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Abstract 

Background:  In traditional Chinese medicine (TCM) clinical practice, TCM syndromes help to understand human 
homeostasis and guide individualized treatment. However, the TCM syndrome changes with disease progression, of 
which the scientific basis and mechanism remain unclear.

Methods:  To demonstrate the underlying mechanism of dynamic changes in the TCM syndrome, we applied a 
dynamic network biomarker (DNB) algorithm to obtain the DNBs of changes in the TCM syndrome, based on the 
transcriptomic data of patients with chronic hepatitis B and typical TCM syndromes, including healthy controls and 
patients with liver-gallbladder dampness-heat syndrome (LGDHS), liver-depression spleen-deficiency syndrome 
(LDSDS), and liver-kidney yin-deficiency syndrome (LKYDS). The DNB model exploits collective fluctuations and cor-
relations of the observed genes, then diagnoses the critical state.

Results:  Our results showed that the DNBs of TCM syndromes were comprised of 52 genes and the tipping point 
occurred at the LDSDS stage. Meanwhile, there were numerous differentially expressed genes between LGDHS and 
LKYDS, which highlighted the drastic changes before and after the tipping point, implying the 52 DNBs could serve 
as early-warning signals of the upcoming change in the TCM syndrome. Next, we validated DNBs by cytokine profil-
ing and isobaric tags for relative and absolute quantitation (iTRAQ). The results showed that PLG (plasminogen) and 
coagulation factor XII (F12) were significantly expressed during the progression of TCM syndrome from LGDHS to 
LKYDS.

Conclusions:  This study provides a scientific understanding of changes in the TCM syndrome. During this process, 
the cytokine system was involved all the time. The DNBs PLG and F12 were confirmed to significantly change during 
TCM-syndrome progression and indicated a potential value of DNBs in auxiliary diagnosis of TCM syndrome in CHB.
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Background
Traditional Chinese Medicine (TCM) plays an impor-
tant role in alternative health care. Nowadays, TCM is 
becoming more popular [1], because of increasing evi-
dence of its efficacy [2–4]. Chronic hepatitis B (CHB) 
infection continues to be a global health problem. There 
are more than 400 million people worldwide affected 
with CHB, ranging from hepatitis B-virus (HBV) carrier, 
CHB, cirrhosis, and hepatocellular carcinoma [5]. Treat-
ment of CHB is unsatisfactory and further progress is 
needed. However, TCM treatments for HBV-related dis-
eases, especially when combined with Western medicine, 
have promising effects [6, 7]. TCM syndrome (“ZHENG” 
in Mandarin Chinese) is a key principle in TCM. Patients 
with the same disease would be treated differently by 
TCM practitioners, per TCM syndrome. Previous studies 
have shown that patients with different TCM syndromes 
displayed various responses after being treated with the 
same therapy [8, 9]. Furthermore, applying TCM without 
any consideration of the TCM-syndrome classification 
could cause serious side effects [10]. Liver-gallbladder 
dampness-heat syndrome (LGDHS), liver-depression 
spleen-deficiency syndrome (LDSDS), and liver-kidney 
yin-deficiency syndrome (LKYDS) are typical TCM syn-
dromes for CHB diseases. They represent excess, excess-
deficiency mingled, and deficiency TCM syndromes, 
respectively, which are widely used in disease diagnosis. 
However, the biological basis for the TCM syndromes 
remains unclear. Various studies have shown that the 
reductionist approach of Western medicine is not suit-
able for the scientific basis of TCM syndromes [11, 12]. 
TCM follows a traditional approach, focusing on theo-
ries and clinical symptoms, but lacks modern scientific 
explanation, while Western medicine focuses on detailed 
investigations with modern technologies at microscopic 
scales. By means of phenotype and systems biology, 
the holistic study of TCM has become a very popular 
research topic in modern science.

Currently, essence of different TCM syndromes in 
CHB was revealed by applying genomics, proteomics 
and metabonomics technics [13, 14]. Gene specifica-
tion of syndromes demonstration and the change of gene 
expression in TCM syndromes has been investigated. For 
example, microarray test and RT-PCR were carried out 
in blood sample from LGHDS and LDSDS in CHB and 
liver cirrhosis and G-protein-coupled receptor protein-
signaling pathway was found related to differentiating 
two TCM syndromes [15]. Epigenetic differences of CHB 

were also showed in different TCM syndromes [16]. Song 
et  al. [17] performed surface-enhanced laser desorption 
ionization time-flight mass spectrometry (SELDI-TOF/
MS) on two cohorts of CHB patients with excess or defi-
ciency syndrome and found two significant serum pro-
teins for classifying these syndromes. Adopting similar 
proteomics techniques, Liu et  al. [18] also found four 
proteins differentially expressed in five typical TCM syn-
dromes. Tongue coating is one of the important founda-
tions of TCM syndrome signature. Zhao et  al. [19, 20] 
demonstrated microbiota and metabolic difference of 
CHB patients with different TCM syndromes. Above all, 
biomolecules (including genes, proteins, and metabolites) 
expression and regulation rules were researched with the 
laws and methods in genomics, proteomics and meta-
bonomics. Especially by comparing and analyzing the 
differences of biomolecules expression profile, specifica-
tion and differentiation of TCM syndromes were proved. 
Our previous studies have also shown that several bio-
molecules may be potential markers for TCM syndrome 
differentiation in CHB [21–23]. Similarly, most potential 
biomarkers for TCM syndrome are selected from differ-
entially expressed molecules [21, 24–26]. However, with 
the characteristics of “internal and external deficiency, 
dynamic space–time change, and multi-dimensional 
interface” [27], the complexity of dynamic changes mech-
anism of TCM syndromes have rarely been reported.

To address these issues, recent studies have provided 
novel strategies from different viewpoints. Among which, 
network perspectives and network-based approaches 
were approved as powerful and effective techniques in 
systems biology. Network-based methods are widely used 
in disease gene prediction [28, 29], drug discovery [30], 
and biomarker identification [31, 32]. Considering the 
complicated and dynamic characteristics of CHB-TCM 
syndromes, it is necessary to introduce a new process to 
integrate the interactive effects of individual molecules. 
Here, we introduce our statistical model for dynamic 
change: the dynamic network biomarker (DNB) method 
[33]. The DNB method can identify the critical state of 
TCM-syndrome progression, based on the correla-
tion and fluctuation of molecules. Unlike the traditional 
molecular biomarker approach, the DNB method identi-
fies differentially associated networks in a dynamic man-
ner, to determine the corresponding functional DNBs of 
networks [34, 35].

In this present study, we proposed that dynamic 
changes in TCM syndromes fit the statistical model of 
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the DNB method. Thus, we identified the critical transi-
tion of the CHB-TCM syndrome: changing from excess 
syndrome (LGDHS) to deficiency syndrome (LKYDS) at 
a network level. Moreover, we found that DNBs may play 
an important role in dynamic changes in the CHB-TCM 
syndrome.

Methods
Participants
A total of 244 blood samples that met the eligibility cri-
teria were collected from Shuguang Hospital, Shang-
hai University of TCM. This study was approved by the 
Official Ethics Committee of the Shanghai University of 
TCM, and written informed consent was obtained from 
all participants. All healthy volunteers had no history of 
liver disease, no viral infection, and no other diseases. 
Sixty-four samples were used for microarray detec-
tion, including healthy group (n = 16), LGDHS (n = 16), 
LDSDS (n = 16), and LKYDS (n = 16). The TCM syn-
drome types were identified according to the guideline 
for the prevention and treatment of CHB, formulated by 
the Chinese Society of Hepatology and Chinese Society 
of Infectious Diseases, Chinese Medical Association [36]. 
All patients were diagnosed by attending TCM physicians 
at their first visit; and their diagnoses were confirmed by 
three chief TCM physicians, who are considered experts 
and usually have over 30 years of practice in TCM.

RNA isolation and microarray detection
All blood samples were from the peripheral venous blood 
of patients with CHB and healthy donors. Apart from 
the 64 samples for microarray detection, another 57 
samples of microarray data including LGDHS (n = 20), 
LDSDS (n = 20), and LKYDS (n = 17) were provided for 
validation. The samples were immediately frozen in liq-
uid nitrogen and then stored at − 80  °C. The RNA was 
extracted using TRIzol® Reagent (Invitrogen, Carlsbad, 
CA, USA) according to the manufacturer’s protocol. 
A quality control check was carried out using the Nan-
oDrop ND-1000. The RNA concentration ranged from 
1.5 to 12 ng/μL.

The total RNA profiles were extracted, and the bioti-
nylated cDNA was hybridized to the Affymetrix U219 
Whole Human Genome microarray (GeneTitan, Affym-
etrix, Santa Clara, California, USA). 60  ng of RNA was 
labeled and hybridized for each array. Hybridization 
signals were detected with the GeneChip Scanner 3000 
(Affymetrix, Santa Clara, California, USA); the data were 
normalized using Gene Spring Software 11.0 (Agilent 
Technologies, CA, USA). All raw data were transformed 
into log 2 scale, and then, the expression levels were nor-
malized to zero mean and unit sample variance.

DNB analysis
Progression of both TCM syndromes and complex dis-
eases usually have nonlinear transitions [33, 35, 37]. 
Such a transition plays key roles in biological processes. 
Identifying the critical transition in the progress is 
important for understanding the essence of TCM syn-
drome change. Thus, we introduced a mathematical 
model, i.e., the DNB method to identify the predictive 
biomarkers and understand the molecular mechanisms 
of TCM syndrome dynamic change. The DNB method 
has been applied successfully to studies in multiple 
fields (e.g., disease diagnosis and prognosis, therapeutic 
response, cell differentiation) [35, 38–40].

In nonlinear dynamical theory, there is a dominant 
group of molecules (i.e., DNBs), when a system is near 
the critical state. Using molecular fluctuation informa-
tion (i.e., dynamical information) and network informa-
tion (i.e., correlation information among molecules), 
DNBs could be identified when they satisfied three cri-
teria [33].

1.	 The DNBs are highly fluctuated at the critical stage, 
with high coefficients of variation (CV).

2.	 The DNBs are highly correlated with each other in 
terms of their expression, and Pearson correlation 
coefficients (PCC) among them (PCCin) in absolute 
values is high.

3.	 The DNBs are weakly correlated with other mol-
ecules: the pearson correlation coefficients between 
them and other molecule clusters (PCCout) in abso-
lute values is low.

In detail, the main steps are as follows:

a.	 data preparation: genomic expression data of four 
stages (t = healthy, LGDHS, LDSDS and LKYDS, 
while healthy samples are considered as control). Let 
CV = 1, PCCin = 1, PCCout = 1 at healthy stage.

b.	 Coefficient of variance test: select the genes with sig-
nificant high CV basing on expression profile. The 
criterion is selecting genes with top 30 present CV 
value. Then we have a module of genes with high CV 
at t, MtC.

c.	 Intra-correlation test: calculating average PCC of the 
genes from previous chosen MtC at each stage.

d.	 Inter-correlation: calculating average PCC between 
inside and outside genes of MtC.

e.	 DNB test: considering the above criteria, we used the 
following criterion index (CI) to quantify DNBs, as 
well as the tipping point. 
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where CV is the average coefficient of variance of 
the DNBs, PCCin is the average PCC of the cluster of 
molecules in absolute values, and PCCout is the aver-
age PCC between the cluster of molecules and other 
molecules in absolute values.

f.	 Clearly, (1) represents the three conditions of the 
DNB. For each stage, the score of every module was 
calculated by the above formula and the best module 
with the highest score was regarded as the potential 
DNB in this stage. Then, these identified potential 
DNBs in each stage were compared with each other, 
and DNBs with the highest CI score in all time points 
was the DNBs for detecting the critical stage. The 
stage corresponding to the DNBs was so called criti-
cal stage.

Functional analysis
Gene Ontology (GO) analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
sis were analyzed with clusterProfiler package of R [41, 
42].

Serum cytokine measurements
Serum samples from 25 LGDHS, 25 LDSDS, and 25LKYDS 
were collected by centrifugation (Model 3500; KUBOTA, 
Tokyo, Japan) at 5700×g for 10 min at 4 °C, aliquoted and 
stored at − 80  °C until analysis. A multiplex biometric 
enzyme-linked immunosorbent assay (ELISA)—contain-
ing dyed microspheres conjugated with a monoclonal anti-
body specific for a target protein—was used according to 
the manufacturer’s instructions. Soluble molecules were 
measured using two commercially available kits (BioPlex 
Assay: M50-0KCAF0Y and MF0-005KMII; Bio-Plex, Bio-
Rad Laboratories Inc., Hercules, CA, USA). Forty-eight 
cytokines were assessed simultaneously using the Bio-Plex 
system: (i) 27-plex panel of IL-1β, IL-1rα, IL-2, IL-4, IL-5, 
IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17, 
eotaxin, FGF basic, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, 
MIP-1α, MIP-1β, PDGF-ββ, RANTES, TNF-α, and VEGF; 
and (ii) 21-plex panel of IL-1α, IL-2Rα, IL-3, IL-12p40, 
IL-16, IL-18, CTACK, GROα, CXCL9, SDF-1α, HGF, 
IFNα2, LIF, MCP-3, M-CSF, MIF, β-NGF, SCF, SCGF-β, 
TNF-β, and TRAIL. These two kits covered the range of 
all the cytokines potentially involved in the pathophysiol-
ogy of liver cirrhosis. The selection of specific cytokines 
in the study was based on previously available reports on 
liver disease [43, 44]. Assays were performed in duplicate 
by following the standard operating protocol provided by 
the Bio-Plex Multiplex cytokine assay. Serum levels of all 

(1)CI = CV
PCCin

PCCout

proteins were determined using a Bio-Plex array reader 
(Luminex, Austin, TX) that quantified multiplex immu-
noassays in a 96-well plate with very small fluid volumes. 
The analyte concentration was calculated using a standard 
curve, with software provided by the manufacturer (Bio-
Plex Manager Software, Bio-Rad Laboratories, Inc., CA, 
USA). The limit of detection (mean negative control plus 
3× standard deviation) was determined for each assay. A 
Millipore xMAP Kit (HCYTOMAG-60K-06; Merck Milli-
pore, Billerica, MA, USA) was applied to detect the serum 
levels of IL-9, IL-2Rα, and GM-CSF in another independ-
ent cohort of patients for validation. Each experiment was 
performed according to the manufacturer’s protocol [45]. 
The cytokine concentrations were calculated using a stand-
ard curve with the software provided by the manufacturer.

iTRAQ, protein identification, and relative quantification
Forty-eight samples—patients with CHB (12 LGHDS, 12 
LDSDS, and 12LKYDS) and 12 healthy participants—were 
subjected to isobaric tags for relative and absolute quantita-
tion (iTRAQ) analyses, among which, an equal amount of 
10 different samples were mixed to produce a sample pool. 
Thus, each TCM syndrome group had three biological 
replicates. A total of 100 μg protein from each group was 
centrifuged. The samples were then digested with trypsin 
at 37 °C, overnight. Samples were labelled with the iTRAQ 
reagents (AB SCIEX, Foster City, CA, USA) and fraction-
ated by strong cation exchange (SCX), according to the 
manufacturer’s instructions and as previously described 
[46, 47]. All labeled peptides were mixed and analyzed by 
liquid chromatography coupled with tandem mass spec-
trometry (LC–MS/MS). Protein identification and quanti-
fication were performed using the Maxquant 1.3.0.5. The 
LC–MS/MS data were searched against uniprot human 
(136,615 sequences, downloaded on August 2, 2014). The 
ratio of protein expression between the two groups (<0.8 or 
>1.25) was considered significant.

Data processing
Differences in gene expression levels between groups were 
compared using the Mann–Whitney U test. The two-tailed 
p <0.05 was considered statistically significant. All net-
works were visualized by Cytoscape software 3.3.0 (http://
www.cytos​cape.org/). Receiver operating characteristic 
(ROC) curve was established to assess the diagnostic abil-
ity. All data analyses were performed using the statistical 
software R version 3.1.0 (http://www.R-proje​ct.org).

Results
General information of patients and differentially 
expressed genes of CHB‑TCM syndromes
A total of 244 participants were enrolled in this study, 
including 73 with LGDHS, 73 LDSDS, 70 LKYDS, and 

http://www.cytoscape.org/
http://www.cytoscape.org/
http://www.R-project.org
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28 healthy volunteers (Additional file  1: Table  S1). The 
distribution of liver function indexes showed no signifi-
cant difference in patients with the three typical TCM 
syndromes (data did not show). In TCM, they represent 
excess, excess-deficiency mingled, and deficiency TCM 
syndromes, respectively (Fig. 1a). To detect the dynamic 
network changes in patients, we conducted gene expres-
sion measurements from 48 patients with CHB including 
16 LGDHS, 16 LDSDS, and 16 LKYDS, and 16 healthy 
participants. After gene expression profiles, a three-
dimensional principal component analysis (PCA) was 

performed to compare their gene expression profiles 
(Fig.  1b). Clearly, the healthy and LGDHS groups were 
clustered together, while the LDSDS were mingled with 
LKYDS, suggesting LDSDS and LKYDS may represent 
the late stage and they different from early stage of TCM 
syndrome, such as healthy and LGDHS group. To further 
analyze the correlation between the gene expression pro-
files and TCM syndromes, an unsupervised hierarchical 
clustering was performed by PCC distance based on 4252 
differentially expressed genes (DEGs) (Fig.  1c). The first 
branch allowed the separation of the healthy group from 

Fig. 1  The progression of traditional Chinese medicine (TCM) syndrome in chronic hepatitis B (CHB) and gene expression analyses. a A schematic 
diagram illustrates the progression of TCM syndromes, each typical TCM syndrome has a different clinical manifestation. b Three-dimensional 
principal component analysis (PCA) shows clustering of 60 samples with TCM-syndrome progression. Each small spot represents the principal 
component score of the top three principle components for each sample. c Unsupervised hierarchical clustering of 60 samples based on 4252 
differentially expressed genes (DEGs). Similar to (b), the healthy and LGDHS groups were clustered together, while the LDSDS were mingled with 
LKYDS. b, c Green, healthy; purple, LGDHS; blue, LDSDS; orange, LKYDS
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the CHB-TCM syndromes. A sub-branch partitioned the 
LGDHS and the other two TCM syndromes. The LDSDS 
and LKYDS groups were mingled with each other. The 
result of the hierarchical clustering was consistent with 
the PCA, which also implied that LGHDS was special 
and different from the other stages, as the early stage of 
TCM-syndrome evolution.

DNB analysis identifies the phase transition for TCM 
syndrome changes from excess to deficiency
Identifying the critical stage of TCM-syndrome change 
is crucial to diagnose TCM syndromes. Our DNB model 
was developed to detect this critical change by measur-
ing fluctuations and correlations of molecules (Fig.  2a). 
The results of the three criteria for DNBs are shown in 
Fig. 2b. At the critical stage, (i) the expressions of DNBs 
become highly fluctuated (high coefficient of varia-
tion); (ii) DNBs are highly correlated (PCCin are high), 

Fig. 2  A brief model of dynamic network biomarkers (DNB) theory and DNB analysis results. a Liver-gallbladder dampness-heat syndrome (LGDHS) 
(excess TCM syndrome) usually happens at disease onset or TCM-syndrome change. After the tipping point, the system drastically deteriorates 
to weakness, for instance, liver-kidney yin-deficiency syndrome (LKYDS) (deficiency TCM syndrome). The DNB method can identify the dramatic 
changing state by analyzing molecular fluctuations at each stage. b These four diagrams visually show the three key criteria of DNBs over four 
different stages during TCM-syndrome progression. CV is the average coefficient of variance of the DNBs, PCCin is the average Pearson correlation 
coefficient (PCC) of the cluster of molecules in absolute values, and PCCout is the average PCC between the cluster of molecules and other 
molecules in absolute values, after comparing with the corresponding controls. CIs were calculated according to the DNB formula (method) to 
seek the system tipping point. After calculation, LDSDS was recognized as the critical stage of TCM-syndrome progression. c Series of illustrations 
of dynamic changes in the network structure. Node color reflects the CV of the corresponding molecule. Clearly, DNBs are strongly correlated and 
fluctuated at the LDSDS stage
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and (iii) correlations between DNBs and non-DNBs are 
weak (PCCs are low). Three conditions above can be 
explained by following sentences: from the observed 
data, the appearance of a group of genes with strongly 
collective fluctuations when the system is near the criti-
cal state. Thus, these genes are the predictive biomark-
ers for this critical transition. Usually, it is irreversible. 
When CI reaches a peak or increases markedly during 
the measured periods, the biological system is at the 
critical period or tipping point [48]. Based on these cri-
teria, we found that the critical stage of TCM-syndrome 
change—from excess to deficiency—is LDSDS. Accord-
ingly, 52 genes were identified as DNBs (Additional 
file  1: Table  S2). Functional analysis showed that DNBs 
were enriched in the regulation of fibrinolysis and com-
plement and coagulation cascade pathways (Additional 
file 1: Table S3), which are important processes in extra-
cellular matrix (ECM) formation and immune function. 
Then, we measured the performance of candidate DNBs 
at four stages and the scores of the candidate DNBs were 
summarized in the CI (Fig.  2b). Clearly, the CI of the 
candidate DNBs at LDSDS was significantly higher than 
that of the other three stages, so these candidate DNBs 
signaled drastic deterioration during TCM-syndrome 
progression. We then constructed a series of networks 
with PCC of gene-pairs, to illustrate the corresponding 
dynamic change in the network structure and expression 
variations in the identified DNBs and their neighbor mol-
ecules (Fig. 2c). As shown in Fig. 2c, at the LDSDS stage, 
the DNBs have strong fluctuations compared with the 
other three stages; and the links between DNBs and other 
molecules are significantly greater, which indicated dras-
tic changes in co-expression relationships within DNBs, 
or between them and other molecules, when the biologi-
cal system approached the critical stage.

DNB‑DEG associated network is flipped before and after 
the critical transition
DNBs are a group of molecules with strong correlations 
and fluctuations at the critical stage, which are different 
from DEGs. DNBs regulate DEGs before and after the 
critical stage; thus, they may perform biological func-
tions in TCM-syndrome change. To study the mecha-
nism of the drastic deteriorations during changes in the 
TCM syndrome, we constructed the DNB-DEG-associ-
ated network including 332 DNBs and DEGs (Additional 
file 1: Table S4), by integrating DNBs and their first-order 
neighboring DEGs according to the whole human molec-
ular network. Two-hundred-eight DEGs—from low (or 
high) at the LGDHS stage to high (or low) at the LKYDS 
stage—were directly linked to 24 DNBs (Fig. 3a).

Functional analyses were performed to describe 
the function change induced by the flipped DEGs 

(Additional file  1: Table  S5), which may be regulated 
by DNBs. GO analysis showed the flipped DEGs were 
enriched in metabolic processes, apoptosis, and espe-
cially in cytokine-related pathways, including response to 
cytokine, cellular response to cytokine stimulus, and the 
cytokine-mediated signaling pathway (Fig.  3b). KEGG 
pathway enrichment of flipped DEGs also showed similar 
results: they enriched the pathway of cytokine–cytokine 
receptor interaction (Fig.  3c). Hepatic inflammation is 
a common trigger of liver disease and it should be con-
sidered from the perspective of chronic inflammation 
[49]. There is increasing evidence that several cytokines 
mediate hepatic inflammation, apoptosis and necrosis of 
liver cells, cholestasis, and fibrosis [50, 51]. These results 
indicated that cytokine action plays a key role in TCM-
syndrome change.

Dynamics of functional phenotypes influenced 
by the DNB‑associated network before and after 
the critical transition
To further understand how DNBs are involved in TCM-
syndrome change, functional analyses on the dynamic 
patterns of DNBs and DNB-associated DEGs, before and 
after the critical stage, were performed. Firstly, DNBs and 
DNB-associated DEGs were classified by Mfuzz [52] into 
four clusters (Fig. 4a): members of Clusters 1 and 3 were 
upregulated before the critical stage, while members of 
Clusters 2 and 4 were upregulated after the critical stage. 
Thus, DEGs in Clusters 2 and 4 may be influenced by 
their associated DNBs earlier than those within Clusters 
1 and 2 (Fig. 4a).

We then performed the functional analyses of mem-
bers in each cluster (Additional file 1: Table S6). Among 
which, 16 liver disease related pathways were chosen and 
are listed in Fig.  4b. The inflammation activities-related 
pathway was mainly affected by DNBs in Cluster 1. 
Meanwhile, pathways involving cell apoptosis and growth 
inhibition were mainly related to members of Cluster 2, 
including the P53 signaling pathway and TGF-β signal-
ing pathways. After the critical stage, metabolism-related 
pathways were significantly affected by members of Clus-
ter 3, while the expression of related members in Cluster 
3 increased before the critical stage and then decreased. 
In Cluster 4, molecules were enriched in chemokine, and 
adipocytokine signaling pathways. Expression of related 
members in Cluster 4 decreased before the critical stage 
and increased after.

These results concur with previous reports: inflamma-
tion plays a key role in liver disease progression. Patients’ 
conditions are usually aggravated from excess to deficient 
TCM syndrome [53].
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Validation of differentially expressed cytokines regulated 
by DNBs
Previously, we found that DNB-regulated flipped DEGs 
were related to cytokine pathways. We performed 
cytokine profiling to validate the differences in cytokine 
expression between different TCM syndromes. Serum 
cytokines from 25 LGDHSs, 25 LDSDSs, and 25 
LKYDSs were determined by ELISA-based cytokine 
profiling.

The results showed that 7 cytokines were significantly 
expressed (p < 0.01) between LGDHS and LKYDS (Fig. 5). 
This is consistent with previous studies, that during the 
development of TCM syndrome evolution, cytokines, 
chemokines, and growth factors play important roles in 
viral clearance, infection control, inflammation, regen-
eration, and fibrosis in CHB [24]. From excess TCM syn-
drome (LGDHS) to deficient TCM syndrome (LKYDS), 

the TCM syndrome evolves over time with liver damage 
in CHB.

Furthermore, to validate the expression pattern of 
DNBs, we applied iTRAQ to obtain the proteomic data 
of different TCM syndromes. Samples from 12 LGDHS, 
12 LDSDS, 12 LKYDS, and 12 healthy participants were 
collected to acquire proteomic data by iTRAQ. DNBs are 
a cohort of molecules with strong correlations and fluc-
tuations. The results from iTRAQ showed that plasmino-
gen (PLG) and coagulation factor XII (F12), which belong 
to DNBs, were significantly expressed during TCM-syn-
drome progression from LGDHS to LKYDS.

Diagnostic ability assessment for PLG and F12
In clinical practice, biomarkers are expected to provide 
accurate predictions. We used receiver operating charac-
teristic (ROC) ROC analysis and PCA to assess the diag-
nostic ability of DNB member PLG and F12 for stages 

Fig. 3  Dynamic network biomarker–differentially expressed gene (DNB–DEG) network, before and after the critical stage. a Illustrations of dynamic 
change in the expressions of the DNB-associated network before and after the critical stage (LDSDS). b–c Functional analyses of the flipped DEGs
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before and after critical stage, which is LGHDS and 
LKYDS. We found PLG and F12 reached high diagnos-
tic ability with AUC = 0.791 and 0.691 (Fig. 6a). Similarly, 
PLG and F12 clearly separate three TCM syndromes 
groups by PCA (Fig.  6b). By contrast, PCA was also 
applied on samples by liver function indexes, (i.e. AST, 
ALT, GGT, ALB, TBIL, DBIL, TP, GLO and ALP). Clearly, 
liver function indexes were unable to separate three TCM 
syndromes (Fig.  6c). These results suggest that, PLG or 
F12 rather than liver function indexes improves the clinic 
diagnosis and prognosis.

Discussion
TCM is widely used to treat CHB disease, with an 
advantage in early intervention and combined therapies 
[26]. However, TCM syndromes lack objective assess-
ment and heavily rely on physician experience. In TCM 
theory, with the progression of disease, the TCM syn-
drome also changes. The struggle between “healthy qi” 
and “pathogenic qi” refers to disease occurrence and 
development, which concurs with the process of inflam-
mation in Western medicine. Thus, TCM syndromes 

dynamically changed as CHB progressed. The etiology 
and pathogenesis of CHB are complex, showing various 
types of TCM syndromes in the clinic. According to the 
different clinical manifestations of patients with CHB, 
different TCM syndromes appeared at different stages 
in the progression of CHB. Discovering DNBs and the 
mechanism of dynamic changes in TCM syndromes are 
key issues in TCM research.

As a model-free approach, the DNB method effectively 
identifies the critical stage during disease/syndrome pro-
gression, basing on multiple samples in each stage. In this 
study regarding CHB-TCM-syndrome changes, we iden-
tified LDSDS as the critical stage from healthy to LKYDS. 
By integrating DNBs and their first-order DEGs per the 
molecular network of the whole human, we found that 
many DEGs showed inverse expressions from high (low) 
to low (high) before and after the critical stage. Functional 
analysis of DNBs and their regulated molecules indicated 
that cytokine action was involved in the dynamic changes 
in the TCM syndrome. This was consistent with reports 
that persistent infection of HBV in vivo is determined by 
virus and immune function. The imbalance of Th1/Th2 
cells and their cytokines is an important cause of CHB 

Fig. 4  Functional phenotyping of dynamic network biomarkers (DNBs) and differentially expressed genes (DEGs) in a DNB-associated network. a 
Four dynamic expression patterns of DNBs and DNB-related DEGs were identified by the Mfuzz clustering method. b The bar graph shows related 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, which were enriched according to corresponding DNBs and DNB-related DEGs in 
different dynamic patterns
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[54]. Results have shown that cytokines were significantly 
differentially expressed between TCM syndromes. As 
the TCM syndrome changes, the immune response may 
be more intense from LGDHS to LKYDS. The degree at 
which inflammation causes tissue injury changes with the 
body’s immune response, which is reflected in cytokine 
expression.

Among the 17 significantly differentially expressed 
cytokines, several have been shown to be associated 
with TCM syndromes [53, 55–57]. For instance, IL-18 
was found to be significantly expressed in LGHDS and 
LDSDS in patients with liver cirrhosis, by statistics analy-
sis [56].

The effect of DNBs on TCM syndromes depended not 
on their differential expressions, but on collective fluctua-
tions according to DNB theory. The relationship between 
DNBs and DEGs during critical transition at a network 
level was detected (Figs. 3, 6). The DNB-regulated DEGs, 
before and after the tipping point, were significantly 
enriched in the cytokine-mediated signaling pathway. 
Protein plays a crucial role in this function; thus, we fur-
ther validated DNB expression in the proteomic data. In 
the DNBs, we found PLG and F12 presented significantly 
different expressions in the iTRAQ data. F12 is a plasma 
protease that, in its active form (FXIIa), initiates the pro-
coagulant and proinflammatory contact system [58]. 

Fig. 5  Expression of seven cytokines changed significantly from liver-gallbladder dampness-heat syndrome (LGDHS) to liver-kidney yin-deficiency 
syndrome (LKYDS). a–g Cytokine expression of CCL3, IL17, IL15, CCL27, LIF, CLEC11A, and CSF2. These cytokines were significantly expressed 
between LGHDS and LKYDS. The vertical axis represents absolute quantification of cytokines measured by enzyme-linked immunosorbent assay 
(ELISA). h, i Validation of DNBs plasminogen (PLG) and coagulation factor XII (F12) in the proteomic data. The vertical axis represents signal ratio 
compared to the healthy group. a–i The p values were measured by Mann–Whitney U tests
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Recently, significant evidence has emerged, implicating 
F12 as a disease target of human thrombotic and inflam-
mation diseases [59]. Coagulation factors play an impor-
tant role in tissue repair and inflammatory responses. 
ECM deposition is the main pathological feature of 
hepatic fibrosis during the change from CHB to liver cir-
rhosis, even liver cancer. The fibrinolysis system plays an 
important role in ECM deposition. PLG is a plasma pro-
tein produced mainly by hepatocytes, which can be acti-
vated by plasminogen activator (PA), and then degrades 
many ECM components [60]. In our study, PLG exhibited 
the greatest attenuation in liver injury, which is consist-
ent with a previous study [61]. The alternation of PLG 
is a sign of liver injury. Furthermore, we compare PLG 
and F12 with clinical data in CHB patients with LGDHS, 
LDSDS and LKYDS in the diagnostic ability for the TCM 
syndrome differentiation. We found PLG and F12 can 
clearly separate LGDHS LDSDS and LKYDS. However, 
the clinical data could not separate three TCM syn-
dromes. This result indicated a potential value of clinical 
application of DNBs for the auxiliary diagnosis of TCM 
syndrome in CHB. PLG and F12 play an important role 
in initiating the progression of liver disease. Our DNBs 
findings and clinical significance should be further stud-
ied using a larger sample size in future.

Conclusions
In this study, contrary to traditional molecular biomark-
ers, we demonstrated that the DNBs of TCM syndromes 
change in patients with CHB. Specifically, we found the 
tipping point of this change occurs at the LDSDS stage. 
During this process, the cytokine system was involved 

all the time. Therefore, DNBs can be used to analyze the 
molecular mechanism of TCM-syndrome progression, 
based on the identified leading networks. The DNBs PLG 
and F12 were confirmed to significantly change during 
TCM-syndrome progression and indicated a potential 
value of DNBs in auxiliary diagnosis of TCM syndrome 
in CHB.
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