
MohammadiNasrabadi et al. 
Journal of Orthopaedic Surgery and Research          (2024) 19:199  
https://doi.org/10.1186/s13018-024-04654-7

RESEARCH ARTICLE Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Orthopaedic
Surgery and Research

Landet: an efficient physics‑informed deep 
learning approach for automatic detection 
of anatomical landmarks and measurement 
of spinopelvic alignment
AliAsghar MohammadiNasrabadi1*, Gemah Moammer2, Ahmed Quateen2, Kunal Bhanot3 and John McPhee1 

Abstract 

Purpose:  An efficient physics-informed deep learning approach for extracting spinopelvic measures from X-ray 
images is introduced and its performance is evaluated against manual annotations.

Methods:  Two datasets, comprising a total of 1470 images, were collected to evaluate the model’s performance. We 
propose a novel method of detecting landmarks as objects, incorporating their relationships as constraints (LanDet). 
Using this approach, we trained our deep learning model to extract five spine and pelvis measures: Sacrum Slope (SS), 
Pelvic Tilt (PT), Pelvic Incidence (PI), Lumbar Lordosis (LL), and Sagittal Vertical Axis (SVA). The results were compared 
to manually labelled test dataset (GT) as well as measures annotated separately by three surgeons.

Results:  The LanDet model was evaluated on the two datasets separately and on an extended dataset combining 
both. The final accuracy for each measure is reported in terms of Mean Absolute Error (MAE), Standard Deviation (SD), 
and R Pearson correlation coefficient as follows: [SS◦ : 3.7(2.7), R = 0.89] , 

[PT ◦ : 1.3(1.1), R = 0.98], [PI◦ : 4.2(3.1), R = 0.93], [LL◦ : 5.1(6.4), R = 0.83], [SVA(mm) :

2.1(1.9), R = 0.96]

 . To assess model reliability 

and compare it against surgeons, the intraclass correlation coefficient (ICC) metric is used. The model demonstrated 
better consistency with surgeons with all values over 0.88 compared to what was previously reported in the literature.

Conclusion:  The LanDet model exhibits competitive performance compared to existing literature. The effectiveness 
of the physics-informed constraint method, utilized in our landmark detection as object algorithm, is highlighted. 
Furthermore, we addressed the limitations of heatmap-based methods for anatomical landmark detection and tack-
led issues related to mis-identifying of similar or adjacent landmarks instead of intended landmark using this novel 
approach.
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Introduction
The assessment and prediction of the geometric charac-
teristics of the spinopelvic complex have garnered sig-
nificant interest among both the clinical and research 
communities [1–3]. Radiological examination of the 
spine and pelvis plays a crucial role in both surgical and 
non-surgical treatments of spinal disorders [4]. Under-
standing the sagittal balance of the spine and pelvis, 
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which entails the interplay between spine and pelvic 
measures, is crucial for maintaining postural equilib-
rium. Initially, measurements of sagittal balance were 
conducted manually using conventional radiographs and 
later assisted by computer-based tools [5]. However, the 
inherent limitations of radiographic imaging and subjec-
tivity in manual measurements introduced errors [6].

To address these challenges, machine learning tech-
niques, a subset of artificial intelligence (AI), were 
employed, allowing computer models to recognize pat-
terns in data [7]. With the advancement of deep learn-
ing (DL), a specialized branch of machine learning that 
emulates the information processing of neural systems, 
performance in automated image analysis significantly 
improved. DL methods excel in learning optimal features 
and feature compositions without human-designed fea-
ture extraction. Consequently, DL has found extensive 
application in various domains, including radiology, mus-
culoskeletal radiology, and spinal disorders [1].

The concept of sagittal spinopelvic balance has gained 
widespread recognition among radiologists and spine 
professionals, as it is essential for understanding the eti-
opathogenesis of spinal deformities and selecting appro-
priate treatment options [5]. Evaluating sagittal balance 
typically involves radiographic measurements of geomet-
ric relationships among specific anatomical landmarks in 
sagittal X-ray images. Measures such as Sacral Slope (SS), 
Pelvic Tilt (PT), Pelvic Incidence (PI), Lumbar Lordosis 
(LL), and Sagittal Vertical Axis (SVA) are commonly used 
to assess sagittal balance [8]. However, manual measure-
ments can be subjective, time-consuming, and prone to 
inaccuracies due to the complexity of accurately identify-
ing anatomical landmarks. To overcome these challenges, 
various computer-assisted tools and software have been 
developed, but they still rely on observer input [9].

Recent advancements in artificial intelligence and deep 
learning techniques have provided promising avenues 
for automating the process of extracting anatomical 
parameters from radiographic images of the spine [10]. 
These technologies offer the potential to enhance effi-
ciency, reduce the burden on healthcare professionals, 
and improve the accuracy of measurements [11]. Addi-
tionally, they enable the analysis of a wide range of clini-
cal scenarios, including sagittal and coronal deformities, 
degenerative phenomena, and images acquired with var-
ying fields of view [10].

In this context, several studies have proposed inno-
vative methods leveraging deep learning algorithms to 
automate the measurement of spinal alignment param-
eters. These approaches encompass techniques ranging 
from fully convolutional neural networks with differen-
tiable spatial to numerical layers (DSNT) to fine-tuned 
Mask R-CNN models for vertebral segmentation [10, 12]. 

The results of these studies have shown promising out-
comes, with accurate predictions of vertebral locations 
and sagittal alignment parameters, despite inherent chal-
lenges and limitations [12, 13].

While these automated methods demonstrate signifi-
cant potential, it is essential to critically assess their per-
formance and address the associated challenges. These 
include potential variations in image quality, noise, and 
the presence of different spinal pathologies [12, 13]. 
Moreover, it is imperative to evaluate the reliability and 
reproducibility of automated measurements in compari-
son to manual assessments performed by experienced 
clinicians [5].

Heatmap-based regression, the most common method 
used for landmark detection in recent studies [5, 13–15], 
has some inherent drawbacks including issues with over-
lapping heatmap signals and post-processing require-
ments. We are thus motivated to introduce a new 
approach in which landmarks are considered as objects 
using bounding boxes. Certain anatomical landmarks 
are used to extract spinopelvic measures from lateral 
X-ray images and geometric constraints are imposed to 
the model to improve the predictions. In addition, pre-
vious models sometime may fail to distinguish between 
adjacent and similar anatomical landmarks [13]. We 
have addressed this issue by introducing a novel geo-
metrical constraint physics-informed model. This novel 
deep learning model not only detects each anatomical 
landmark as an unique object, but also creates a graph of 
relationship between objects, which helps the model to 
locate the landmarks more accurately.

Materials and methods
Spinopelvic geometric measurements
In this research we targetted five anatomical measures to 
be extracted automatically, which are Sacrum Slope (SS), 
Pelvic Tilt (PT), Pelvic Incidence (PI), Lumbar Lordosis 
(LL) and Sagittal Vertical Axis (SVA). As the Fig. 1 shows, 
SS is the angle between the tangent line to the upper end 
plate of S1 (connecting line of posterior and anterior cor-
ners) and the horizontal reference line. PT is the angle 
between the vertical reference line and the connecting 
line between the midpoint of sacrum upper end plate and 
the midpoint of connecting line between the intersection 
of femoral head circles (hip axis). Pelvic Incidence (PI) 
is a morphologic measure defined as the angle between 
the perpendicular line to the mid-point of the upper end 
plate of last vertebra of the sacrum (S1) and the con-
necting line of this point to the midpoint of connecting 
line between the intersection of femoral head circles 
[16]. This measure is defined as an anatomical measure 
and strictly related to the shape of the pelvis [17]. This 
measure mostly remains constant in each pelvic posture 
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and it is equal to the sum of two measures (PT and SS) 
[18]. Lumbar Lordosis (LL) is determined by the angle 
between two lines: one connecting the two inferior cor-
ners of the L5 vertebra’s plate and the other connect-
ing the two superior corners of the L1 vertebra’s plate. 
The Sagittal Vertical Axis (SVA) measures spinopelvic 
alignment and is determined by the horizontal distance 
between the upper posterior corner of the sacrum and 
the midpoint of the C7 vertebra.

Dataset and data preparation
We collected a total of 1,150 lateral spine X-ray images 
(DS1) from patients referred to Grand River Hospi-
tal (GRH) in Kitchener, Canada, between 2016 and 
2022. Additionally, we incorporated a dataset (DS2) of 
320 lateral lumbar spine and pelvic images provided by 
Intellijoint Surgical. Our datasets encompasses a com-
prehensive range of cases, including patients with hip or 
spine implants and images from both sitting and standing 
postures. Unlike some other research [5, 13], we included 
all images, even those with poor contrast or partial spine 
visibility. To address these issues, we employed appro-
priate image processing filters to enhance annotation 
accuracy for parts with high or low intensity. By includ-
ing partial spine images, our dataset enables the model 
to identify anatomical landmarks effectively, even in 

incomplete images. The utilization of two distinct data-
sets enabled us to evaluate the model’s performance on 
different data sizes and imaging systems. DS1 consisted 
of images captured using ordinary X-ray devices, while 
DS2 utilized the EOS imaging system. To facilitate train-
ing, validation, and testing, we divided the datasets into 
sets comprising 80%, 10%, and 10% of the total data, 
respectively. We note the uniqueness of our dataset 
where each X-ray image corresponds to a distinct patient 
case to ensure a wide representation of clinical scenarios. 
However, an exception exists within Dataset 2 (DS2), 
which comprises 50 patients each represented by both 
sitting and standing X-ray images. To mitigate the risk of 
overfitting our model, these dual-position images were 
deliberately excluded from our test dataset.

To address the challenges posed by the limited size 
of our datasets, we implemented a data augmentation 
strategy to enhance the diversity of our training samples, 
thereby improving model detection accuracy. Specifi-
cally, our augmentation techniques included (1) crop-
ping, to simulate the effect of partial object occlusion and 
introduce variability in object positioning, (2) flipping, to 
ensure the modelâ€™s robustness to changes in object 
orientation, (3) mosaic augmentation, a technique that 
combines several images to create a single training sam-
ple with a mosaic-like appearance. This helps the model 

Fig. 1  Main spinopelvic measures in lateral X-ray images, considering both femoral heads to calculate the center of rotation for the pelvis
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learn to detect objects in complicated scenes where 
objects may overlap, and (4) rotation, to accustom the 
model to recognizing objects at different angles.

A Matlab graphical user interface (GUI) was developed 
to facilitate image annotation. In this process, 10 anatom-
ical landmarks are manually annotated by the researchers 
in each image using the GUI. The GUI allows annotators 
to identify the desired points, which automatically gener-
ates corresponding bounding boxes. For accurate femo-
ral head annotations, annotators are required to specify 
three points on the edge of each femoral head. The GUI 
then calculates and visualizes the center of the femo-
ral heads based on the specified points. The sizes of the 
bounding boxes are optimized for the vertebrae, set at 
5% of the maximum image size. However, for the femoral 
heads, the bounding box sizes vary depending on the size 
of the femoral head circles. To ensure consistency, the 
coordinates and bounding box sizes are normalized to 
the maximum dimension of the image, resulting in coor-
dinate values ranging from 0 to 1. The resulting labels are 
shown in Fig. 2A.

Overview on landmark detection using landmarks 
as constraint objects
To automatically extract spinopelvic measures of interest 
(such as SS, PT, PI, LL, and SVA), we adopt a landmark 
detection approach that treats landmarks as objects. Our 
method utilizes a deep learning physics-based object 
detection algorithm, which overcomes limitations of 
heatmap-based regression methods, including issues 
with overlapping heatmap signals and post-processing 
requirements [19]. In our approach, landmarks are rep-
resented as objects with bounding boxes centered at the 
landmark coordinates (bx, by) and equal width (bw) and 
height (bh). Our labeled dataset comprises 10 classes 

of landmark objects ( ci ), including the centers of femo-
ral heads and the anterior/posterior points of S1, L1, 
C7 superior end plates, and L5 inferior end plate. Each 
label includes the class number and the bounding box 
features Ci = (ci, bxi, byi, bwi, bhi) . Our deep learning 
model predicts objects with varying confidence levels 
(Fig.  2B), and the object with the highest confidence is 
used to extract the desired landmarks. To elucidate the 
rationale for considering constraints between these ana-
tomical landmarks, we can consider the scenario where 
a surgeon intends to annotate a lateral X-ray image in 
order to measure the SS. When the posterior corner of 
the superior sacrum end plate is identified, the surgeon 
can leverage the predictable relationship within the 
sacrum as a solid body to determine the corresponding 
anterior point. We refer to this relationship as a geomet-
ric constraint, and the same concept has been applied for 
other landmarks. Imposing these constraints helps the 
model not only understand the features of each object 
(landmarks) but also enables a holistic understanding of 
the entire image and the interrelationships (constraints) 
among these landmarks. The final detected landmarks 
are subsequently used to calculate the desired measure-
ments (Fig. 2C).

Model architecture
In an effort to address the aforementioned limitations and 
drawbacks of heatmap-based regression method (e.g., 
quantization error, overlapping heatmap signals, and 
high computational requirements [19]), and to provide a 
more efficient alternative, we introduce a novel approach 
called LanDet (Landmark Detection). Instead of relying 
on heatmaps, LanDet models individual landmarks as 
objects within a dense single-stage anchor-based detec-
tion framework. Furthermore, the relations between 

Fig. 2  A Manual labeling of landmarks and specifying bounding boxes. B Extracted landmarks as objects with different confidences, trained 
model output, evaluated with the test set. C choosing the highest confidence for each landmark as the prediction results and calculation 
of the spinopelvic measures
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landmarks are imposed to the detection architecture as 
geometrical constraints. This innovative method aims to 
improve the efficiency and accuracy of anatomical land-
mark detection and clinical measurements without the 
need for heatmaps.

As can be seen in Fig.  3, our model works with split-
ting the image into grid cells and each cell is responsible 
for predicting bounding boxes, by evaluating whether or 
not the center of the bounding box lies in the cell. Anchor 
boxes enable the model to predict more than one object 
in a single cell. Figure  3 displays a diagram illustrating 
the LanDet pipeline. This pipeline utilizes a deep con-
volutional neural network denoted as DN, which takes 
an input image I with dimensions h× w × 3 and trans-
forms it into a collection of three output grids denoted 
as Ĝ . These grids contain the predicted objects denoted 
as Ô . Each individual grid, denoted as Ĝn , has dimensions 
h
n × w

n × Na × No , where n takes on values from the set 
{8, 16, 32} . The transformation performed by the deep 
network can be expressed as the following equation:

Na represents the count of anchor channels, while No 
corresponds to the number of output channels for each 
object. The feature extractor DN follows the YOLO-style 
approach [20] and makes effective use of Cross-Stage-
Partial (CSP) bottlenecks [19, 21].

Due to the properties of strided convolutions, the char-
acteristics of an output grid cell Ĝi,j

n  are influenced by the 
image patch Ip , defined as Ini:ni+1,nj :nj+1 . Consequently, if 
the center of a target object (bx, by) lies within Ip , the cor-
responding output grid cell Ĝi,j

n  is responsible for detecting 
that object. The effective range of perception of an output 
grid expands as n increases, implying that smaller output 
grids are more effective at detecting larger objects. The 
boounding box sizes are set to be 5% of the maximum size 
of the image for the landmarks on the spinal part, and for 
the femoral heads, the bounding box sizes are equal to the 
diameter of femoral cup so that it can enclose that part.

(1)DN (I) = Ĝ

Fig. 3  LanDet utilizes a dense detection network denoted as DN that is trained with the multi-task loss LanDetloss . The purpose of this network 
is to transform an input image represented by I into a collection of output grids denoted as Ĝ . These grids contain the predicted landmark objects 
represented by Ôl . To obtain potential detection, a technique called non-maximum suppression (NMS) [19] is employed for Ôl . The geometrical 
constraints are applied on these candidate detections to generate the final predictions for Ôl , which then are used to calculate desired measures
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The output grid cells Ĝ
i,j
n

 encompass Na anchor 
channels, which are associated with anchor boxes 
An = {(Awa ,Aha)}a=1

Na . To assign a target object O to 
an anchor channel, a tolerance-based matching of their 
respective sizes is employed. This approach introduces 
redundancy, allowing the grid cells Ĝi,j

n  to detect multiple 
objects and specialize in detecting objects of various sizes 
and shapes. Moreover, additional redundancy in detection 
is achieved by enabling the neighboring grid cells Ĝi±1,j

n  and 
Ĝ

i,j±1
n  to detect objects within the same image patch Ip [22, 

23].

Loss function
To introduce the relations between each landmark to the 
model, we modified the main object detection loss function 
to incorporate the geometric constraints. A set of target 
grids G is created, and a multi-task loss function LanDetloss 
is employed to train the model to learn various aspects, 
including the objectness p̂o (represented by lobj ), the inter-
mediate bounding boxes t̂ ( lbox ), the class scores ĉ ( lcls ), and 
the intermediate constraint satisfaction r̂ ( lcnst ). To com-
pute the loss components for a single image, the following 
procedure is followed:

where k is the number of defined constraints and wi are 
the weights for each of the constraints. Other parts of 
this loss function are defined as followed:

where BCE represents “binary cross-entropy”, and “inter-
section over union” known as IoU (measures the over-
lap between the predicted bounding box and the ground 
truth bounding box [24]), are crucial elements and 
defined as follows:

(2)LanDetloss = lbox + lobj + lcls +

k
∑

i=1

wi.lcnst

(3)lobj =
∑

n

1

num(Gn)

∑

Gn

BCE(p̂o, po · IoU(t̂, t))

(4)lbox =
∑

n

1

num(O ∈ Gn)

∑

O∈Gn

(1− IoU(t̂, t))

(5)lcls =
∑

n

1

num(O ∈ Gn)

∑

O∈Gn

BCE(ĉ, c)

(6)lcnst =
∑

n

1

num(O ∈ Gn)

∑

i∈Oli

∑

j∈Olj

fc(r̂ij , rij )

(7)BCE(c, ĉ) = −
(

c · log(ĉ)+ (1− c) · log(1− ĉ)
)

Additionally, fc represents a regression-based function, 
which defines the correlation between landmarks. For 
any angular constraint, fc represents a cosine similarity 
function and for the distance constraints, fc represents 
the absolute distance loss. To include fc term in the cost 
function, r is defined as vectors and distances between 
all pairs of the 10 anatomical landmarks in the angular 
and distance constraints, respectively. When Gi,j,a

n  repre-
sents a target object O, the value of the target objectness 
po is determined by multiplying it with the IoU score to 
encourage specialization within the anchor channel pre-
dictions [20]. Conversely, when Gi,j,a

n  does not represent 
a target object, po is set to 0. Practical implementation 
involves applying the losses to a batch of images using 
batched grids. The total loss LanDetloss is computed as 
a weighted sum of the loss components, scaled by the 
batch size nb:

where each � is the weight for the corresponding loss 
measurement.

Model measurement performance and evaluation metrics
To evaluate landmark detection as objects, mean Aver-
age Precision (mAP) was used. The calculation of mAP 
involves several metrics and components, including 
intersection over union (IOU), precision, recall, preci-
sion-recall curve, and average precision (AP). To assess 
the accuracy of the model predictions, we employ the 
relative root mean square error (RRMSE) to compare the 
predicted values (PR) with the ground truth labels (GT). 
The RRMSE is computed using the following equation:

Here, yi represents the measured quantity we aim to pre-
dict, vi denotes our model’s prediction, and ȳ is the mean 
of the ground truth labels, defined as ȳ = 1

N

∑N
i=1 yi

 . The 
RRMSE is a dimensionless metric, where a lower value 
indicates better accuracy (0 being the optimal value and 
1 representing the threshold of uselessness). Additionally, 
we define the detection accuracy as:

(8)IoU =
Area of Intersection

Area of Union

(9)

LanDetloss =nb

(

�objlobj + �boxlbox

+�clslcls + �cnst

k
∑

i=1

wi.lcnst

)

(10)RRMSE =

1
N

N
i=1(yi − vi)2

1
N

N
i=1(yi − ȳ)2

(11)Accuracy = (1− RRMSE)× 100
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To evaluate the consistency among surgeons’ annotations 
and the quality of the ground truth labeling, we involved 
three senior surgeons to review and annotate the test 
dataset. We calculated the intraclass correlation coef-
ficient (ICC) between each reviewer, as well as between 
the GT and PR measurements. This analysis helps us 
assess the level of agreement and inconsistencies in the 
annotations. We have also evaluated the model reliability 
by comparing the surgeons’ measurements with model 
prediction using the ICC metric. The ICC is a measure 
used to assess the reliability or agreement among sur-
geons, GT, and PR in this study. As suggested in [25], we 
have used the single-rating consistency model as follows:

where MSBS: represents the Mean Square Between 
Subjects (variance between annotators), MSWS: repre-
sents the Mean Square Within Subjects (variance within 
annotators), m: represents the number of annotators. 
Using this metric, we can evaluate the model’s reliabil-
ity by examining the ICC value for each measure in our 
comparison.

Results and discussion
In this section, we present the results and discuss the 
performance of the LanDet model on the test datasets, 
which consisted of 140 images. The model success-
fully detected all landmarks in 137 images, achieving an 
overall detection rate of 98%. However, it encountered 
difficulties in two images where it failed to identify the 
femoral heads and one image where the sacrum land-
marks were missed. Note that during manual annota-
tion, the annotators also faced challenges in identifying 
femoral heads in six test images due to obstacles or par-
tial image cutoffs in that specific area. The model pre-
dicted the location of femoral heads in these challenging 
cases, demonstrating its robustness. Moreover, the model 

(12)ICC =
MSBS −MSWS

MSBS + (m− 1) MSWS

showed excellent performance in detecting landmarks, 
even in scenarios involving spinal or hip implants and 
low-quality images, despite the limited data available for 
these cases in the training and validation datasets. We 
will further discuss the accuracy of the model’s landmark 
detection in the following sections.

Model performance and accuracy of automated 
measurements
We assessed the performance of the LanDet model 
using two separate datasets and combined them into an 
extended dataset. The inclusion of these datasets sepa-
rately allowed us to examine the model’s performance on 
different-sized datasets (DS1: 1150 images and DS2: 320 
images) and evaluate its performance on two types of 
X-ray images from different devices (DS1: ordinary and 
DS2: EOS). The IoU threshold is set to be 0.3 for the pre-
dicted bounding boxes to be considered successful detec-
tions. Table 1 presents the results of the LanDet model’s 
performance, including the average error, mean and 
standard deviation of predicted values, mean and stand-
ard deviation of ground truth data, and the accuracy of 
the model’s predictions. The table reveals that SVA and 
PT measures demonstrated better accuracy in DS1, with 
the model achieving 92.8% and 91.1% accuracy, respec-
tively. In DS2, PT and PI measures exhibited the highest 
accuracy, with 89.2% and 86.6%, respectively. Notably, the 
model demonstrated good performance even in the data-
set with a limited number of images (DS2), particularly in 
the prediction of the PT measure. While increasing the 
number of images in the dataset led to improved detec-
tion performance, the model’s performance remained 
commendable in DS2.

To highlight the impact of the physics-informed con-
straint approach, we compared the model’s predictions 
before and after applying this technique in a landmark 
detection as objects model using YOLOv5 algorithm, 
which incorporates CIoU and SIoU for enhancing 

Table 1  Statistical comparison of the values of reference manual parameter measurements (GT) and those obtained automatically by 
the prediction model (PR)

The mean average error (MAE) are presented along with the standard deviation (SD) of each parameter evaluated in the two datasets (DS1 & DS2). The relative 
accuracy of prediction (Acc) is also calculated and presented in last two columns

MAE Mean PR (±SD) Mean GT (±SD) Acc (%)

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

SS◦ 4.8 6.2 42.5 (8.7) 34.9 (11.8) 38.9 (10.3) 30.5 (10.4) 90.2 84.7

PT◦ 1.8 2.4 18.1 (10.6) 21.7 (21.4) 19.3 (9.4) 22.1 (19.5) 91.1 89.2

PI◦ 5.7 7.9 53.6 (10.2) 62.4 (10.7) 50.8 (12.6) 56.7 (13.7) 90.1 86.6

LL◦ 6.7 7.5 48.5 (21.4) 33.9 (17.1) 46.2 (16.2) 37.1 (17.8) 88.6 81.2

SVAmm 2.5 3.6 38.2 (3.6) 33.1 (2.5) 34.9 (3.2) 29.8 (2.1) 92.8 83.1
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bounding box prediction accuracy through geometric 
difference considerations (Fig.  4). As shown in the fig-
ures, the average errors for all measures decreased as a 
result of the model better understanding the relations 
between different measures through this approach.

After combining the datasets (DS1 and DS2), we evalu-
ated our model on this combined dataset and assessed 
its final accuracy. For the LanDet model, evaluation 
revealed a mean Average Precision (mAP) of 0.875 at an 
Intersection over Union (IoU) threshold of 0.5 (mAP0.5) 
across the combined dataset. Additionally, the mAP 
across IoU thresholds from 0.5 to 0.95, with increments 
of 0.05 (mAP0.5:0.95) , was recorded at 0.595. The accuracy 
results for SS, PT, PI, LL, and SVA were 93.1%, 94.6%, 
93.4%, 91.2%, and 94.5% respectively (Table 2). Notably, 
the increased number of images in the training dataset 
and the higher quality of images in DS2 contributed to 

Fig. 4  Comparison of model performance: LanDet model with physics-informed constraint vs. landmarks as objects model (before constraint) 
for DS1 (left) and DS2 (right). Additionally, the figure presents the performance of the LanDet model on the combined dataset, allowing 
for a comparison of its performance on each dataset

Table 2  Statistical comparison of the values of reference manual parameter measurements (GT) and those obtained automatically by 
the prediction LanDet model (PR) for the combined dataset

The mean average error (MAE) are presented along with standard deviations (SD) of each parameter evaluated in the two datasets (DS1 & DS2). The table also include 
the correlation analysis using R Pearson correlation coefficients, and relative accuracy of prediction (Acc)

MAE (±SD) Mean PR (±SD) Mean GT (±SD) Correlation Analysis Acc (%)

R p

SS◦ 3.7 (2.7) 39.8 (9.4) 37.9 (10.3) 0.89 <0.0001 93.1

PT◦ 1.3 (1.1) 19.2 (13.3) 20.2 (12.9) 0.98 94.6

PI◦ 4.2 (3.1) 53.7 (12.4) 52.8 (12.3) 0.93 93.4

LL◦ 5.1 (6.4) 38.3 (19.5) 40.3 (16.7) 0.83 91.2

SVAmm 2.1 (1.9) 3.5 (3.1) 3.3 (2.9) 0.96 94.5

Table 3  Comparison of LanDet model estimation errors with 
literature reports

Measure LanDet Model Literature (Reported Mean Error 
and SD)

Mean error and SD Upper range Lower range

SS 3.7± 2.7◦ 8.4± 6.3◦ 2.7± 2.9◦

R = 0.89 R = 0.76 R = 0.85

PT 1.3± 1.1◦ 2.7± 2.5◦ 1.2± 1.7◦

R = 0.98 R = 0.9 R = 0.98

PI 4.2± 3.1◦ 9.5± 7.1◦ 3.8± 2.0◦

R = 0.93 R = 0.72 R = 0.96

LL (L5-L1) 5.1± 6.4◦ 11.2± 5.0◦ 4.2± 2.3◦

R = 0.83 R = 0.79 R = “not reported”

SVA 2.1± 1.9 mm 3.6± 3.5 mm 2.0± 2.4 mm

R = 0.98 R = 0.96 R = 0.99
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improved detection accuracy, with all exceeding 90%. 
Among them, PT achieved the highest accuracy of 94.6%.

Table  3 illustrates the comparative performance of 
our model against reported accuracies in the literature 
across various measures. The table is structured to pro-
vide a clear and concise comparison of the metrics, but it 
should be mentioned that the dataset used in each study 
is different from each other and from our datasets.

Sacrum Slope (SS): Our model predicts SS with a 
mean error and standard deviation of 3.7± 2.7◦ and a 
Pearson correlation coefficient (R) of 0.89. The LanDet 
model outperforms the lower reported accuracy range 
of 8.4 ± 6.3◦ , R = 0.76 [10], demonstrating greater pre-
cision. While LanDet shows a slightly higher mean 
error than the upper range in the literature ( 2.7± 2.9◦ , 
R = 0.85 ) [26], the high correlation coefficient indicates 
its reliability.

Pelvic Tilt (PT): The model shows a mean error of 
1.3± 1.1◦ with an R of 0.98 for PT. This performance is 
within the highest accuracy range reported in the lit-
erature, which spans from 2.7± 2.5◦ , R = 0.9 [5] to 
1.2± 1.7◦ , R = 0.98 [13]. This indicates that our model 
is not only consistent with top-performing models but 
also tends towards a lower error margin, highlighting its 
precision.

Pelvic Incidence (PI): For PI, our model registers 
4.2± 3.1◦ , R = 0.93 , compared to a reported range in 
the literature of 9.5± 7.1◦ , R = 0.72 [10] to 3.8± 2.0◦ , 
R = 0.96 [26]. Here, our model demonstrates significant 
accuracy, surpassing the lower range of reported values 
and closely matching the higher accuracy models in both 
precision and correlation.

For the Lumbar Lordosis (LL) measure, our model’s 
errpr is represented as 5.1± 6.4◦ with a Pearson corre-
lation coefficient (R) of 0.83. When compared with the 
reported accuracies in the literature, our model dem-
onstrates competitive performance. The lower range 
of accuracy in the literature is reported as 11.2± 5.0◦ , 
R = 0.79 [10], while the upper range is 4.2± 2.3◦ [11], 
with the correlation coefficient not reported.

Sagittal Vertical Axis (SVA): Our model estimates SVA 
with a mean error of 2.1± 1.9 mm and a correlation coef-
ficient of 0.98. This compares favorably with the literature 
range of 3.6± 3.5 mm, R = 0.96 [12] to 2.0± 2.4 mm, 
R = 0.99 [13]. Our model’s results for SVA are within 
the range of existing models and demonstrate a balance 
between accuracy and reliability.

In summary, our model exhibits robust performance 
across a range of measures, consistently matching or 
surpassing the literature-reported accuracy. There are 
some measures for which our model accuracy is less 
than that reported in the literature. [13, 26]. This may 
be because the dataset size, image quality, and number 

of detection classes are different in each study including 
ours. For instance, [13] had a dataset including   2500 
images compared to our dataset of   1400 images. Fur-
thermore, [26] mentioned that cases involving minors 
whose skeletons have not fully matured and instances 
of degenerative disk disease, where the vertebra cor-
ners are challenging to discern, were omitted from their 
dataset. Additionally, only high-quality images with 
appropriate contrast and brightness levels for clear 
observation were included, while we excluded very few 
from our dataset to enhanse its capability for a real-
world application.

Limitations and advantages
To The model performance compares favorably with 
the literature and exhibits unique capabilities in han-
dling special cases and overcoming challenges related 
to adjacent landmark identification. We evaluated 
the model on two distinct datasets, demonstrating its 
adaptability to different scenarios and images from 
diverse sources. Approximately 5% of the datasets 
comprised images of low quality or partial visibility, 
while around 15% contained images with hip or spine 
implants. Figure  5 showcases four specific instances 
where the model accurately identified the required 
landmarks, even with patients having spinal or hip 
implants or images with partial cutoff or obstructed 
by protective shields. Despite the scarcity of training 
images for such special cases, our model proved suc-
cessful in handling them effectively. It is worth noting 
that manually annotating landmarks in such cases, par-
ticularly those with obstacles or partial image cutoff, 
can be challenging.

Previous studies in the literature [5, 13] have high-
lighted the challenge of missing specific landmarks and 
difficulty in distinguishing between adjacent and similar 
anatomical landmarks. In our research, we encountered 
similar issues until we introduced physics-informed 
constraints into our model. As illustrated in Fig. 6, the 
LanDet model successfully addresses these challenges 
by incorporating the concept of landmarks as objects 
with the integration of physics-informed constraints.

The primary limitation that deserves discussion is the 
availability of data. As expected, a larger training data-
set would lead to better model performance. While the 
model demonstrated robustness in detecting landmarks 
in challenging cases, improving the accuracy of these 
detections would be possible by increasing the num-
ber of images from patients with abnormalities or spi-
nal implants in the dataset. Furthermore, it is essential 
to highlight that our model did not undergo external 
validation, meaning it was not tested on images from 
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Fig. 5  Challenging cases successfully addressed by the model in the datasets: A Partially cut-off images, B Images with obstacles in the hip region, 
C Images from patients with hip implants, D Images from patients with spinal implants

Fig. 6  The advantage of applying physics-informed constraints, which improved the accuracy of localization of some similar 
and adjacent landmarks
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different medical centers. External validation would 
provide valuable insights into the model’s generalizabil-
ity and effectiveness in different clinical settings.

Model reliability and level of agreement 
between the model and surgeons
We conducted a comprehensive evaluation of our 
model’s reliability and performance in comparison to 
expert surgeons. Our assessment involved compar-
ing the extracted metrics from the model against those 
obtained from three separate surgeon annotations. To 
quantify the degree of agreement, we employed the ICC 
metric, the results of which are depicted in Fig.  7. Our 
model exhibited a notably higher consistency with the 
surgeons, surpassing previously reported levels in the 
literature [13].

The LanDet deep learning architecture demonstrated 
exceptional reliability across all measured parameters, 
effectively matching the precision of assessments con-
ducted by the surgeon reviewers. Our findings strongly 
corroborate prior research conclusions, which consist-
ently highlighted increased error rates, variability, and 
reduced consistency when measuring SS [5, 13, 27].

Conclusion
In this paper, we presented a novel deep learn-
ing approach for detecting anatomical landmarks as 
objects, surpassing the limitations of previous models 
that mostly relied on heat-map regression. By incor-
porating physics-informed constraints into our deep 
learning models, we achieved competitive results in 
landmark detection accuracy. Moreover, our approach 
demonstrated robustness in challenging scenarios, 
including cases with implants, protected regions, and 
partially obscured images, even when training data for 
such scenarios was limited. Furthermore, our model 
effectively addressed the issue of mis-detection of simi-
lar or adjacent landmarks. The landmark detection 
performance for SS, PT, PI, LL, and SVA measures was 
evaluated, comparing results between datasets of differ-
ent sizes and against the existing literature. Our model 
achieved competitive performance while offering the 
aforementioned advantages. To assess the reliability of 
our model, we compared its predictions against those 
of three senior surgeons, using the ICC metric. The 
results revealed a high level of agreement between our 
model and the expert surgeons.

Fig. 7  ICC metric results for the evaluation of model reliability by comparing the extracted results from the Model with Ground Truth, and three 
surgeons (Reviewer1: senior spine surgeon, Reviewer2: senior neurosurgeon, and Reviewer3: senior orthopedic surgeon)
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In conclusion, our proposed deep learning approach 
presents an efficient approach in the field of anatomical 
landmark detection. Its success in handling challeng-
ing scenarios and achieving comparable performance 
to expert evaluations makes it a valuable tool for clini-
cal applications and research studies. The integration 
of physics-informed constraints into the deep learning 
framework opens new possibilities for accurate and 
robust landmark detection in medical imaging.
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