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Abstract 

Coronary heart disease (CHD) is a common ischaemic heart disease whose pathological mechanism has not been 
fully elucidated. Single target drugs, such as antiplatelet aggregation, coronary artery dilation and lipid‑lowering 
medicines, can relieve some symptoms clinically but cannot effectively prevent and treat CHD. Accumulating evi‑
dence has revealed that alterations in GM composition, diversity, and richness are associated with the risk of CHD. The 
metabolites of the gut microbiota (GM), including trimethylamine N‑oxide (TMAO), short‑chain fatty acids (SCFAs) and 
bile acids (BAs), affect human physiology by activating numerous signalling pathways. Due to the advantage of mul‑
tiple components and multiple targets, traditional Chinese medicine (TCM) can intervene in CHD by regulating the 
composition of the GM, reducing TMAO, increasing SCFAs and other CHD interventions. We have searched PubMed, 
Web of science, Google Scholar Science Direct, and China National Knowledge Infrastructure (CNKI), with the use of 
the keywords “gut microbiota, gut flora, traditional Chinese medicine, herbal medicine, coronary heart disease”. This 
review investigated the relationship between GM and CHD, as well as the intervention of TCM in CHD and GM, and 
aims to provide valuable insights for the treatments of CHD by TCM.
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Background
Currently, cardiovascular disease (CVD) has become the 
leading cause of death globally. An estimated 17.9 mil-
lion people died from CVD in 2019, representing 32% 
of all global deaths [1]. There are approximately 290 
million CVD patients, of whom 11 million suffer from 
coronary heart disease (CHD) [2]. Hypertension, diabe-
tes, dyslipidaemia, obesity, inflammation, smoking, alco-
hol consumption, insufficient fruit and vegetable intake, 
lack of physical activity, and high psychosocial pressure 

are the main risk factors for the occurrence and devel-
opment of CHD [3, 4]. In recent years, novel drugs such 
as nicorandil, ivabradine, and trimetazidine have been 
developed. The combination of interventional therapy 
and drugs has been developed, including revasculariza-
tion therapy and drug-eluting stents. These treatments 
can effectively relieve the symptoms of patients but can 
hardly prevent the progression of CHD. However, with 
advances in metagenome technology and ribonucleic 
acid sequencing technology metagenome technology, 
accumulating evidence has revealed that the gut micro-
biota (GM) is associated with  CHD and its risk factors. 
It is estimated that modulating the GM will become an 
emerging therapeutic strategy for the prevention of CHD.

Because of its multitarget, multichannel and multicom-
ponent synergistic action, traditional Chinese medicine 
(TCM) has been used to treat CHD for thousand years. 
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Recent studies have found that TCM has outstanding 
curative effects on CHD by regulating the GM, which 
provides a new therapeutic target for the prevention and 
treatment of CHD in the future.

Composition and metabolites of GM affect 
the occurrence of CHD
GM is a general term for microbes existing in the human 
gut, consisting of more than 1000 species of bacteria and 
1 ×  1014 communities [5], including Firmicutes, Actino-
bacteria, Bacteroidetes, Proteobacteria, Verrucomicrobia, 
etc. Among them, Firmicutes and Bacteroidetes are the 
dominant strains [6]. According to pathogenicity, GM is 
split into probiotics, opportunistic pathogens and patho-
genic bacteria. The balance of probiotics and pathogenet-
icbacteria can protect the intestinal mucosal barrier, help 
the body intake nutrients, coordinate metabolism and 
immunity, and prevent pathogenic microorganisms from 
invading the body [7]. At the same time, GM can affect 
human health through its metabolites, such as trimethyl-
amine N-oxide (TMAO), short-chain fatty acids (SCFAs) 
and bile acids (BAs). These metabolites act as signalling 
molecules to regulate metabolism and the inflammatory 
response in CHD patients [8].

The composition of GM affects the occurrence of CHD
Aberrant compositional changes in GM are associated 
with the onset and progression of CHD. According to the 
Gmrepo database [9], it performed a metagenome-wide 
association study on stools from individuals with ath-
erosclerotic cardiovascular disease and healthy controls 
(Fig. 1). A clinical study involving atherosclerotic patients 
(n = 218) and healthy people (n = 187) corroborated the 
approximate results. The study described a higher abun-
dance of Enterobacteriaceae, Solobacterium moorei, and 
Enterobacter aerogenes along with Atopobium parvu-
lum, Streptococcus spp. and Lactobacillus salivarius in 
atherosclerotic patients. In contrast, a relative decrease 
in Bacteroides, Roseburia intestinalis, Prevotella and Fae-
calibacterium cf. prausnitzii was detected in atheroscle-
rotic patients [10]. Another comparative study conducted 

in CHD patients (n = 29) and 35 healthy volunteers 
revealed a significant increase in the proportion of Fir-
micutes and a decrease in Bacteroidetes [11]. This char-
acteristic change was also identified in a clinical study in 
which Firmicutes was increased and Bacteroidetes was 
decreased in CHD patients [12]. Accordingly, it has been 
proposed that the Firmicutes/Bacteroidetes (F/B) ratio is 
considered a biomarker of gut dysbiosis and a diagnos-
tic marker to identify CHD patients [13, 14]. Firmicutes 
can ferment intake food, while Bacteroidetes is respon-
sible for absorbing and degrading polysaccharides [15, 
16]. An animal experiment investigated that after trans-
planting obese germ-free mice with higher profusion of 
Firmicutes and nonobese mice with higher abundance 
of Bacteroides, the obese recipient had a higher dietary 
energy harvesting ability [17]. Increasing capacity for 
energy harvesting but poorer degradtion will result in 
higher intake of fat. In addition, Firmicutes was enriched 
due to high fat intake, generating a vicious cycle and lead-
ing to endotoxins and inflammation, while Bacteroidetes 
showed the opposite effect [18–20]. The beneficial func-
tion of Bacteroidetes in CHD was further authenticated 
in an animal experiment [21], which indicated that the 
increase in Bacteroides vulgatus and Bacteroides dorei 
could effectively decrease lipopolysaccharides and sup-
press proinflammatory immune responses.

More studies have demonstrated that alterations in GM 
could affect metabolic risk factors for CHD. Actinobac-
teria are considered to have a negative correlation with 
cholesterol. An increase in Actinobacteria reduced ather-
ogenic lipid metabolites, proinflammatory cytokines and 
atherosclerotic lesions [22, 23]. Prevotella copri and Bifi-
dobacteria positively ameliorated glucose tolerance, alle-
viating the development of CHD [24]25. Bifidobacteria 
play a beneficial role, giving the rein a reduction in AS. 
Eubacterium was positively connected with enhanced 
visceral fat mass in people and higher TMAO levels [26], 
while  Bifidobacteria  displayed an inverse relationship 
to  Eubacterium, reducing lipid accumulation [21, 27]. 
Moreover, Tariq et al. indicated that hypercholesterolae-
mic patients (n = 15) had an increase in Proteobacteria. 
After treatment, hypercholesterolaemic patients had an 
increase in anti-inflammation-associated bacteria such as 
Akkermansia muciniphila, Faecalibacterium prausnitzii, 
and Oscillospira [28].

The theory of TCM holds that the pathogenesis  of a 
disease lies in the struggle between Zheng qi (healthy 
qi) and Xie qi (pathogens). When pathogens hurt the 
human body, Zheng qi will rise vigorously to expell Xie 
qi, destroying the relative balance of Yin and Yang. In 
a previous study, probiotics coordinated metabolism 
and immunity, preventing pathogenic microorganisms 
from invading the human body, which resembled Zheng 

Fig. 1 Linear discriminant analysis (LDA) coupled with coronary heart 
disease and gut microbiota. (Marker taxa with LDA < 0 are Health 
enriched, while those with LDA > 0 are cardiovascular diseases 
enriched.)
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qi. To resist pathogens, the human body will mobilize 
more Zheng qi. This provides a potential mechanism for 
explaining the increase in some probiotics in patients. 
Intestinal microflora dysbiosis is the imbalance between 
probiotics and pathogenetic bacteria, which is very simi-
lar to the pathogenesis of a disease in TCM.

Metabolites of GM affect the occurrence of CHD
Trimethylamine N‑oxide (TMAO) affects the occurrence 
of CHD (Fig. 2)
TMAO is a metabolite produced by choline and other 
substances dependent on the GM. According to Koeth’s 
research, the human GM metabolizes choline, phosphati-
dylcholine and l-carnitine to produce trimethylamine 
(TMA). TMA is further converted into TMAO catalysed 
by flavin monooxygenase (FMO) in the liver through 
oxidation [29, 30]. In addition to assistance in diagnos-
ing and predicting CHD, TMAO also has the proper-
ties of causing AS and CHD. In a three-year follow-up 
study of 4007 patients with CHD, Tang et al. [31] found 
that elevated TMAO levels made a higher incidence of 
malignant cardiovascular events. TMAO has a better 
evaluation effect than traditional prognostic markers for 
cardiovascular events [32]. A prospective study of urban 
Chinese adults found that TMAO levels were still posi-
tively associated with CHD after adjusting for diet, blood 
lipids and other risk factors [33]. In an animal study, Apo 

E−/− mice transplanted with the C57BL/6 J strain (high 
TMAO production) showed elevated AS levels com-
pared with mice treated with the NZW/Lac J strain (low 
TMAO production) [34].

At present, researchers explain the risk of CHD 
caused by TMAO through multiple mechanisms. 
First, TMAO causes vascular endothelial damage. A 
study showed that TMAO could activate the mito-
gen-activated protein kinase (MAPK) and nuclear 
factor-kappa B (NF-kB) signalling cascades of human 
aortic endothelial cells. Then, TMAO causes endothe-
lial inflammation by releasing inflammatory cytokines 
and enhancing the adhesion of leukocytes to vascu-
lar endothelial cells [35]. When TMAO was admin-
istered to partially ligated the carotid artery in mice, 
the NLRP3 inflammasome in the intima of the blood 
vessels increased [36]. Sun et  al. [37] suggested that 
the priming of NLRP3 was mediated through the ROS-
TXNIP pathway. In the current study, TXNIP is a pro-
tein that connects ROS to the NLRP3 inflammasome. 
Subsequently, the SDHB/ROS pathway induced apop-
tosis of vascular endothelial cells and promoted AS in 
Apo E−/− mice [38]. Second, TMAO promotes throm-
bosis. Direct exposure of platelets to TMAO contrib-
uted to  Ca2+ release from intracellular stores, which 
enhanced platelet hyperresponsiveness and promoted 
thrombosis [39]. Furthermore, TMAO promotes the 

Fig. 2 The mechanism of TMAO affecting CHD. Cyp7a1 cholesterol 7α‑hydroxylase, SR-A1 scavenger receptor A1, NLRP3 pyrin domain‑containing‑3, 
TMA trimethylamine, FMO3 flavin‑containing monooxygenase 3, TMAO trimethylamine N‑oxide, TXNIP thioredoxin binding protein, ROS reactive 
oxygen species, NF-kB nuclear factor‑kappa B, MAPK mitogen‑activated protein kinase, TNF-α tumor necrosis factor‑α, IL-6 interleukin 6, IL-1β 
interleukin‑1 beta
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deposition of cholesterol in macrophages and the for-
mation of foam cells by upregulating the expression of 
scavenger receptor A (SRA) [40]. On the other hand, 
TMAO activated farnesoid X receptor (FXR) and small 
heterodimer partners to inhibit bile acid synthesis by 
reducing CYP7A1 expression [41]. This caused cho-
lesterol accumulation and foam cell formation. Then, 
foam cells accumulate to form lipid streaks and even 
lipid plaques, which promote AS. This inferred that 
growing TMAO could accelerate the occurrence of AS. 
Thus, treatment regimens for CHD that reduce TMAO 
levels have become a hot spot.

Short‑chain fatty acids (SCFAs) affect the occurrence of CHD 
(Fig. 3)
SCFAs are organic fatty acids with carbon atom numbers 
less than 6, mainly acetic acid, propionate, and butyrate 
[42], produced by  digestion of  resistant starch and dietary 
fibre in the intestine by different bacteria (Table 1). As a risk 
factor for CHD, hypertension can be regulated by SCFAs 
binding to olfaction receptor 78 (OLFR78), G-protein cou-
pled receptor 41 (GPR41), and G-protein coupled receptor 
43 (GPR43) [43]. Studies have shown that butyrate reduces 
cholesterol absorption by downregulating the expression of 
Niemann-pick C1-Like1 and upregulating the expression 
of ATP-binding cassette transporters G5 and G8, thereby 

Fig. 3 The mechanism of SCFAs affecting CHD. SCFAs short‑chain fatty acids, ox-LDL oxidized low‑density lipoprotein, ABCG5 
ATPbindingcassettetransportG5, ABCG8 ATPbindingcassettetransportG8, OLfr78 olfactory receptor 78, Gpr41 G protein‑coupled receptor 41, Gpr43 G 
protein‑coupled receptor 43, PYY peptide tyrosine tyrosine, GLP-1 glucagon‑like peptide‑1, AMPK AMP‑activated protein kinase, AS atherosclerosis

Table 1 SCFAs and their producers

spp. species pluralis

SCFAs Producers

Butyrate Eubacterium rectale, Roseburia intestinalis, Clostridium butyricum [50],
Roseburia inulinivorans, Faecalibacterium prausnitzii [51],
Coprococcus catus, Eubacterium ballii [52]

Propionate Phascolarctobactreium succinatutens, Mycobacterium tuberculosis [51],
E. coli, Bacteroides fragilis B. ruminicola [53],
Salmonella typhimurium [54],
Roseburia inulinivorans [55],
Dalister spp., Veilonella spp., Megasphaera elsdenii, Coprpcoccus catus, Ruminocossus obeum [52]

Acetate Most of gut microbiome
Akkermansia mucinipbilia, Bateroides spp., Bifidobacterium spp., Prevotella spp., Chrostridium 
spp., Streptococcus spp. [52],
Roseburia spp., Coprococcus spp., Faecalibacterium prausnitzii, Roseburia intestinalis [56],
Ruminococcus spp., Blautia drogentrophica [57]
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further reducing the formation of AS [44]. Butyrate also 
reduced the expression of oxidized low-density lipoprotein 
(ox-LDL)-stimulated macrophages, which lessened ox-LDL 
absorption and the formation of foam cells [45]. In an animal 
study conducted by Bartolomaeus et al. [46], AS lesions were 
significantly reduced in apolipoprotein E knockout-deficient 
mice after receiving propionate. Furthermore, SCFAs could 
activate adenosine 5′-monophosphate (AMP)-activated 
protein kinase (AMPK) phosphorylation and glucagon-like 
peptide-1 (GLP-1) secretion to decrease inflammation and 
promote insulin resistance [47].Moreover, SCFAs via the 
gut-brain neural circuit suppressed the activity of orexigenic 
neurons that expressed neuropeptide Y in the hypothalamus 
to reduce appetite [48]. Ingestion of propionate significantly 
increased peptide YY and GLP-1, ultimately reducing food 
intake and improving insulin sensitivity [49]. It is now rec-
ognized that SCFAs are beneficial to reduce the formation 
of AS, but many experiments are based on cell and animal 
experiments, so further investigations are needed.

Bile acids (BAs) affect the occurrence of CHD
BAs are important components of bile and play a fundamen-
tal role in fat metabolism [58]. The metabolism of BAs is also 
connected with plasma glucose [59] and CHD by a 20-year 
follow-up experiment [60]. Bile salt hydrolase (BSH), which 
exists in GM, can catalyse the hydrolysis of conjugated bile 
salts into deconjugated BAs, maintaining the balance of BA 
metabolism. In a recent study, BSH was shown to be pro-
duced by several intestinal bacteria, such as Clostridium [61], 
Lactobacillus [62], Bifidobacterium [63, 64], Bacteroides [65] 
and Enterococcus [66]. Song et al. investigated whether there 
was a prominent discrepancy between healthy people and 
patients with diabetes and atherosclerosis in terms of BSH 
[67]. Dysbiosis of the GM caused a reduction in BSH, which 
significantly impaired the metabolism of BAs and made cho-
lesterol beyond the normal range as well as an inability to 
maintain glucose homeostasis, promoting the formation of 
AS [66].

In an animal experiment, Sayin et al. found that GM acti-
vated the expression of fibroblast growth factor 15 (FGF15) 
by reducing tauro-beta-muricholic acid (TβMCA) levels and 
activating FXR. The expression of FGF15 further inhibited 
CYP7A1, reducing the generation of BAs [68]. Interventions 
with probiotics [69] and Tempol [70] could downregulate the 
FXR/FGF15 pathway to influence the metabolism of fat. Col-
lectively, targeting gut flora to inhibit the FXR/FGF15 path-
way could be a treatment for AS.

Mechanism of gut microbiota in the aetiology 
of TCM for CHD
Regarded as the foundation of digestion and absorption, the 
spleen and stomach in TCM theory are similar to the physi-
ological function of the GM. The stomach governs the intake 

and digestion of the diet, while the spleen is responsible for 
transforming the decomposed diet into qi, blood and fluid 
(the material foundation of human activities). Eventually, 
these materials are transmitted  to organs and other tissues 
by the spleen, offering adequate nourishment. Bacteria in the 
gut play analogous roles in the digestion and absorption of 
nutrients converted from food. Thus, it is believed that the 
GM belongs to the category of spleen and stomach in TCM.

The theory of TCM holds that the pathogenesis of CHD 
is characterized by phlegm, blood stasis and toxin. An 
improper diet, lack of rest, severe stress and other patho-
genic factors will cause dysfunction of the spleen and stom-
ach, mainly manifesting as qi deficiency. The deficiency of qi 
indicated that the power to promote fluid flow is insufficient, 
and stagnant fluid will accumulate to form phlegm. Excessive 
phlegm can be absorbed into the meridian, leading to blood 
stasis. The long-term blockade of phlegm and blood stasis 
in vessels cause the occurrence of heat toxin. Phlegm, blood 
stasis and toxin obstruct the heart meridian, becoming the 
pathological mechanism for cardiovascular diseases.

Dysfunction of the spleen and stomach closely resembles 
gut flora disorder. Blood lipids and TMAO are biomarkers 
of phlegm and stasis in TCM [71]. TMAO, converted from 
food by GM, not only causes hyperlipidaemia but also pro-
motes thrombosis. Microbiota dysbiosis and an increase 
in pathogenic bacteria can be regarded as “external tox-
ins”, while microbiota-derived metabolite dysfunction is 
regarded as an “internal toxin” [72], resulting in hyperten-
sion, hyperglycaemia, hyperlipidaemia, inflammation and 
obesity. This is the similar pathological basis of heart vessel 
occlusion, explaining the phlegm, blood stasis and toxin in 
TCM from a modern microbiology perspective. Therefore, 
TCM treats CHD by promoting blood circulation, removing 
phlegm and blood stasis, and detoxifying; on the one hand, 
TCM intervenes in CHD by reducing hypertension, hyper-
glycaemia, hyperlipidaemia, inflammation and obesity by 
adjusting the intestinal flora (Fig. 4).

Therapeutic intervention with TCM
Most herbs are administered orally and absorbed 
through the intestine. Bacterial enzymes in the intestine 
are directly involved in the absorption and metabolism 
of TCM. Several investigations have shown that TCM 
monomers and compounds might improve the symp-
toms of CHD and its risk factors by modulating the gut 
flora [73]. This paper discussed Therapeutic Intervention 
with TCM according to classification of monomers, sin-
gle herbs, herb pairs, decoctions.

Monomers (Table 2)

Resveratrol
Resveratrol (RSV), a natural polyphenolic compound 
present in many medicinal herbs (including Polygonum 
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Cuspidatum, Ampelopsis japonica and Smilax glabra 
Roxb), has the clinical effect of improving blood glu-
cose and lipid homeostasis [81], reducing fat mass and 
blood pressure [82], and alleviating oxidative stress and 

inflammation [83]. A growing body of evidence supports 
the hypothesis that RSV plays a role primarily through 
remodelling the gut microbiota. A study suggested that 
RSV attenuated TMAO-induced AS by increasing the 

Fig. 4 Gut microbiota linked to spleen and stomach in TCM and coronary heart disease. TCM traditional Chinese medicine

Table 2 Herb monomers and gut microbiota

TMA trimethylamine, TMAO trimethylamine N-oxide, AS atherosclerosis, BSH bile salt hydrolase, BAs bile acids, spp species pluralis, SCFAs short chain fatty acids

Monomers Herbs Physiological function related to 
gut microbiota

Gut microbiota References

Resveratrol Polygonum cuspidatum, Ampelopsis 
japonica, Smilax glabra Roxb

(1) Improve the dysbiosis of gut 
microbiota
(2) Reduce TMA via inhibiting the 
metabolism of choline and attenuate 
TMAO‑induced AS
(3) Activate the BSH and promote the 
catabolism of BAs
(4) Decrease mRNA expression of 
genes related to fatty acid synthesis, 
lipogenesis and adipogenesis through 
the FiaF signaling pathway
(5) Improve glucose homeostasis in 
obese individuals
(6) Lower the inflammatory state of 
obese individuals

Increased:
the ratio of Bacteroides to Firmi‑
cutes, Lactobacillus, Bifidobacterium,
Bacteroides, Parabacteroides
Decreased:
Enterococcus faecalis,
Proteobacteria,
Turicibacteraceae, Moryella, Lachno‑
spiraceae,

Chen et al. [74]
Qiao et al. [75]
Sung et al. [76]

Berberine Coptis chinensis Franch, cortex phel‑
lodendri

(1) Reduce atherosclerosis
(2) Revert the high‑fat diet‑induced 
structural changes of gut microbiota 
and enrich SCFA‑producing bacteria
(2) Lower arterial and intestinal expres‑
sion of proinflammatory chemokines 
and cytokines
(3) Suppress anaerobic production of 
TMA and inhibit the choline‑to‑TMA 
transformation
(4) Reduce body weight, blood glu‑
cose levels and intestinal inflammation

Increased:
Akkermansia spp.,
Allobaculum, Butyricoccus,
Blautia,
Bacteriodes, Phascolarctobacterium,
Ruminococcus, Coprococcu,
Lactobacillus
Decreased:
C. sporogenes,
A. hydrogenalis,
Prevotella,
Proteus

Zhu et al. [77]
Li et al. [78]
Zhang et al. [79]
Zhang et al. [80]
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ratio of Bacteroides to Firmicutes (B/F), thereby reduc-
ing TMA by inhibiting the metabolism of choline [74]. 
In addition, significantly increasing the abundance of 
Lactobacillus and Bifidobacterium, RSV activated BSH 
and promoted the catabolism of BAs in the intestine to 
regulate the synthesis of BAs in the liver [74]. In terms 
of obesity, RSV improved the dysbiosis of gut microbiota 
induced by the high-fat diet, including increasing the 
ratio of B/F and the growth of Lactobacillus and Bifido-
bacterium (negatively correlated with body weight) and 
inhibiting the growth of Enterococcus faecalis (positively 
correlated with body weight). The FiaF signalling path-
way significantly decreased the mRNA expression of 
genes related to fatty acid synthesis, lipogenesis and adi-
pogenesis [75]. A group [76] carried out a faecal micro-
biota transplant (FMT) and showed that decreases in 
Proteobacteria with resveratrol-FMT were associated 
with changes in sphingomyelins and phosphatidylcho-
lines. They have been implicated in inflammation and the 
inflammatory pathway [84], thereby lowering the inflam-
matory state of obese mice. In addition to the changes in 
gut microbiota induced by resveratrol, the composition 
of the gut microbiome regulates the production of res-
veratrol metabolites (including Piceid [85], dihydrores-
veratrol and 3,4′-dihydroxy-trans-stilbene [86]), whose 
concentrations in humans after ingestion are higher than 
those of their parent molecules and can have similar bio-
logical effects.

Berberine
Berberine (BBR), an isoquinoline alkaloid, can be found 
in several medicinal herbs, including Coptis chinensis 
Franch and cortex phellodendri. BBR and BBR-contain-
ing herbs have been shown to be effective and safe in 
antiatherosclerotic [87], antilipidaemic [88], anti-inflam-
matory [89] and antiobesity [90] applications. Recent 
studies have shown that the gut microbiota is one of the 
connections between the poor oral bioavailability of BBR 
and its pharmacological effects. The gut microbiota con-
verts BBR into its absorbable form of dihydroberberine 
(dhBBR), whose absorption rate is fivefold higher than 
that of BBR in animals. DhBBR is unstable in solution 
and can then be reoxidized to BBR in intestinal tissues 
[91]. Zhu et al. [77] investigated the association between 
alterations in the gut microbial structure and the antia-
therosclerotic effect of BBR in HFD-fed ApoE−/− mice. 
BBR treatment increased Akkermansia spp. abun-
dance markedly, contributing to the lower arterial and 
intestinal expression of proinflammatory chemokines 
and cytokines as well as the reduction of atherosclero-
sis. The results by Li et al. [78] from in vitro, ex vivo to 
in  vivo studies proved that BBR could suppress anaero-
bic production of TMA in both bacterial isolates and 

the complex gut microbial community, especially show-
ing stronger inhibition of the choline-to-TMA transfor-
mation in the detected strains A. hydrogenalis and C. 
sporogenes. It may be the main potential mechanism of 
BBR in reducing TMA production, ultimate TMAO for-
mation and aortic plaque area. Moreover, BBR showed 
reverting effects on HFD-induced structural changes 
in the gut microbiota [79], including the enrichment of 
SCFA-producing bacteria and a reduction in microbial 
diversity. Those belonging to putative SCFA-producing 
bacteria, including Allobaculum, Butyricoccus, Blautia, 
Bacteroides and Phascolarctobacterium, were signifi-
cantly increased by BBR to resist obesity-related meta-
bolic disorders. By modifying the gut microbiome, BBR 
reduced body weight, blood glucose levels and intes-
tinal inflammation in db/db mice [80]. Changes in the 
gut microbiome were characterized by an increased 
relative abundance of SCFA-producing bacteria (e.g., 
Ruminococcus, Coprococcu, Butyricimonas) and other 
probiotics, including Lactobacillus and Akkermansia. A 
decreased relative abundance of opportunistic pathogens 
(e.g., Prevotella, Proteus) was also observed.

Herbs (Table 3)

Mulberry leaf
Mulberry leaves have been used as traditional medicine, 
and their traditional effects include dispersing wind and 
heat, purging heat from the liver and improving eyesight, 
cooling blood and haemostasis. Its main ingredients, 
such as mulberry flavonoids, mulberry polysaccharides, 
mulberry fibre, mulberry polyphenols and mulberry alka-
loids, have been reported to play roles in its antihyper-
glycaemic and antilipidaemic effects by modulating the 
gut microbiota. Mulberry leaf water extracts (MWEs) 
could promote SCFA-produced gut microbial fermenta-
tion and the excretion of faecal sterol and bile acid, thus 
helping reduce the serum total cholesterol level and the 
atherosclerotic index in HFD-fed mice [92]. Similarly, 
Wang et  al. [94] described that mulberry polysaccha-
rides might promote the growth of Bacteroides. In turn, 
Bacteroides ovatus and Bacteroides cellulosilyticus could 
degrade mulberry polysaccharides into monosaccharides 
and oligosaccharide fragments and generate SCFAs that 
are beneficial to intestinal health. Ma et al. [93] revealed 
that MWE modified the disturbed gut microbiota to be 
restored in obese rats (including an increased abundance 
of Leptotrichia and Bacteroidetes and decreased abun-
dance of Cyanobacteria and Proteobacteria), which may 
be a mechanism of MWE in improving lipid metabolism 
and preventing body fat accumulation. In addition, Li 
et  al. [97] reported the synergistic interaction between 
mulberry dietary fibre and polyphenols in anti-obesity by 
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regulating gut microflora for the first time. Their molecu-
lar interactions affect the bioavailability and beneficial 
effects in the food matrix [118]. Mulberry dietary fibre 
and polyphenols regulate the Firmicutes content to a 
normal level and reduce the amount of Lachnespiraceae 
(belonging to Firmicutes/Clostridiales) to achieve weight 
loss. A group [96] studied the effects of mulberry leaf 
flavonoids, polysaccharides and alkaloids on gut micro-
flora in db/db diabetic mice. After administration, Des-
ulfovibrio, Roseburia, Lachnospiraceae and Bacteroidetes 
were markedly regulated from disorder, which effectively 
regulated blood glucose levels, especially in the alkaloid 
group. This is consistent with the hypoglycaemic mecha-
nism of alkaloids, that is, reducing postprandial hypergly-
caemia by inhibiting α-glucosidase in the small intestine 
[119].

Astragalus membranaceus
Astragalus membranaceus is a commonly used Qi-tonics 
medicine in the clinical practice of traditional Chinese 
medicine. Flavonoids, polysaccharides and saponins, the 
main ingredients of Astragali membranaceus, have func-
tions of regulating immunity, lowering blood glucose and 
improving cardiac function. In the relevant mechanism 
of their effectiveness, gut microflora plays an essential 
role in improving their bioavailability and has impacts 
on their efficacy [120]. A study in HFD-induced obese 
mice [96] showed that Astragalus polysaccharides (APS) 
restored the balance of gut microbiota by increasing the 
relative abundance of Bacteroidetes and Firmicutes and 
reducing the abundance of Proteobacteria bacteria. The 
transplantation of gut microbiota in APS-fed mice could 
significantly reduce the weight growth rate of HFD-fed 
mice. This effect of gut microbiota could only be played 
under the condition of HFD, which showed that the gut 
microbiota changed by APS reduce the energy intake 
from HDF. Gao et al. [98] reported that after 3 weeks of 
administration, compared with the model group, Astra-
gali Radix vesicle-like nanoparticle (VLN) groups could 
markedly reduce the fasting blood glucose of db/db dia-
betic mice by improving gut microbiota dysbiosis (an 
increased relative abundance of beneficial bacteria and 
the ratio of B/F). Moreover, calycosin is a flavonoid com-
ponent of Astragalus. Zhang [99] suggested that calyco-
sin may regulate intestinal health by balancing harmful 
and beneficial gut microbiota. It inhibited the growth of 
pathogenic bacteria, Enterococcus hirsutum and Entero-
bacter mesenteroides in a dose-dependent manner and, 
at suitable concentrations, promoted the growth of ben-
eficial bacteria such as Bifidobacterium lactis and Lacto-
bacillus mesenteroides. Astragaloside IV (AST) is one of 
the major active components of astragalosides and has 
no first pass effect after oral administration [121]. Xiao 

[100] demonstrated that AST increased genera such 
as Alistipes, Odoribactercan, and Riken in db/db mice, 
which could upregulate the expression of AMPK/SIRTI 
and PI3K/AKT proteins to alleviate injuries from insulin 
resistance and oxidative stress. Meanwhile, the upregu-
lated abundance of SCFA-producing bacteria, including 
Blautia, Rikenellaceae, Alistipes, Lachnospiraceae, and 
Butyrivibrio, was observed. Furthermore, Meng et  al. 
[101] explored the hypoglycaemic mechanism of astraga-
loside IV combined with berberine (BBR). They reported 
that the combination of astragaloside IV and BBR was 
more effective for lowering blood glucose and maintain-
ing body weight than alone in type 2 diabetic rats. In the 
combined group with a decrease in blood glucose, the 
abundances of Parabacteroides and Akkermansia were 
increased, while the abundance of Proteobacteria was 
reduced.

Ganoderma lucidum
Ganoderma lucidum is a traditional Chinese medicine 
made of dried fruiting bodies of fungi that has the func-
tion of Tonifying Qi and tranquilizing the mind, stop-
ping cough, and relieving asthma. Recent studies have 
shown that Ganoderma lucidum has antioxidant, hypo-
glycaemic, and hypolipidaemic effects and has potential 
therapeutic effects on AS, whose mechanism is related to 
gut microbiota. Ding’s research shows that [102]. Gano-
derma lucidum polysaccharides promote the production 
of SCFAs through the fermentation of intestinal micro-
flora, such as acetic acid, propionic acid, and butyric acid, 
which regulate the blood glucose level and impair glu-
cose tolerance in diabetic rats. Meanwhile, Ganoderma 
lucidum polysaccharide can significantly change the 
composition and structure of gut microbiota to promote 
the growth of beneficial bacteria, such as Bifidobacte-
rium, Clostribacteriaceae, Blautia, and Coprocccus, and 
inhibit the growth of harmful bacteria, such as Dorea and 
Leuconostoc. It affects the activity of various pathways 
through gut microbiota, such as bacterial chemotaxis, 
flagellar assembly, and glycan biosynthesis and metabo-
lism, which can alleviate the symptoms of type 2 diabetic 
rats. Additionally, Ganoderma lucidum spore oligosac-
charides extracted from Ganoderma lucidum spore pow-
der can promote the production of SCFAs and increase 
the abundance of beneficial bacteria such as Lactobacil-
lus and Prevotella [103]. In addition, Chang [104] and 
his colleagues found that Ganoderma lucidum mycelium 
(WEGL) can improve the intestinal barrier to prevent 
LPS of gram-negative bacteria from entering enterohe-
patic circulation, activate TLR4 signalling and reduce 
macrophage infiltration, and enhance Treg accumulation 
in liver and adipose tissue, which can reduce inflamma-
tion in HFD-fed mice. Phosphorylation of serine 307 on 
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IRS-1 was inhibited by WEGL in hepatic and adipose tis-
sues to improve insulin resistance. In terms of obesity, 
WEGL can reduce the F/B ratio and Escherichia spp. in 
HFD-fed mice and increase a variety of bacterial species 
negatively related to obesity.

Ginsenoside
Ginsenoside is the main active component of ginseng, 
which can not only alleviate the occurrence and develop-
ment of AS but also improve its risk factors. Ginsenoside 
Rb1 can alleviate AS by reducing hyperlipemia [122], 
inhibiting inflammation [123], and inhibiting calcification 
of vascular smooth muscle cells (VSMCs) [124]. Accord-
ing to the experimental results of Yange Wei [105], ginse-
noside Rg5 can significantly reduce the ratio of F/B and 
increase Clostridium clusters XIVa, XVIII, and IV in db/
db mice. Clostridium clusters XIVa, XVIII, and IV have 
been shown to reduce inflammation by activating Treg 
cells [125]. Yue’s experiment found that protopanaxatriol 
saponins could increase the abundance of Faecalibacte-
rium and Dialist and reduce the abundance of Dorea and 
Escherichia Shigella [106]. In addition, Rg5 can improve 
the expression of occludin and ZO-1 to repair the intes-
tinal barrier. By regulating the composition of the gut 
microbiota, it also significantly reduces LPS levels  and 
inhibits the TLR4-related inflammatory signalling path-
way to alleviate metabolic endotoxaemia-related inflam-
mation. In addition, Rg5 can reverse the JNK pathway 
and activate NF-kB, which improves insulin resistance 
and blood glucose in diabetic db/db mice [125].

Seaweed
Seaweed is rich in dietary fibre and divided into soluble 
dietary fibre and insoluble dietary fibre. According to 
the American Association of Cereal Chemists (AACC), 
dietary fibre includes polysaccharides, oligosaccharides, 
lignin, and associated plant substances that promote ben-
eficial physiological effects, such as the attenuation of 
blood cholesterol and blood glucose [126]. Recent studies 
have shown that saccharides in seaweed can effectively 
treat and prevent coronary atherosclerosis from many 
aspects [127–129]. Seaweed polysaccharides can reduce 
the F/B ratio and improve the symptoms of diabetic mice 
[107, 108]. In Deville’s study [109], seaweed polysaccha-
ride increases SCFAs in the intestine and reduces pH in 
the intestine, which is conducive to inhibiting the growth 
of harmful bacteria. Additionally, it changes the secretion 
and metabolism of mucin in intestinal mucus to influ-
ence the adherence and translocation of gut microbiota 
across the epithelial wall and against some infections 
[110]. In anti-obesity diets, seaweed polysaccharide-sup-
plemented diets increase carbohydrate-active enzymes 
(CAZy), which include an increase in some enzymes 

associated with a decline in the human body mass index, 
by increasing bacteria that digest dietary polysaccharides 
and decreasing potentially pathogenic bacteria. In addi-
tion, Zhang’s experiment [111] showed that insoluble 
dietary fibre in seaweed could dose-dependently reduce 
the number of Firmicutes and increase Verrucomicrobia 
in HFD mice. At the same time, by adjusting the propor-
tion of akkermansia and a. muciniphila, the SFCA con-
tent in the intestine of HFD mice was affected to further 
improve the blood glucose level and fat metabolism of 
HFD mice.

Rhubarb
Rhubarb is one of the most ancient and common herbs in 
Chinese medicine, and the first record can be traced back 
to Shen Nong’s herbal classic. The main chemical com-
positions of rhubarb include anthraquinones, anthrones, 
stilbenes, tannins, polysaccharides, etc. [130]. Traditional 
Chinese medicine believes that rhubarb has the functions 
of removing accumulation with purgation, clearing heat-
fire, clearing heat and toxins from the blood, dredging 
meridian and relieving blood stasis,  promoting diuresis 
and anti-icteri. Anthraquinone of rhubarb is the main 
component of rhubarb, which is mainly absorbed in the 
intestine and has antioxidant [131] and anti-inflamma-
tory [132] functions, regulating lipid metabolism [133]. 
Yu and her colleagues [112] found that rhubarb anth-
raquinone had stronger antibacterial activity against 
pathogenic bacteria than probiotics through in vitro cul-
ture. Rhubarb extract can increase the mRNA expression 
of REG3 and PLA2g2 in the colon and induce the mRNA 
expression of intestinal epithelial cell turnover protein 
in high fat and high sucrose diet rats [113]. Addition-
ally, high-doserhubarb anthraquinone-glycoside treat-
ment can significantly increase the expression of ZO-1 
and occludin in type 2 diabetes mellitus rats [114]. These 
results indicate that rhubarb can enhance intestinal bar-
rier integrity by increasing the expression of specific 
antimicrobial peptides and major tight junction proteins 
in the intestine and promoting epithelial cell renewal, 
which reduces LPS-induced inflammation. In terms of 
the structure of the gut microbiota, Wang’s [115] experi-
ments showed that rhein in rhubarb anthraquinone can 
increase the B/F ratio to reduce obesity and improve glu-
cose metabolism in diabetic mice. In an experiment by 
Cui et  al. [114], both rhubarb anthraquinone-glycoside 
and metformin reduced pathogenic bacteria such as Des-
ulfovibrio and increased probiotic bacteria (Lactobacil-
lus, actobacillus, and akkermansia). In addition, his study 
demonstrated that rhubarb anthraquinone-glycoside 
increases the abundance of some probiotics (Clostridium 
and Lactobacillus) and SCFA-producing bacteria (akker-
mansia and Roseburia). These bacteria provide energy 
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for intestinal L cells to secrete GLP-1 or directly induce 
GLP-1 secretion to stimulate insulin secretion and 
improve the sensitivity of peripheral tissue to insulin to 
ameliorate insulin resistance.

Salvia miltiorrhiza
Salvia miltiorrhiza is a commonly used drug for pro-
moting blood circulation and removing blood stasis. It 
is widely used in the treatment of various cardiovascu-
lar diseases and has the effects of promoting blood cir-
culation and removing blood stasis, dredging meridians 
and relieving pain, clearing heart fires and removing 
annoyance, cooling blood and eliminating carbuncles 
[134]. Studies have shown that salvianolic acid A in Sal-
via miltiorrhiza can inhibit the oxidation of LDL, inhibit 
inflammation, and improve endothelial function to 
ameliorate AS [135, 136]. Salvianolic acid B (Sal B) can 
reverse gram-negative bacteria in HFD mice, which is 
positively associated with LPS elevation and increases the 
abundance of adlercreutzia to improve gut permeability 
[116]. By maintaining intestinal motility, Salvia miltior-
rhiza could improve the tolerance of intestinal mucosal 
epithelial cells to ischaemia and hypoxia to protect intes-
tinal barrier function [117]. Meanwhile, Salvia miltior-
rhiza could enhance the barrier function of diabetic mice 
through the expression of tight junction proteins in the 
intestine [137]. Thus, Salvia miltiorrhiza can reduce met-
abolic endotoxaemia by reducing LPS and protecting the 
intestinal barrier. Furthermore, in Lin’s study [116], salvi-
anolic acid B inhibited the LPS/TLR4 signalling pathway 
by inhibiting the abundance of gram-negative bacteria 
and improving insulin sensitivity and lipid metabolism 
disorder in HFD mice.

Herb pair and Decoctions (Table 4)

Herb pair of Astragalus membranaceus and Salvia 
miltiorrhiza
Herb pair, a common form of compatibility in the clinical 
prescription of TCM, is a pair of two relatively fixed med-
icines that have a certain theoretical basis and combina-
tion rules [145]. Astragalus membranaceus is known as 
"the best of all drugs for tonifying Qi", and Salvia miltio-
rrhiza has been proven to. Promote blood circulation 
and remove blood stasis. Accordingly, the herb pair of 
Astragalus membranaceus and Salvia miltiorrhiza (HD) 
is based on the theory of Tonifying Qi and activating 
blood circulation [146] and has been used to treat CVDs 
for many years. Han et al. [138] explored the effects and 
possible mechanism of HD on gut microbiota in spon-
taneously hypertensive rats (SHRs). In this study, an 
increased F/B ratio and abundance of Lactobacillus intes-
tinalis, Akkermansia, and Akkermansia muciniphila were 

observed after administration of HD, which improved 
insulin resistance and hyperlipidemia and reduced the 
levels of circulating inflammatory factors, fat content and 
endotoxemia. Therefore, HD might regulate blood pres-
sure and treat CHD by regulating related factors.

Xiexin Decoction
Xiexin Decoction (XXD) is a TCM formula recorded in 
the masterpiece Synopsis of the Golden Chamber writ-
ten by ZhongjingZhang. XXD consists of Rhei Rhizoma, 
Scutellariae Radix, and Coptidis Rhizoma, which has the 
effect of Clearing heat, detoxifying and drying dampness. 
Some clinical and animal trials have reproduced the ben-
eficial effects of XXD on AS. XXD effectively regulated 
lipid metabolism by decreasing triglycerides and LDL and 
increasing HDL. XXD also downregulated the expres-
sion of inflammation-related proteins, such as intercel-
lular adhesion molecule-1 (ICAM-1) and vascular cell 
adhesion molecule-1 (VCAM-1), playing an anti-inflam-
matory role. In addition, XXD reduced the apoptosis of 
vascular endothelial cells induced by ox-LDL, which was 
related to inhibiting Caspase-9 and Caspase-3 [147]. A 
recent study showed that intragastric administration of 
XXD for 4  weeks increased GM-derived SCFA-produc-
ing ability by improving key SCFA synthetic enzymes, 
such as acetate CoA transferase (BUT) and acetate kinase 
(ACK).The results demonstrated that XXD could effec-
tively ameliorate lipid metabolism disturbance and alle-
viate inflammation [139]. In a comparitive clinical study, 
treatment with XXD combined with conventional West-
ern medicine (n = 60) significantly reduced blood glu-
cose and blood lipid levels by increasing probiotics [148]. 
Wei et al. reported that rats treated with XXD exhibited 
changes in SCFA production and anti-inflammatory bac-
teria such as Alloprevotella, Adlercreutzia, Barnesiella, 
and Blautia, ameliorating hyperglycaemia, lipid metabo-
lism dysfunction and inflammation [140]. Furthermore, 
XXD could increase Lactobacillus abundance, exhibiting 
vasorelaxant and antihypertensive effects [141].

Bu Yang Huan Wu Decoction
Bu Yang Huan Wu Decoction (BYHWD) is a classical 
prescripetion of TCM recorded in the Correction on 
Errors in Medical Classics, initiated by Qingren Wang, 
emphasizing the importance of tonifying Qi, promoting 
blood circulation and removing blood stasis. BYHWD 
consists of Angelica sinensis, Astragalus membranaceus, 
Amygdalus persica, Carthamus tinctorius, Paeonia lac-
tiflora, Ligusticum chuanxiong and Pheretima aspergil-
lum. It has been used clinically to treat ischaemic stroke 
and CHD [149–151]. As a significant risk factor for AS, 
homocysteine (Hcy) could induce apoptosis of vascular 
endothelial cells by increasing the production of reactive 
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oxygen species (ROS) [152]. However, BYHWD inhibited 
the NF-kB-dependent pathway to decrease ROS and Hcy, 
further preventing [153] Meta-analysis also showed that 
BYHWD was effective in CHD, reducing TC and TG lev-
els [154].

BYHWD treatment (7.37 g/kg/d) for 4 weeks reduced 
TMAO levels and the abundance of Escherichia coli 
and Clostridium, reduced LDL-C and ameliorated car-
diovascular performance [142, 143]. It also significantly 
downregulated Dsulfovibrionaceae, Coriobacteriaceae, 
Rikenellaceae and Peptococcaceae, which affected the 
plasma metabolite profile of ischaemic symptoms, mainly 
threonine, tyrosine, arginine and other amino acid 
metabolism. In addition, BYHWD upregulated oleam-
ide with antioxidant effects and warfarin to reduce the 
hypercoagulable state of blood [144]. Therefore, this 
provides a new provement for improving the ischaemia 
mechanism of BYHWD.

In accordance with the theory of TCM, the above herbs 
can be concluded to be qi-invigorating herbs, heat-clear-
ing and detoxicating herbs and blood circulation-pro-
moting and blood stasis-removing herbs. Qi-invigorating 
herbs not only improve the function of the spleen and 
stomach but also promote blood circulation in the pulse, 
which fundamentally solves the generation of patho-
logical products, such as phlegm and blood stasis. Blood 
circulation-promoting and blood stasis-removing herbs 
ensure blood vessel unobstructed, preventing stagna-
tion from turning into heat toxin. With a cold nature, 
heat-clearing and detoxicating herbs reduce the damage 
of internal and external toxins to the body. These three 
kinds of drugs are in line with our abovementioned TCM 
treatment principles for CHD, which can be used by cli-
nicians to choose appropriate drugs to intervene in CHD 
[155].

In addition, according to the theory of viscera syn-
drome differentiation, 28.79% of CHD disease locations 
are in the spleen and stomach [156]. Most herbal medi-
cines are administered orally and absorbed through the 
intestine. The GM is directly involved in the absorption 
and metabolism of TCM. Consequently, GM is closely 
related to the spleen and stomach. The fact that the 
abovementioned herbal medicines mostly have channel 
tropism of the spleen and stomach also confirms this the-
ory. Therefore, the mechanism by which TCM intervenes 
in CHD by regulating the GM can provide a theoreti-
cal basis for TCM "treating coronary heart disease from 
spleen and stomach", which has clinical guiding value.

Conclusions
Undoubtedly, there are trillions of bacteria in the human 
intestine, and the gut microbiota is considered the "sec-
ond human genome”. Currently, an unhealthy lifestyle, 

abuse of antibiotics and intestinal environment disor-
ders may lead to gut dysbiosis. Previous studies have 
shown that dysbiosis of the gut microbiota and changes 
in metabolites, such as TMAO, SCFAs and BAs, are asso-
ciated with the occurrence and development of coronary 
heart disease, hypertension, hyperglycaemia, hyperlipi-
daemia and obesity.

Thus, methods of treating CHD by regulating the GM 
are emerging. Depending on the multitarget preponder-
ances, TCM can markedly promote probiotic abundance, 
reduce TMAO, increase SCFAs and supply appropriate 
BAs to intervene in CHD. These findings extend previous 
observations and support the nation that TCM may be a 
new therapeutic target for the prevention and interven-
tion of CHD.

Because CHD is increasingly appearing among young 
individuals, the prevention of CHD has become increas-
ingly significant. By understanding the relationship 
between the patient gut microbiota and CHD treatments, 
doctors can prevent CHD. Doctors can use TCM to help 
people who are susceptible to CHD by regulating the 
GM. We can also combine a mixed preparation of probi-
otics with TCM to prevent CHD by promoting the GM, 
which can eventually reduce the occurrence as well as the 
societal and economic costs of CHD.
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