cellular and
molecular mechanisms. Almost all renal resident cells
are involved in the process of fibrosis. Generally, renal
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fibrosis can be divided into four overlapping processes:
priming, activation, execution, and progression. It is
worth noting that these four stages are not strictly chron-
ological. Since fibrosis is a dynamic pathological process,
many events may occur simultaneously [4]. This paper
will briefly introduce the cellular and molecular pathways
involved in these four stages (Fig. 1).

Priming: formation of the fibrotic microenvironment

In the initiation phase, various renal injurious stimuli
such as infection, trauma, inflammation and autoimmun-
ity act on renal resident cells to induce the initiation of
fibrosis, the most important of which is the inflamma-
tory response [5]. Inflammation is the most important
initiator of renal fibrosis. Under various injury stimuli,
inflammatory cells such as lymphocytes, macrophages
and dendritic cells are recruited into the glomeruli and
renal interstitium. At the same time, these injury stimuli
will also activate the resident immune cells of the kidney,
produce inflammatory mediators and form an inflam-
matory microenvironment [6]. Normally, inflammation
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is conducive to the repair of body injury. However, per-
sistent inflammation is the key cause of initiating fibro-
sis. Renal resident cells and recruited inflammatory
cells stimulated by persistent inflammation release pro-
fibrotic cytokines such as inflammatory and growth
factors [7] and form a fibrotic microenvironment. The
formation of a fibrotic microenvironment promotes the
activation and proliferation of myofibroblasts and the
imbalance between ECM production and degradation.
And then, the process of fibrosis also enters the activa-
tion stage.

Activation: activation of myofibroblasts

Under the stimulation of pro-fibrotic cytokines,
matrix-producing cells in the kidney are activated, and
fibroblasts, tubular epithelial cells, endothelial cells,
podocytes, cells, and macrophages can produce ECM,
but usually myofibroblasts are the main effector cells
leading to excessive ECM deposition [3]. Myofibroblasts
are considered to be a type of cell with both smooth
muscle cell and fibroblast characteristics, which are
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rarely seen in the normal kidney, but are abundant in
the fibrotic environment, so the source of myofibroblasts
has been a research hotspot and is still controversial. The
possible sources are renal resident fibroblasts, pericytes,
epithelial cells, endothelial cells and circulating bone
marrow-derived fibrocytes, which transform and prolif-
erate into myofibroblasts under the action of pro-fibrotic
cytokines. These cytokines also act on myofibroblasts to
produce a large amount of ECM and aSMA, which leads
to renal fibrosis [8—10].

At this stage, numerous molecular pathways activate
myofibroblasts, and the most studied ones are mainly
focused on signaling pathways such as TGF-p, Wnt, and
Hedgehog, which also play an important role in the next
stage. TGF-f is now recognized as the most critical pro-
fibrotic factor that can activate myofibroblasts through
standard Smad and non-standard MAPK signaling path-
ways. Wnt/B-catenin can activate myofibroblasts by reg-
ulating the expression of downstream genes and can also
act by regulating the renin—angiotensin system (RAS).
The Hedgehog pathway acts primarily through its ligand
Sonic hedgehog (Shh) to regulate the transcription factor
Gli. Some reviews have comprehensively summarized the
relationship between these pathways and renal fibrosis,
so it will not be introduced in detail here [11-14].

Execution: excessive deposition of ECM

In this stage, matrix-producing cells (especially myofi-
broblasts) activated by the above pathways begin to syn-
thesize and secrete a large amount of ECM. At the same
time, due to the influence of the fibrotic microenviron-
ment, the balance between ECM production and deg-
radation is out of balance, so that they are excessively
deposited in glomeruli and renal tubules. This abnormal
ECM accumulation will lead to glomerulosclerosis and
tubulointerstitial fibrosis [4, 15]. Renal ECM is a non-cel-
lular three-dimensional macromolecular network com-
posed of various glycoproteins such as collagen, elastin,
proteoglycan and fibronectin, of which type I and type III
collagen and fibronectin play a major role in renal fibro-
sis, and these proteins play an important role in the pro-
cess of renal fibrosis under the regulation of integrins and
their downstream signals [16, 17].

The abnormal deposition of ECM is mainly because
of the imbalance between production and degrada-
tion. Among them, the molecular pathways leading to
increased ECM production mainly involve two aspects,
on the one hand, TGF-p and other signaling pathways
activate a large number of myofibroblasts to synthesize
and secrete ECM during the activation stage, and on the
other hand, these pro-fibrotic signals can directly pro-
mote the synthesis and secretion of ECM transcription-
ally, in which anti-fibrotic factors (e.g., BMP-7, HGF)
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can inhibit the production of ECM by antagonizing the
TGE-B signaling pathway [3]. The molecular pathways
leading to reduced ECM degradation are mainly associ-
ated with changes in the expression of metalloproteinases
(e.g, MMPs, ADAMs and ADAMTSs, etc.) and metal-
loproteinase inhibitors (TIMPs) in fibrotic environments
[17].

Progression: progressive renal failure

A large amount of ECM has been deposited in the glo-
meruli and tubulointerstitium, resulting in the destruc-
tion of the original structure and the loss of renal
function. At this time, renal fibrosis has entered a vicious
cycle, which means that ECM is not only the result after
injury, but also can act as a new stimulus to promote
fibrosis. This pro-fibrotic effect may be related to the
synergistic regulation of the YAP/TAZ and TGEF-p sign-
aling pathway [18]. In addition to the effects of ECM
on renal function, since numerous pro-fibrotic factors
similarly involve inflammation [19], oxidative stress [20],
autophagy [21], and other signaling pathways, these cel-
lular and molecular events also damage renal resident
cells while promoting fibrosis, which can also lead to fur-
ther loss of renal function. The progressive stage is the
final stage of renal fibrosis, during which renal function
continues to decline until ESRD is entered.

Therapeutic effects of natural products on renal
fibrosis

Natural products have been considered as one of the
essential sources for drug research and development,
and in fact, 441 natural products and their derivatives
were approved by the FDA for clinical use as drugs in the
course of 1981 to 2019 [22]. Of the 371 medicinal sub-
stances included in the Ninth Edition of International
Pharmacopoeia, more than 80 are natural products and
their derivatives [23]. In the related research of renal
fibrosis, a large number of natural products (especially
the natural products in Traditional Chinese Medicine)
have been confirmed to alleviate the process of renal
fibrosis, protect the renal structure and improve renal
function by regulating a variety of cytokines. This paper
is divided into the following categories according to their
different chemical structures and systematically sum-
marizes the mechanism of action of natural products in
Traditional Chinese Herbal Medicine in protecting renal
fibrosis [24] (Table 1).

Flavonoids

Flavonoids are widely present in a variety of Chinese
herbal medicines and are common natural products,
which have various biological activities such as regulating
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Table 1 Natural products and renal fibrosis
Natural products Structure Model Signaling pathway Refs.
Quercetin UUO mice M1/M2 macrophage polarization [26]
S Mouse macrophage line cells
P
S ,
UUO rats Sonic Hedgehog pathway [27]
NRK-52E cells
UUO rats SIRT1/PINK1/Parkin pathway [28]
NRK-52E cells
Puerarin UUO mice Oxidative stress [29]
HK-2 cells MAPK pathway
UUO mice NF-kB p65/STAT3 pathway [30]
TGF-B/Smad pathway
Dihydromyricetin UUO mice miR-34a pathway [31]
‘o o HK-2 cells
L L
U
Human glomerular mesangial cells Nrf2/HO-1 pathway [33]
Calycosin DN rats IL-33/ST2 pathway [34]
g8
Isoliquiritigenin ’ Mouse bone marrow-derived mac- Mincle/Syk/NF-kB pathway [34]
rophage M1 macrophage polarization
UUO mice inflammation
NRK-52E cells SIRT1 pathway [35]
DN mice Inflammation
Oxidative stress
HK-2 cells Cellular senescence [36]
UUO mice
5,7,3'4"5-pentahydroxy flavanone 5/6 nephrectomized rats AHR pathway [37]

NRK-52E cells
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Table 1 (continued)
Natural products Structure Model Signaling pathway Refs.
Barleriside A on Oﬁ°" 5/6 nephrectomized rats AHR pathway [37]
b)@w NRK-52E cells
Rhoifolin i 5/6 nephrectomized rats AHR pathway [37]
8 \Y[;]/ NRK-52E cells
5,6,7,8,3"4-hexa-methoxyflavone 5/6 nephrectomized rats AHR pathway [38]
% § HK-2 cells
oA
ged!
Curcumin . UUO rats NLRP3 inflammasome [42]
s PI3K/AKT/mTOR pathway
ol
I
I
[
{
Kidney transplantation rats Autophagy [43]
Cisplatin-induced rats Oxidative stress [44]
Resveratrol 0! UUO rats MAPK pathway [45]
. PI3K/AKT pathway
L) Wnt/B-catenin pathway
] L, JAK2/STAT3 pathway
AL
Aged mice Renin-angiotensin System [46]
Concanavalin A-induced Aged mice SIRT1/Klotho pathway [47]
Oxidative stress
Epigallocatechin gallate ] Cadmium-induced rats TGF-B1/microRNA pathway [48]
0 Oxidative stress
L
i
[
“‘
Dahl salt-sensitive rats Inflammation [49]
NRK-49F cells Oxidative stress
Apoptosis
DN mice Notch pathway [50]
HEK293 cells TGF-B/Smad3 pathway

Salvianolic acid A

5/6 nephrectomized rats
HK-2 cells

p38 MAPK/NF-«B
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Table 1 (continued)
Natural products Structure Model Signaling pathway Refs.
Schisandrin B UUO mice TGF-B1 pathway [52]
HK-2 cells miR-30e pathway
NRK-52E cells
= . HEK-293 T cells
Poricoic acid A UUO mice TPH-1 pathway [56]
i A NRK-52E cells Wnt/B-catenin pathway
i : A NRK-49F cells
5/6 nephrectomized rats TGF-B1/Smad3 pathway [57]
UUO rats AMPK pathway
NRK-49F cells
Poricoic acid ZC UUO mice TGF-B/Smad pathway [58]
HK-2 cells Wnt/B-catenin pathway
Poricoic acid ZD UUO mice TGF-B/Smad pathway [58]
HK-2 cells Wnt/-catenin pathway
Poricoic acid ZE UUO mice TGF-B/Smad pathway [58]
HK-2 cells Wnt/B-catenin pathway
Poricoic acid ZG HK-2 cells TGF-B/Smad pathway [59]
Wnt/B-catenin pathway
Poricoic acid ZH HK-2 cells TGF-B/Smad pathway [59]
Wnt/B-catenin pathway
Poricoic acid ZI UUO mice TGF-B/Smad pathway [60]
HK-2 cells Wnt/B-catenin pathway
NRK-52E cells
NRK-49F cells
Poricoic acid ZM UUO mice NF-kB pathway [61]
HK-2 cells Keap1/Nrf2 pathway
AHR pathway
Poricoic acid ZP fioce, UUO mice NF-kB pathway [61]
140000 “oH HK-2 cells Keap1/Nrf2 pathway
o AHR pathway
Alisol B 23-acetate 5/6 nephrectomized rats Gut-kidney axis [62]

UUO rats
NRK-52E cells
NRK-49F cells

RAS
TGF-B/Smad pathway
Wnt/B-catenin pathway
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Table 1 (continued)
Natural products Structure Model Signaling pathway Refs.
Triptolide ) Col4a3™ mice PTEN pathway [63]
o, Lt DN mice
N L Folic acid-induced mice
T HK-2 cells
DN rats miR-141-3p/PTEN/Akt/mTOR pathway [64]
Human mesangial cells
Ligustrazine UUO rats TGF-B1/CTGF pathway [67]
HGF pathway
N l ~
Oxymatrine NRK-52E cells SnoN pathway [68]
()
P
T
db/db mice |d2 pathway [69]
NRK-52E cells Twist pathway
Leonurine 0 UUO mice TGF-f pathway [70]
“ NF-kB pathway
it
Berberine DN mice Nrf2/HO-1 pathway [71]
. NRK-52E cells TGF-B/Smad pathway
N o
I
[
DN mice Notch/snail pathway [72]
Mouse renal tubular epithelial cells
Astragaloside IV DN rats TRX antioxidant system [74]
NLR pathway
UUO mice TLR4/NF-kB pathway [75]
HK-2 cells mTORC1/p70S6K pathway [76]
Tacrolimus-induced mice p62-Keap1-Nrf2 pathway [77]
Salidroside UUO mice TLR4/MAPK/NF-kB pathway [78]
O Folic acid-induced mice
I HK-2 cells
[ ]/‘I
DN mice SIRT1/PGC-1a pathway [79]
Adriamycin-induced mice Wnt/B-catenin pathway [80]
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Table 1 (continued)
Natural products Structure Model Signaling pathway Refs.
Dioscin . Fructose-induced rats SIRT3 pathway [81]
TGF-31/Smad3 pathway
N f‘
N
o ‘L1
s B O
G
Tanshinone IIA 5/6 nephrectomized rats TGF-B/Smad pathway [84]
i NF-kB pathway
[y
Folic acid-induced mice GSK3p pathway [85]
IRI'mice MAPK pathway
DN rats PERK pathway [86]
Oxidative stress
Emodin DN rats AMPK/mTOR pathway [87]
Py
|
I :
Adriamycin-induced rats with unilateral BMP7/TGF-B1 pathway [88]
nephrectomy Autophagy
HK-2 cells
UUO rats EZH2 pathway [89]
NRK-49F cells
Chrysophanol UUO mice TGF-B/Smad pathway [90]
HK-2 cells

oxidative stress, participating in cell cycle arrest, induc-
ing apoptosis, autophagy, and so on [25]. In recent years,
the anti-fibrotic effects of some flavonoids have become a
research hotspot.

Quercetin is a natural flavonoid, which exists in many
kinds of Chinese herbs and has many pharmacological
effects, such as anti-inflammatory and anti-oxidation.
Quercetin has been found to inhibit the expression of
NF-«B p65 and IRF5 signaling pathways in the kidneys of
UUO mice, which in turn inhibit M1 macrophage polari-
zation and the expression of inflammatory factors and
treat kidney injury. At the same time, it can reduce the
expression of NF-kB p50 and IRF4 signaling pathways,
inhibit M2 macrophage polarization, which reduces the
deposition of ECM and alleviate renal interstitial fibrosis
[26]. Liu et al. found that quercetin can also inhibit the
expression of SHH signaling in the kidneys of UUO rats,
prevent EMT in tubular epithelial cells, reduce excessive
accumulation of ECM, and treat renal fibrosis [27]. In

addition, it has also been found that quercetin can inhibit
tubular epithelial cell senescence and reduce renal fibro-
sis by activating SIRT1/PINK1/Parkin-mediated mitosis
[28].

Puerarin, a natural product extracted from Radix
Puerariae, has been found to have an anti-fibrotic effect
in recent years, and Zhou et al. found that puerarin can
inhibit oxidative stress-induced tubular epithelial cell
apoptosis and improve renal fibrosis by decreasing ROS
production and the expression of MAPK signaling path-
ways in the kidneys of UUO mice [29]. Others have found
that puerarin can reduce fibrosis by inhibiting the NF-xB
p65/STAT3 and TGF-B/Smad signaling pathways and
inhibiting the inflammation and excessive deposition of
ECM in the kidney [30].

Dihydromyricetin is mainly derived from Chi-
nese herbal medicines such as Ampelopsis Japonica
and has a wide range of pharmacological activities.
In the UUO mice model, dihydromyricetin inhibited
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TGF-Bf1-mediated miR-34a expression in the kidney,
which up-regulated Klotho expression in tubular epi-
thelial cells and alleviated renal fibrosis [31]. In high glu-
cose-induced glomerular cells, dihydromyricetin can also
improve renal fibrosis by regulating the Nrf2/HO-1 sign-
aling pathway and inhibiting the deposition of ECM and
the expression of fibronectin [32].

Calycosin is the main component of Astragalus mem-
branaceus, and recent studies have shown that calyco-
sin can improve the inflammatory response and fibrosis
in diabetic nephropathy and protect the renal structure
by inhibiting the expression of inflammatory mediators
IL-33/ST2 signaling pathway and its downstream inflam-
matory factors [33].

Isoliquiritigenin is a natural flavonoid from Glycyrrhiza
uralensis and has anti-fibrotic effects. Studies have shown
that isoliquiritigenin directly inhibits the Mincle/Syk/
NF-kB signaling pathway in UUO mice while inhibiting
the polarization of M1 macrophages and reducing renal
inflammation and fibrosis [34]. In addition, isoliquiriti-
genin also has a good therapeutic effect on kidney injury
in diabetic nephropathy and treats renal fibrosis by regu-
lating oxidative stress and inflammation mediated by the
SIRT1 pathway [35]. Isoliquiritigenin can also inhibit the
expression of ITGB3, ameliorate tubular cell senescence,
and reduce renal fibrosis caused by senescence in the kid-
ney [36].

5,7,3"4",5"-pentahydroxy flavanone, Barleriside A, and
Rhoifolin are natural flavonoids derived from Semen
Plantaginis. 5,6,7,8,3",4"-hexamethoxyflavone is a natural
flavonoid derived from Poria cocos. Although they have
different structures, they are all aryl hydrocarbon recep-
tor (AHR) antagonists. In 5/6 nephrectomy rat mod-
els, they significantly reduced the secretion of ECM by
regulating the aromatic hydrocarbon receptor signaling
pathway, while inhibiting EMT of epithelial cells and alle-
viating renal fibrosis [37, 38].

Polyphenols

Polyphenols, also known as polyhydroxyphenols, have
anti-inflammatory and anti-oxidation pharmacologi-
cal effects, but also can regulate immunity and cell pro-
liferation, and have a good therapeutic effect on various
chronic inflammatory diseases [39-41]. Polyphenolic
compounds have therefore also attracted much attention
in the field of anti-fibrosis.

Curcumin is the main active component in Curcumae-
longae Rhizoma, which has been demonstrated to have
an excellent anti-fibrotic effect. It was found that mito-
chondrial dysfunction was significantly improved in
renal interstitial cells of UUO rats after curcumin treat-
ment, which in turn inhibited the activation of NLRP3
inflammasome and the expression of PI3K/AKT/mTOR
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signaling pathway, alleviating the progression of renal
fibrosis by reducing the inflammatory response and
regulating autophagy [42]. Curcumin can also attenuate
EndMT and fibrosis occurring after kidney transplanta-
tion, which is similarly accomplished by activating cellu-
lar autophagy [43]. In addition, curcumin can act as an
anti-oxidant that can alleviate renal fibrosis induced by
scavenging excess ROS, inhibiting the activity of NADPH
oxidase, improving mitochondrial redox balance [44].

Resveratrol is mainly derived from plants such as Cas-
siae Semen and Polygoni Cuspidati Rhizoma Et Radix
and can also be obtained in plants such as grapes and
peanuts, which are widely used in traditional medicines
and dietary supplements. Resveratrol has been found to
inhibit tubular epithelial cell EMT and fibroblast prolifer-
ation and differentiation, prevent myofibroblasts” activa-
tion and improve renal fibrosis by inhibiting the activity
of proliferation-related signaling pathways of tubular
epithelial cells and interstitial cells [45]. In addition, res-
veratrol has been found to reduce renal oxidative stress
and delay glomerulosclerosis and renal interstitial fibro-
sis in the aging kidney by regulating the renin—angioten-
sin system [46]. Chen et al. found that resveratrol could
up-regulate SIRT1-mediated Klotho expression and the
expression of anti-oxidant factors such as SOD and GSH
and ameliorate progressive glomerulosclerosis in aging
kidneys [47].

Epigallocatechin gallate (EGCG) is the most important
polyphenolic compound in green tea and has an excel-
lent protective effect on kidney injury caused by various
causes. For chronic kidney injury due to cadmium intoxi-
cation, EGCG can ameliorate renal fibrosis by regulating
the expression of TGF-P1 and its mediated microRNAs,
restoring anti-oxidation enzymes activity in renal cells,
inhibiting EMT and reducing the excessive deposition
of ECM in renal cells [48]. In renal injury caused by salt-
sensitive hypertension, EGCG reduces renal cellular
inflammatory infiltration and oxidative stress, improves
renal injury through anti-inflammatory and anti-oxi-
dation effects, and improves renal fibrosis by inducing
fibroblast apoptosis [49]. In diabetic nephropathy, EGCG
can inhibit the expression of the TGF-B/Smad3 signal-
ing pathway by binding with Notchl, attenuating fibrosis
[50].

Salvianolic acid A is a natural product derived from
Radix Salviae. In 5/6 nephrectomy rats model, salvianolic
acid A significantly reduced the expression of p38 MAPK
and its downstream signal inflammatory factors such as
NEF-kB, while inhibiting the expression of TGF-B1 and
a-SMA in renal cells, reducing renal inflammation and
renal interstitial fibrosis, and exerting a protective effect
on the kidney [51].



Zhou et al. Chinese Medicine 2022,17(1):98

Schisandrin B is mainly derived from the traditional
Chinese medicine Schisandrae Chinensis Fructus, which
has been found to inhibit the expression of Snail, Slug
and Zeb2, preventing EMT in tubular epithelial cells, and
reduce TGF-B1-mediated renal interstitial fibrosis by up-
regulating the expression of miR-30e in renal cells [52].

Terpenoids

Terpenoids are important natural products in Chinese
herbal medicines, which have many potential pharma-
cological activities such as anti-cancer, anti-fibrosis,
anti-inflammatory, etc. [53-55]. As a potential drug,
many studies have reported on the anti-fibrosis effects of
terpenoids.

Poricoic acid A is one of the main active ingredients
in Poria cocos and has an excellent anti-renal fibrosis
effect. In the UUO mice model, poricoic acid A reduced
the activity of the Wnt/p-catenin signaling pathway by
enhancing the expression of tryptophan hydroxylase-1
(TPH-1), and also inhibited renal cell injury and fibro-
blast activation, exerting an anti-renal fibrosis effect [56].
In addition, poricoic acid A can also inhibit renal fibro-
sis by activating the AMPK signaling pathway to inhibit
TGF-f1/Smad3 pathway-mediated deposition of ECM
and activation of myofibroblasts [57].

Poricoic acid ZC, ZD, ZE, ZG, ZH, ZI, ZM, and ZP
are novel tetracyclic triterpenoid compounds newly dis-
covered in recent years, which are the main components
of Poria cocos, and have renoprotective effects. Among
them, Poricoic acid ZC, ZD, ZE, ZG, and ZH significantly
ameliorate renal tubular interstitial fibrosis by inhibit-
ing TGF-B/Smad and Wnt/B-catenin signaling pathways
[58, 59]. Poricoic acid ZI reduces the secretion of ECM
and attenuates epithelial cells EMT by inhibiting the
activity of MMP-13 [60]. Poricoic acid ZM, ZP inhibits
the expression of NF-«kB and its downstream genes, pro-
motes the expression of the Nrf2 signaling pathway, regu-
lates AHR signaling pathway, attenuates oxidative stress
and inflammatory response in the kidney, and treats
renal fibrosis [61].

Alisol B23-acetate is a triterpenoid derived from
Alisma Orientale. Chen et al. found that alisol B23-ace-
tate could reduce renal fibrosis in UUO rats and 5/6
nephrectomy rats, which may be associated with improv-
ing gut microbiota and then reducing blood pressure and
regulating the RAS. In addition, alisol B23-acetate can
also inhibit the activation of Smad3 and the activation of
the Wnt/B-catenin signaling pathway, induce fibroblast
apoptosis and inhibit their activation and proliferation,
reduce renal interstitial fibrosis [62].

Triptolide is mainly derived from Tripterygii Radix and
has good efficacy in various kidney diseases. Studies have
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found that triptolide can specifically bind to MEX3C
protein in the kidney and inhibit MEX3C-mediated K27-
linked polyubiquitin chain modification of phosphatase
and tensin homolog, thereby inhibiting EMT in tubu-
lar epithelial cells and protecting renal function [63]. In
particular, in diabetic nephropathy models, triptolide
can also restore autophagy in glomerular fibrotic cells by
regulating the miR-141-3p/PTEN/Akt/mTOR signaling
pathway to reduce fibrosis [64].

Alkaloids

Alkaloids have many pharmacological activities, such
as anti-inflammatory, anti-oxidation, and anti-cancer.
They are one of the natural sources of drugs and are the
active ingredients of many kinds of traditional Chinese
medicines [55, 65, 66]. At present, the research on the
anti-fibrosis of alkaloids has become a current research
hotspot.

Ligustrazine is a natural product of Chuanxiong Rhi-
zoma and is mainly used to treat various kidney inju-
ries. Yuan et al. showed that ligustrazine decreased
the expression of TGF-B1 and CTGF, up-regulated the
expression of HGF and BMP-7 in tubular epithelial cells,
and inhibited EMT in tubular epithelial cells to alleviate
renal interstitial fibrosis [67].

Oxymatrine can be mainly found in Sophorae Fla-
vescentis Radix and has been demonstrated to have
anti-organ fibrosis effects. Liu et al. found in vitro that
oxymatrine could inhibit TGEF-B1/Smad-mediated
EMT in epithelial cells by up-regulating the expres-
sion of nuclear transcription co-repressor Ski-related
novel protein N [68]. In addition, it has been found that
in diabetic nephropathy mice treated with oxymatrine,
the expression of inhibitor of differentiation 2 (Id2) was
significantly increased in the kidney, which suggests
that oxymatrine may play a role in anti-renal fibrosis by
restoring the expression of 1d2 and promoting the bind-
ing of Id2 and Twist in the damaged kidney thereby regu-
lating the expression of genes downstream of Twist and
inhibiting EMT in tubular epithelial cells [69].

Leonurine is an active component in Leonuri Herba
and has pharmacological activities of anti-inflammatory
and anti-oxidation. In UUO mice, leonurine ameliorates
inflammation and renal interstitial fibrosis in the kidney
by inhibiting the ROS-mediated NF-kB signaling path-
way and TGF-[3/Smad3 signaling pathway [70].

Berberine is a natural product of Chinese herbal medi-
cine such as Coptidis Rhizoma and Phellodendri Chin-
rnsis Cortex, widely used in clinical practice. Berberine
has been found to inhibit the expression of the TGF-p/
Smad pathway while promoting the Nrf2/HO-1 pathway;,
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preventing EMT and excessive accumulation of ECM in
tubular epithelial cells and alleviating renal fibrosis [71].
In addition, berberine also inhibits Notch/snail expres-
sion in tubular epithelial cells and prevents EMT pro-
gression and renal interstitial fibrosis [72].

Glycosides

Glycosides are the active ingredients of many kinds of
traditional Chinese medicines, which have many poten-
tial pharmacological activities and also have good effi-
cacy in anti-inflammatory and anti-fibrosis [55, 73].

Astragaloside IV (AS-IV) is a natural product in
Astragalus membranaceus, which has a good renopro-
tective effect and can improve renal fibrosis mainly
through anti-inflammatory and anti-oxidative stress.
Zhang et al’s study found that AS-IV could signifi-
cantly up-regulate the expression of TRX1, decrease
the expression of cytokines such as TXNIP, PANXI,
NOD2, and JUN in the kidneys of DN rats, inhibit
inflammation-related NLR signaling pathway expres-
sion by enhancing the TRX anti-oxidant system, and
attenuates renal injury, fibrosis, and microstructural
changes induced by diabetic nephropathy [74]. Zhou
et al. found that AS-IV can attenuate inflammation and
inhibit renal fibrosis by inhibiting TLR4/NF-«B sign-
aling pathway [75]. In vitro experiments have shown
that AS-IV can also inhibit EMT in tubular epithelial
cells and ameliorate renal fibrosis by inhibiting the
mTORC1/p70S6K signaling pathway [76]. In addition,
AS-IV also has a good therapeutic effect in kidney
injury induced by some nephrotoxic drugs. In a study
on tacrolimus-induced chronic nephrotoxicity, AS-IV
was found to reduce ROS accumulation and renal inter-
stitial fibrosis by regulating the p62-Keap1-Nrf2 signal-
ing pathway [77].

Salidroside is the main component of Rhodiola Rosea,
which has the function of protecting the kidney. Studies
have confirmed that salidroside reduces excessive depo-
sition of ECM, prevents epithelial cell EMT, and amelio-
rates renal fibrosis by inhibiting the expression of TLR4/
MAPK/NF-kB signaling pathway and its downstream
pro-inflammatory and pro-fibrotic factors [78]. Salidro-
side can also regulate the SIRT1/PGC-1a signaling path-
way to improve mitochondrial dysfunction, reduce renal
fibrosis in diabetic nephropathy, and protect renal func-
tion [79]. Salidroside can also modulate Wnt/p-catenin
signaling in a model of adriamycin-induced nephropathy
that alleviates podocyte injury and renal fibrosis [80].

Dioscin, a natural product in Rhizoma Dioscoreae, has
been found to up-regulate the expression of the SIRT3
gene, inhibit renal fibrosis mediated by TGF-p1/Smad3
signaling pathway, and ameliorate fructose-induced kid-
ney injury [81].
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Quinones

Quinones are natural products widely distributed in a
variety of traditional Chinese medicines and have been
reported to have various pharmacological activities such
as antimalarial and anti-tumor activities, and quinones
also play an important role in anti-fibrosis [82, 83].

Tanshinone IIA is mainly derived from Radix Salviae
and has a significant therapeutic effect on various acute
and chronic kidney injuries. Tanshinone IIA significantly
reduced excessive deposition of ECM and inflamma-
tory cell infiltration, inhibited renal fibrosis and renal
inflammation, and protected renal function by regulat-
ing the expression of TGF-B/Smad and NF-«kB signaling
pathways in 5/6 nephrectomized rats [84]. In folic acid-
induced acute kidney injury, tanshinone IIA attenuates
tubular inflammatory infiltration and improves renal
interstitial fibrosis by inhibiting the excessive activation
of GSK3p and subsequent excessive activation of the
MAPK pathway [85]. In addition, Xu et al. found that
tanshinone IIA can also alleviate oxidative stress sta-
tus by increasing SOD activity, which inhibits ER stress
mediated by the PERK pathway and reduces the expres-
sion of TGF-P1, and ameliorates renal fibrosis caused by
diabetic nephropathy [86].

Emodin is a natural product in Chinese herbal medi-
cine such as Rheum Offcinale and Polygoni Cuspidati
Rhizoma Et Radix, which has anti-fibrotic pharmacologi-
cal effects. Emodin has been found to reduce renal fibro-
sis in DN rats by regulating the AMPK/mTOR signaling
pathway in the kidney, promoting podocyte autophagy,
and inhibiting apoptosis [87]. Emodin can also improve
renal interstitial fibrosis by up-regulating the expression
of BMP7 and promoting autophagy in tubular epithelial
cells and inhibiting their EMT [88]. In addition, in the
UUO rats model, emodin inhibited the expression of
enhancer of zeste homolog 2, which in turn inhibited tri-
methylation on Lysine 27 of histone H3 and alleviated the
process of tubulointerstitial fibrosis [89].

Chrysophanol is a natural anthraquinone compound
in Rheum Officinale with a variety of pharmacological
activities. It was found that Chrysophanol alleviated renal
fibrosis in UUO mice by modulating the TGF-f/Smad
signaling pathway, especially inhibiting phosphorylation
of Smad3 [90].

Conclusion

The incidence and mortality of CKD are increasing
yearly worldwide, and renal fibrosis, as the primary
pathological manifestation of CKD, has been a tar-
geted therapeutic target. Natural products in Chi-
nese herbal medicine perform well in the process
of anti-renal fibrosis due to their anti-oxidation and
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anti-inflammation pharmacological effects. This review
comprehensively summarizes the therapeutic effects
and the molecular mechanisms of natural products
in Chinese herbal medicine on renal fibrosis in recent
years. These studies have shown that natural products
have great potential in anti-fibrosis and are promising
as novel therapeutic drugs for CKD.

However, some issues deserve our consideration: First,
these studies are based on animal experiments and cell
experiments, they are not enough to support the clini-
cal application of these natural products, and we should
identify natural products with a precise mechanism of
action based on high-quality studies further to confirm
the safety and effectiveness of clinical efficacy. Second,
existing studies mainly focus on inflammation and oxi-
dative stress, TGF-B/Smad, and Wnt/B-catenin signaling
pathways, which have limitations and lack the diversity
of therapeutic targets, so more studies are needed to
explore other cellular and molecular pathways that may
be involved. Third, the effects of the kinetics and phar-
macodynamics of natural products on the treatment of
renal fibrosis should also be considered. For example,
emodin has been shown to have an anti-fibrotic effect in
animal experiments and in vitro experiments. However,
its poor oral availability may affect clinical efficacy [91].
Finally, there is also a relatively interesting question,
whether it needs to rely on the guidance of TCM the-
ory in the search for natural products in Chinese herbal
medicines to treat renal fibrosis, because some natural
products may not be commonly used drugs in TCM to
treat kidney disease, but they have been shown to have
an anti-fibrosis effect on other organs, and whether this
anti-fibrosis effect is also applicable in the kidney is also
a question worth pondering.

In conclusion, this review introduces the pathological
processes involved in renal fibrosis, systematically sum-
marizes the latest research on the treatment of renal
fibrosis with natural products of Chinese herbal medi-
cines, and points out the problems that need attention
in future research, hoping that this paper can provide
help for further research in the future.
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