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Abstract 

Background: Alzheimer’s disease (AD) is ranked as the most prevalent neurodegenerative disease. However, the 
exact molecular mechanisms underlying pathophysiological alterations in AD remain unclear, especially at the pro‑
dromal stage. The decreased proteolytic degradation of Aβ, blood–brain barrier (BBB) disruption, and neuroinflamma‑
tion are considered to play key roles in the course of AD.

Methods: Male APPswe/PS1dE9 C57BL/6 J double‑transgenic (APP/PS1) mice in the age range from 1 month to 
6 months and age‑matched wild type mice were used in this study, intending to investigate the expression profiles of 
Aβ‑degrading enzymes for Aβ degradation activities and zonula occludens‑1 (zo‑1) for BBB integrity at the prodromal 
stage.

Results: Our results showed that there were no significant genotype‑related alterations in mRNA expression levels of 
4 well‑characterized Aβ‑degrading enzymes in APP/PS1 mice within the ages of 6 months. Interestingly, a significant 
decrease in zo‑1 expression was observed in APP/PS1 mice starting from the age of 5 months, suggesting that BBB 
disrupt occurs at an early stage. Moreover, treatment of fish oil (FO) for 4 weeks remarkably increased zo‑1 expression 
and significantly inhibited the glial activation and NF‑κB activation in APP/PS1 mice.

Conclusion: The results of our study suggest that FO supplement could be a potential therapeutic early intervention 
for AD through protecting the BBB integrity and suppressing glial and NF‑κB activation.
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Background
Alzheimer’s disease (AD) is the most common neurode-
generative disorder among older population worldwide. 
Pathological hallmarks of AD include extracellular amy-
loid plaques and intracellular neurofibrillary tangles in 
brain regions [1, 2]. A large body of studies suggest that 
amyloid plaques result from an imbalance between pro-
duction and clearance of amyloid beta (Aβ) [3, 4]. Aβ can 
be cleared by a number of pathways in the brain such as 
enzymatic degradation and recirculation into the blood 
stream via the blood–brain barrier (BBB) [5]. In the past 
decades, a series of degrading enzymes have been iden-
tified to be able to cleave Aβ either in  vitro or in  vivo, 
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including cathepsin B (CatB), neprilysin (NEP), insu-
lin-degrading enzyme (IDE), and myelin basic protein 
(MBP). CatB is specifically implicated as a proteolytic 
enzyme in degradation of Aβ in vivo [6]. NEP is reported 
to degrade both monomeric and oligomeric Aβ [7], IDE 
is concentrated on soluble monomeric clearance [8], and 
MBP can degrade both monomeric and fibrillary forms 
of Aβ [9]. Aβ deposit is found not just in AD patients but 
even in cognitively normal elderly [10], suggesting that 
Aβ enzymatic degradation might be impaired at the early 
disease stage. Therefore, it is of interest to investigate the 
expression profiles of Aβ-degrading enzymes at the pro-
dromal stage of AD.

The BBB acts to limit the molecules exchange between 
brain and periphery regions mainly relying on tight junc-
tion (TJ) structure in BBB endothelial cells, of which 
destruction could alter brain homeostasis, and lead to 
brain edema, neuroinflammation, neuron injury, and so 
on [11]. Zonula occludens-1 (zo-1), as a TJ periphery 
membrane protein, belongs to the membrane-associated 
guanylate kinase (MAGUK) family. Zo-1 is a tight junc-
tion (TJ) protein, which is essential for maintaining and 
stabilizing the TJ structure. Decrease of zo-1 could result 
in BBB integrity injury, which could disturb Aβ clearance 
via Aβ transporters on BBB and alter brain homeostasis 
that leads to brain-wide neuroinflammation and neuronal 
injury [12–15]. Previous studies reported that the dam-
age of BBB integrity participated in AD pathology [16, 
17]. The studies by Kook et al. and Wan et al. suggested 
that oligomeric Aβ1–42 could trigger the decrease of tight 
junctions and result in barrier integrity injury [18, 19]. 
Indeed, BBB integrity alterations were detected in the 
quite early stage even before amyloid plaques deposit and 
cognitive deficits in AD transgenic mice [20, 21]. Sev-
eral attempts focusing on protecting BBB function have 
shown positive effects on AD pathology, suggesting that 
the BBB could be a potential therapeutic target for AD.

Many studies have demonstrated that omega-3 poly-
unsaturated fatty acids (ω3-PUFAs) confer benefits in a 
variety of neurological disorders due to their anti-inflam-
matory, anti-oxidant, anti-apoptotic and neuroprotective 
effects [22–28]. Evidence from a preclinical study sug-
gested that dietary intervention with ω3-PUFAs could 
reduce AD risk [29]. Moreover, Docosahexaenoic acid 
(DHA), a major member of long-chain ω3-PUFAs, was 
found to reduce Aβ deposit in an aged AD mouse model 
[30]. Very recently, we have reported that ω3-PUFAs 
could promote glymphatic function to enhance Aβ clear-
ance from the brain [31]. However, clinical research 
suggested that DHA supplement improved cognition 
in patients with mild cognition impairment but not AD 
patients with severe cognition impairment [32], which 
indicates the importance of an early intervention.

In the present study, we firstly investigated the expres-
sion profiles of Aβ-degrading enzymes for Aβ degrada-
tion activities and zo-1 for BBB permeability in APP/
PS1 transgenic mice at the prodromal stage (prior to the 
age of 6 months). Our results showed that there were no 
significant genotype-related alterations in mRNA expres-
sion of 4 well-characterized Aβ-degrading enzymes in 
APP/PS1 mice within the ages of 6  months while there 
was a significant decrease in zo-1 expression starting 
from the age of 5  months. We further demonstrated 
that treatment of fish oil (FO) for 4  weeks remarkably 
increased zo-1 expression and significantly inhibited the 
glial activation and NF-κB activation in APP/PS1 mice.

Methods
Animal
APPswe/PS1dE9 C57BL/6  J double-transgenic (APP/
PS1) mice at different ages ranging from 1-month to 
6-month old and age-match wild type (WT) mice were 
used in the present study. Male heterozygous APP/PS1 
mice were obtained from Jackson Laboratory (Bar Har-
bor, ME, USA) and used to mate with female C57BL/6 
mice to generate heterozygous mice and WT littermates 
for this research. The genotypes of APP/PS1 animals 
were identified by standard polymerase chain reaction 
(PCR) analysis of genomic DNA isolated from mouse 
tails. All mice were housed in groups and accessed to 
food and water ad  libitum in a 12:12 h light–dark (light 
on at 8: 00 am) cycle, provided with controlled tempera-
ture and humidity.

FO administration
APP/PS1 mice at 4-month and 5-month old received 
daily intragastrical administration of FO. Each ani-
mal received 50  μL FO (containing 13  μM Eicosap-
entaenoic Acid (EPA) and 99  μM DHA; the purity of 
EPA + DHA = 80.27%; Wuhan Shengtianyu Biotech 
Ltd., China) per day lasting for 4 weeks. EPA and DHA 
were suspended in corn oil which is free from contami-
nants. The main constituents of corn oil are oleic acid 
and linoleic acid, which are essential dietary elements 
for humans. Corn oil is widely used as a safe vehicle in 
the study of omega-3 polyunsaturated fatty acids. APP/
PS1 mice in the control group received daily intragastri-
cal administration of equivoluminal isocaloric corn oil 
(CO). Age-matched WT mice which received a normal 
diet served as a normal control.

Fatty acid analysis
To evaluate the effects of the dietary regime on the 
PUFA composition in the brain, the hippocampal and 
cortical tissue samples of APP/PS1 mice from fish oil-
and corn oil-treated groups (n = 3 per group) were 
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processed for fatty acid analysis by gas chromatogra-
phy-mass spectrometry (GC–MS) as described pre-
viously [33]. Quantifications were performed by an 
investigator who was blind to the animal grouping and 
carried out by normalizing individual peak areas as the 
percentage of total fatty acids.

Tissue preparation
APP/PS1 and WT mice at the age of 1, 2, 3, 4, 5, and 
6  months were sacrificed under overdose anesthetic 
(n = 3 at each time point). After transcardially per-
fused with ice-cold normal saline, the animal brains 
were quickly moved out to be placed on ice and then 
divided into two halves along the middle sagittal sul-
cus. The cortex and hippocampus of the right half were 
used to detect the expression of Aβ degrading enzymes 
by using real-time PCR (RT-PCR), and the cortex and 
hippocampus of the left half were used to measure the 
expression of zo-1 by western blot. APP/PS1 mice aged 
5 months which received either FO or CO administra-
tion for 4  weeks were sacrificed and their brains were 
isolated for immunohistochemistry (5 mice each group) 
and western blot analysis (5 mice each group).

Real‑time PCR analysis
For isolating RNA from the cortex and hippocampus, 
TRIzol reagents (Catlog No: RN 190, Thermo Fisher 
Scientific, USA) were used under the manufacturer’s 
instructions, followed by RNA quality evaluation with 
a microplate reader (Thermo Fisher Scientific, USA). 
Two micrograms of RNA were reversely transcribed 
using a reverse transcription system kit under the 
manufacturer’s protocol. RT-PCR was performed in a 
20 μL reaction system containing 10 μL TB Green Mix 
(RR820Q, TB GreenTM premix Ex TaqTM, Kapa Bio-
systems, USA), 2  μL of cDNA (diluted 20 times with 
de-enzyme water), 6.6  μL ddH2O, and 0.4  μL 500  nM 
of each specific primer. The cycling parameters were as 
follows: 95 °C, 300 s; 95 °C, 10 s; 60 °C, 40 s; 95 °C,10 s; 
60 °C, 30 s; and 95 °C, 30 s. The primers used for PCR 
were shown as follows: CatB, forward: 5′-AAA TCA 
GGA GTA TAC AAG CATGA-3′, reverse: 5′-GCC CAG 
GGA TGC GGA TGG -3′; NEP, forward: 5′- TCC TGA 
CTA TCA TAG CGG TGAC-3′, reverse: 5′- GAC GTT 
GCG TTT CAA CCA GC-3′; IDE, forward: 5′-ACT AAC 
CTG GTG GTG AAG -3′, reverse: 5′- GGT CTG GTA 
TGG GAA ATG  -3′; MBP, forward:5′-CGG ACC CAA 
GAT GAA AAC CC-3′, reverse: 5′-AAA GGA AGC CTG 
GAC CAC ACAG-3′; GADPH, forward: 5′ AAC GAC 
CCC TTC ATT GAC  -3′; reverse:5′- TCC ACG ACA TAC 
TCA GCA C -3′.

Western blot analysis
Proteins of cortex and hippocampus were extracted 
with lysis buffer containing a protease inhibitor, and 
a BCA protein assay kit (Catlog No: 23225, Thermo 
scientific, USA) was used for protein concentration 
analysis. After separated by electrophoresis on SDS-
PAGE gel, sample proteins were transferred onto poly-
vinylidene fluoride membranes (Catlog No: 1621077, 
BIO-RAD, USA). The membranes were then incubated 
with primary and secondary antibodies, followed by 
incubation with enhanced chemiluminescence solu-
tion (Catlog No: RPN2235, GE Healthcare, Sweden) 
and autoradiography. Primary antibodies included anti-
zo-1 (Catlog No: AB2272, EMD Millipore, USA), anti-
NFκB-p65 (Catlog No: 8242, cell signaling technology, 
USA), anti-phosphorylated p65 (p-p65) (Ser536, Catlog 
No: 3303, cell signaling technology, USA), anti-tubulin 
(Catlog No: RM2007, Ray Antibody, China), and anti-
actin (Catlog No: SC69879, Santa Cruz Biotechnology, 
USA). All results from chemiluminescence exposure 
were analyzed with software Image Pro plus 6.0.

Immunofluorescence
Brain tissues post-fixed in 4% PFA were transferred into 
20–30% sucrose buffer for 2 days at 4 °C, and were cut 
into 15 μm coronal sections. Selected coronal sections 
were incubated with primary antibodies anti-GFAP 
(Catlog No: 60190, sigma, USA) and anti-Iba-1 (Catlog 
No: 019-19741, Wako, Japan) overnight after blocked 
with 10% normal donkey serum (Beyotime technology) 
at room temperature for 1  h. Species-specific second-
ary antibodies were then added to the brain sections 
for 1 h at 37  °C in dark after washed with 0.01 M PBS 
3 times. Following washing with 0.01  mol/l PBS, the 
sections were mounted using Fluoroshield Mounting 
Medium with DAPI (Catlog No: F6057, Sigma-Aldrich; 
Merck KGaA, Darmstadt, Germany). The expression 
of Iba-1 and GFAP was examined using the Olympus 
fluorescence microscope (20× magnification). Quanti-
fication of GFAP labelled astrocytes and Iba-1 labelled 
microglia was performed using the image analysis pro-
gramme ImageJ (ImageJ 1.39u, National Institute of 
Health). For evaluating the average fluorescent density, 
3 measuring frames of 1360 × 1024 pixels per section 
and a total of 5 randomly selected sections per animal 
were analyzed in a blinded manner by two investiga-
tors. The level of immunoreactivity was manifested as 
the ROI per view that contained immunoreactivity. 
The image acquirements and data quantifications were 
performed by an investigator who was blind to the 
experiment.
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Fig. 1 No alterations in mRNA expression of Aβ‑degrading enzymes before AD onset in APP/PS1 mice. a–d Real‑time PCR analysis revealed that no 
differences in mRNA expression level of were observed in the hippocampus and cortex in APP/PS1 mice aged from 1 to 6 months old compared 
to aged matched WT mice except for a decreased expression of IDE in the hippocampus of APP/PS1 mice compared to WT mice at the age of 
5 months. A: CatB; B: NEP; C: IDE; and D: MBP. (*P < 0.05; n = 3 per group)
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Statistical analysis
All data were presented as mean ± SEM, and the graphs 
were made using GraphPad Prism 6.0. Two-tail student’s 
t test and one-way ANOVA followed by Turkey post hoc 
test were used for two-group and multiple-group com-
parisons respectively. The significant difference level was 
set 0.05 in all comparisons with SPSS 24.0.

Results
Aβ‑degrading enzymes showed no declines before AD 
onset in APP/PS1 mice
RT-PCR analysis was performed to assess whether there 
were alterations in mRNA expression of 4 well-identi-
fied Aβ-degrading enzymes including CatB, NEP, IDE, 
and MBP in APP/PS1 mice at the prodromal stage. No 

Fig. 2 Changes of zo‑1 level enzymes before AD onset in APP/PS1 mice. a Western blot revealed that zo‑1 level was enhanced in the hippocampus 
of APP/PS1 mice compared to WT at 2‑ and 3‑month old, whereas zo‑1 expression level decreased in 5‑ and 6‑month old APP/PS1 mice compared 
to age‑match WT mice *P < 0.05; n = 3 per group). b Western blot revealed that zo‑1 level was enhanced in the cortex of APP/PS1 mice compared 
to WT at 2‑ and 3‑month old, whereas zo‑1 expression level decreased in 5‑ and 6‑month old APP/PS1 mice compared to age‑match WT mice 
(*P < 0.05, **P < 0.01; n = 3 per group)



Page 6 of 11Xie et al. Chin Med           (2020) 15:29 

continuous alterations in the expression of CatB, NEP, 
IDE, and MBP were detected in both the hippocam-
pus and the cortex of APP/PS1 mice within the early 
6  months (Fig.  1a–d). Furthermore, no alterations on 
the mRNA expression level of CatB, NEP, IDE, and MBP 
were found in APP/PS1 mice compared to age-matched 
WT mice at the age of 1, 2, 3, 4, 5, or 6 months, in both 
the hippocampus and the cortex (Fig.  1a–d), except for 
a transient decrease in the expression of IDE in the hip-
pocampus of APP/PS1 mice compared to WT mice at the 
age of 5 months (Fig. 1c).

FO treatment reversed the declined expression of zo‑1 
before AD onset in APP/PS1 mice
Changes of zo-1 level in both the hippocampus and cor-
tex in APP/PS1 mice before disease onset were evaluated 
with Western blot analysis. There was no difference in the 
expression level of zo-1 between APP/PS1 and WT mice 
at the age of 1 month (Fig. 2a, b). An unexpected increase 
in the expression level of zo-1 in 2- and 3-month APP/
PS1 mice was found as compared to their age-match WT 
mice (Fig.  2a, b). A significant decrease in zo-1 expres-
sion level was found in both the hippocampus and cortex 
of APP/PS1 mice at the age of 5 and 6 months compared 
to their age-matched WT mice (Fig. 2a, b).

There is evidence suggesting that ω3-PUFAs play an 
active role in the maintenance of biological membranes 
integrity and homeostasis [34]. To investigate whether 
treatment with FO (rich in ω3-PUFAs) could protect BBB 
integrity and permeability, we treated 4- and 5-month 
old APP/PS1 mice for 4  weeks. GC–MS showed that 
the expression level of ω-3 docosahexaenoic acid (DHA) 
and docosapentaenoic acid (DPA) in the hippocampus 
and cortex of APP/PS1 mice treated with fish oil for 
4 weeks was significantly higher than that in the control 
group treated with corn oil (Tables 1, 2; n = 3 per group). 
Accordingly, the ratio of ω-6/ω-3 PUFAs was signifi-
cantly lower in the fish oil-treated group compared with 
the corn oil-treated group (Tables 1, 2; n = 3 per group). 
Western blot analysis showed that FO treatment signifi-
cantly increased the expression levels of zo-1 in both the 
hippocampus and cortex of APP/PS1 mice at the age of 5 
and 6 months compared with CO-treated APP/PS1 mice 
(Fig. 3a, b).

FO treatment inhibited glial activation and NF‑κB 
activation in APP/PS1 mice
It is widely considered that neuroinflammation is impli-
cated in AD pathology. For example, microglial activa-
tion triggered by Aβ could be observed in early AD [35, 

Table 1 Profiles of  polyunsaturated fatty acids 
in  the  hippocampus from  fish oil-treated mice 
and  the  control mice with  corn oil treatment (n = 3 
per group)

Data expressed as mol% of total fatty acids ± SEM (*P < 0.05; **P < 0.01; 
***P < 0.001). AA arachidonic acid, DGLA dihomo-γ-linolenic acid, 
DHA docosahexaenoic acid, DPA docosapentaenoic acid, DTA 
docosatetraenoic acid, EDA eicosadienoic acid, LA linoleic acid, 
MUFA monounsaturated fatty acids (the value is given as follows: 
C16:1 + C18:1 + C20:1 + C22:1), SFA saturated fatty acids(the value is given as 
follows: C14:0 + C15:0 + C16:0 + C17:0 + C18:0 + C20:0 + C22:0 + C24:0); PUFA 
polyunsaturated fatty acids

Fatty acid Hippocampus

Corn oil‑mice Fish oil‑mice

ω‑6 PUFA

 LA (C18:2 ω‑6) 0.91 ± 0.02 0.91 ± 0.05

 EDA (C20:2 ω‑6) 0.27 ± 0.05 0.24 ± 0.03

 DGLA (C20:3 ω‑6) 0.51 ± 0.03 0.47 ± 0.05

 AA (C20:4 ω‑6) 13.91 ± 0.42 11.11 ± 1.02*

 DTA (C22:4 ω‑6) 4.26 ± 0.17 3.99 ± 0.21

 n‑6 DPA (C22:5 ω‑6) 4.91 ± 0.43 1.26 ± 0.33***

 Total 28.05 ± 1.12 18.41 ± 1.16*

ω‑3 PUFA

 ω‑3 DPA (C22:5 ω‑3) 0.15 ± 0.01 0.39 ± 0.03**

 DHA (C22:6 ω‑3) 16.12 ± 1.89 27.18 ± 2.25**

 Total 16.57 ± 0.44 26.52 ± 1.21**

Total PUFA 35.75 ± 1.59 43.01 ± 1.73*

ω‑6/ω‑3 1.56 ± 0.06 0.68 ± 0.06**

Table 2 Profiles of  polyunsaturated fatty acids 
in  the  cortex from  fish oil-treated mice and  the  control 
mice with corn oil treatment (n = 3 per group)

Data expressed as mol% of total fatty acids ± SEM (*P < 0.05; **P < 0.01; 
***P < 0.001). AA arachidonic acid, DGLA dihomo-γ-linolenic acid, 
DHA docosahexaenoic acid, DPA docosapentaenoic acid, DTA 
docosatetraenoic acid, EDA eicosadienoic acid, LA linoleic acid, 
MUFA monounsaturated fatty acids (the value is given as follows: 
C16:1 + C18:1 + C20:1 + C22:1), SFA saturated fatty acids(the value is given as 
follows: C14:0 + C15:0 + C16:0 + C17:0 + C18:0 + C20:0 + C22:0 + C24:0), PUFA 
polyunsaturated fatty acids

Fatty acid Cortex

Corn oil‑mice Fish oil‑mice

ω‑6 PUFA

 LA (C18:2 ω‑6) 0.87 ± 0.07 0.89 ± 0.05

 EDA (C20:2 ω‑6) 0.29 ± 0.06 0.26 ± 0.03

 DGLA (C20:3 ω‑6) 0.57 ± 0.02 0.53 ± 0.04

 AA (C20:4 ω‑6) 16.21 ± 0.18 13.02 ± 0.65*

 DTA (C22:4 ω‑6) 4.23 ± 0.22 3.99 ± 0.15

 n‑6 DPA (C22:5 ω‑6) 4.89 ± 0.45 1.69 ± 0.25***

 Total 27.87 ± 1.35 20.76 ± 1.31*

ω‑3 PUFA

 ω‑3 DPA (C22:5 ω‑3) 0.14 ± 0.01 0.39 ± 0.01**

 DHA (C22:6 ω‑3) 15.82 ± 1.02 25.05 ± 1.32**

 Total 17.12 ± 0.58 27.21 ± 1.28**

Total PUFA 34.26 ± 1.45 44.26 ± 1.65*

ω‑6/ω‑3 1.89 ± 0.07 0.61 ± 0.09**
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36]. As results, pro-inflammation factors released from 
activated microglia then triggered complicated cascade 
reactions, contributing to the disease development. We 
treated 5-month old APP/PS1 mice with either FO or 
CO for 4 weeks. FO treatment significantly inhibited glial 
activation of the cortex region, which was demonstrated 
by lower relative optical intensity (ROI) of GFAP and 
Iba-1 staining found in the cortex of FO-treated APP/PS1 
mice compared to the CO-treated APP/PS1 mice (Fig. 4a, 
b).

NF-κB activation is a key regulator for stimulating 
pro-inflammatory gene transcription [37]. Normally p65 
combines with p50 as heterodimers in the cytoplasm, 
and its activity is inhibited by IκB. When IκB is acti-
vated and phosphorylated, it will stop suppressing the 
p65:p50 dimers. The released p65 will be phosphorylated 
and translocated into the nucleus where it binds with 
the target DNA and triggers a series of inflammatory 
genes transcription such as IL-1β, TNF-α, and NLRP3 
[38, 39]. As the results showed, a significant elevation in 
the expression of phosphorylated p65 was observed in 
both the hippocampus and cortex of the APP/PS1 mice 
treated with CO compared to WT mice, suggesting that 
the NF-κB signaling pathway was activated in APP/PS1 
mice (Fig.  5a–c). FO treatment significantly suppressed 
NF-κB activation in APP/PS1 mice as compared to the 
CO-treated group (Fig. 5a–c).

Discussion
During the last decade, failure of clinical trials for AD 
was announced in succession [40–42]. Most of these 
clinical trials have focused on strategies for treating AD 
patients with developed symptoms. The failure of these 
clinical trials suggests that it might be too late to treat AD 
and an effective treatment for AD might need an early 
intervention. Exact molecular mechanisms underlying 
pathophysiological alterations in AD still remain unclear. 
The amyloid cascade hypothesis is one of the most well-
known molecular mechanisms underlying pathophysi-
ological alterations in AD [43]. This hypothesis proposes 
that Aβ deposits trigger neuronal dysfunction and death 
in AD.

Accumulating evidence suggests that abnormal Aβ 
deposits result from an imbalance between produc-
tion and clearance of Aβ [3, 4]. While pharmacologic 
inhibition targeted at Aβ production could be effective 
in reducing Aβ accumulation, Aβ clearance is another 
effective way to reduce Aβ levels in the brains of AD. A 
series of Aβ-degrading enzymes have been identified 
which play key roles in determining cerebral Aβ levels 
under either physiological or pathophysiological condi-
tions. NEP is one of the principal Aβ-degrading proteases 
and is the first one identified to be able to efficiently 

degrade Aβ in animal models [44]. NEP and IDE levels 
were aberrantly decreased at the dementia stage of AD 
patients, but not in the preclinical stage of AD patients, 
and the same results were also found in the APP/PS1 
mice [45–47], suggesting that Aβ-degrading activities 
are gradually reduced after disease onset in AD. Interest-
ingly, plaques burden decrease was obviously observed in 
14-month APP transgenic mice which genetically over-
expressed NEP or IDE [48]. In our study, the expression 
levels of 4 well-characterized Aβ-degrading enzymes did 
not decrease at the prodromal stage of AD mice. It was 
reported that APPSwe/PSEN1(dE9) mice showed contex-
tual memory deficit at the early age of 6  months, while 
spatial memory impairment occurred at 8–10  months 
old [49–51]. Our results indicated that therapeutic 
approaches based on Aβ degradation could be designed 
for reducing cerebral Aβ levels after disease onset.

Fig. 3 FO treatment reversed the declined expression of zo‑1 in 
APP/PS1 mice. a Western blot analysis showed that FO treatment 
for 4 weeks significantly increased the expression levels of zo‑1 in 
both the hippocampus and cortex of 4‑month old APP/PS1 mice 
compared to CO‑treated control animals (**P < 0.01; n = 3 per group). 
b Western blot analysis showed that FO treatment for 4 weeks 
significantly increased the expression levels of zo‑1 in both the 
hippocampus and cortex of 5‑month old APP/PS1 mice compared to 
CO‑treated control animals (**P < 0.01; n = 3 per group)
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Several studies have reported that BBB disruption is 
identified as one of AD pathogeneses [52, 53]. Zo-1, one 
of the most important tight junctions of BBB, plays an 
important role in BBB integrity maintenance [54]. Our 
study demonstrated that the decrease of zo-1 expres-
sion in APP/PS1 mice started from 5-month-old, sug-
gesting that the integrity of BBB alters at a quite early 
stage. Remarkably, FO treatment could counteract the 
decreased expression of zo-1 when applied to APP/PS1 
mice, which provides evidence that ω3-PUFAs could be 
used as an early intervention agent for protecting BBB 
integrity in AD. An unexpected elevation of zo-1 expres-
sion in 2- and 3- month APP/PS1 mice was observed, but 
the exact mechanism for this temporary increase remains 
unknown. We propose that the abnormal production of 
Aβ in APP/PS1 mice at such an early stage may stimulate 
the expression level of zo-1 to compensate the dynamic 
of BBB as previously reported [55].

Neuroinflammation has been well defined in AD and 
considered as one of crucial AD pathogeneses [56–58]. 
Aβ deposition and Tau fragment could trigger a cascade 
inflammation [59, 60]. Our study showed that NF-κB was 
activated APP/PS1 mice at the age of 5 and 6  months. 
The activated NF-κB is essential for both acute and 
chronic inflammatory responses. It is widely accepted 
that ω3-PUFAs and their metabolites such as Resolvin 
D1 and Neuroprotectin D1 could function as potent 
anti-inflammatory molecules that suppresses inflamma-
tion and helps in the resolution of inflammatory events. 
Our findings demonstrated that FO supplement could be 
an early intervention for AD through significantly sup-
pressing glial activation and NF-κB activation. In the 
pathogenesis of AD, Aβ accumulation induces the glial 
cell activation and impairs the BBB integrity. Interest-
ingly, the impairment of BBB integrity activates glial cells 
to secret inflammatory factors, which in turn induces 
Aβ deposition in the brain of AD [61, 62]. Fish oil shows 

Fig. 4 FO treatment inhiited the glial activation in APP/PS1 mice. a Representative images of GFAP expression in the cortex of the 5‑month old 
APP/PS1 mice treated with FO or CO for 4 weeks and the age‑matched WT mice (normal control). Higher relative optical intensity (ROI) of GFAP 
staining was observed in the cortex of APP/PS1 mice treated with CO compared to the WT mice, whereas FO treatment significantly suppressed 
astroglial activation in APP/PS1 mice compared to CO treatment (***P < 0.001; n = 5 per group). b Representative images of Iba‑1 expression in the 
cortex of the 5‑month old APP/PS1 mice treated with FO or CO for 4 weeks and the age‑matched WT mice (normal control). Higher relative optical 
intensity (ROI) of Iba‑1 staining was observed in the cortex of APP/PS1 mice treated with CO compared to the WT mice, whereas FO treatment 
significantly suppressed microglial activation in APP/PS1 mice compared to CO treatment (*P < 0.05; n = 5 per group). Scale bar: 75 µm
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effects on protecting the BBB integrity and suppressing 
glial and NF-κB activation, suggesting that fish oil sup-
plement is a promising therapeutic early intervention for 
AD.

Conclusions
In summary, our study investigated Aβ enzymatic deg-
radation activities and BBB integrity in APP/PS1 mice 
at the prodromal stage. No significant genotype-related 
alterations in mRNA expression of Aβ-degrading 
enzymes were found in APP/PS1 transgenic mice 
within the ages of 6  months, whereas the protein 
expression level of zo-1 decreased in 5- and 6-month 
APP/PS1 transgenic mice compared to their age-
matched WT mice. Our study provides evidence that 
FO supplement could be a potential therapeutic early 
intervention for AD through protecting the BBB integ-
rity and significantly suppressing glial activation and 
NF-κB activation.
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