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Abstract 

Osteoporosis is a prevalent bone disorder characterized by low bone mineral density (BMD) and deteriorated 
bone microarchitecture, leading to an increased risk of fractures. Vitamin D (VD), an essential nutrient for skel-
etal health, plays a vital role in maintaining bone homeostasis. The biological effects of VD are primarily mediated 
through the vitamin D receptor (VDR), a nuclear receptor that regulates the transcription of target genes involved 
in calcium and phosphate metabolism, bone mineralization, and bone remodeling. In this review article, we conduct 
a thorough literature search of the PubMed and EMBASE databases, spanning from January 2000 to September 2023. 
Utilizing the keywords “vitamin D,” “vitamin D receptor,” “osteoporosis,” and “therapy,” we aim to provide an exhaus-
tive overview of the role of the VD/VDR system in osteoporosis pathogenesis, highlighting the most recent findings 
in this field. We explore the molecular mechanisms underlying VDR’s effects on bone cells, including osteoblasts 
and osteoclasts, and discuss the impact of VDR polymorphisms on BMD and fracture risk. Additionally, we examine 
the interplay between VDR and other factors, such as hormonal regulation, genetic variants, and epigenetic modi-
fications, that contribute to osteoporosis susceptibility. The therapeutic implications of targeting the VDR pathway 
for osteoporosis management are also discussed. By bringing together these diverse aspects, this review enhances 
our understanding of the VD/VDR system’s critical role in the pathogenesis of osteoporosis and highlights its signifi-
cance as a potential therapeutic target.
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Introduction
Osteoporosis is a significant and growing health concern 
worldwide, particularly among the aging population [1, 
2]. It is characterized by reduced bone mineral density 
(BMD) and deteriorated bone microarchitecture, result-
ing in increased skeletal fragility and a heightened risk 
of fractures [1, 2]. According to the International Osteo-
porosis Foundation, osteoporosis affects an estimated 
200 million individuals globally, and this number is pro-
jected to rise as the population continues to age [3]. The 
overall prevalence of osteoporosis among adults aged 
50 and over is nearly 13% while it rises to approximately 
49% among women over 50 ages [2, 3]. The present rapid 
growth of the elderly population has made osteoporosis 
a major healthcare burden that has resulted in enormous 
and growing costs to national healthcare systems [1–3].

The pathogenesis of osteoporosis is complex and mul-
tifactorial, involving a delicate interplay between genetic, 
hormonal, environmental, and lifestyle factors (Fig.  1A) 
[4, 5]. Importantly, a deficiency of vitamin D (VD) is an 
important cause that leads to osteoporosis [6]. It is cru-
cial to understand the underlying mechanisms that con-
tribute to bone loss and compromised bone quality in 
order to develop effective preventive and therapeutic 
strategies.

VD, in particular VD2 and VD3 (Fig.  1B), is a group 
of fat-soluble secosteroids vital for skeletal health, and 
it plays a key role in maintaining bone homeostasis [7, 
8]. Its biological effects are primarily mediated via the 

vitamin D receptor (VDR), a nuclear receptor that gov-
erns the transcription of target genes [7, 8]. These genes 
are involved in a wide array of processes, including cal-
cium and phosphate metabolism, bone mineralization, 
and bone remodeling, all critical to the preservation of 
bone health [9]. Dysregulation of the VD/VDR system 
has been linked to several bone pathologies, including 
osteoporosis [10]. Recent advancements have shed light 
on how the VD/VDR system influences the behavior of 
bone cells, such as osteoblasts and osteoclasts, and how 
VDR polymorphisms might affect BMD and fracture risk 
[1, 11, 12]. Moreover, the interplay between the VDR and 
other factors, such as hormonal regulation, genetic vari-
ants, and epigenetic modifications, has become a topic of 
intense investigation [13, 14].

In this review, we aim to provide a comprehensive 
overview of the current understanding of the VD/VDR 
system’s role in osteoporosis pathogenesis. By consolidat-
ing recent findings, we underscore the relevance of the 
VD/VDR system in the onset and progression of osteo-
porosis, while also highlighting potential therapeutic ave-
nues for disease management.

Uptake, synthesis, and metabolism of VD
VD can be sourced from natural sun exposure and cer-
tain foods, including fatty fish, fish liver oils, beef liver, 
egg yolks, and mushrooms. Additionally, various foods, 
such as cheeses, milk, butter, cereal, and whole grains are 
often fortified with VD supplements to enhance dietary 

Fig. 1  Factors involved in the pathogenesis of osteoporosis and chemical structures of vitamin D2/D3. A Factors contributing to pathogenesis 
of osteoporosis. Osteoporosis can be affected by multiple factors, such as gender, age, race, body size, family history, diet, changes in hormones, 
lifestyle, and special medicines. B Chemical structures of vitamin D2 (C28H44O) and D3 (C27H44O) are shown
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intake (Fig. 2) [7, 15]. The synthesis of VD begins in the 
skin, where exposure to ultraviolet B (UVB) radiation 
converts 7-dehydrocholesterol, a compound found in sig-
nificant amounts in the skin, into previtamin D3 (Fig. 2) 
[7, 15]. Previtamin D3 is then transformed into vita-
min D3 (VD3), or cholecalciferol, via a heat-dependent 
process (Fig.  2) [7, 15]. Following its synthesis, VD3 is 
metabolized in the liver by the enzyme 25-hydroxylase to 
25-hydroxyvitamin D3, also known as calcifediol (Fig. 2) 
[7, 15].

VD metabolism occurs primarily in the kidneys but 
also in other tissues, where the enzyme 1α-hydroxylase 
converts calcifediol into its active form, calcitriol 

(1,25-dihydroxyvitamin D3) (Fig.  2) [7, 15, 16]. This 
conversion is tightly regulated by several factors includ-
ing serum levels of parathyroid hormone, calcium, 
and phosphate [11]. Recent studies have found that 
dysregulation in this final conversion step could lead 
to inadequate levels of active VD, contributing to the 
pathogenesis of various health conditions including 
osteoporosis [17].

In addition to endogenous synthesis, dietary intake also 
contributes to the body’s VD status [7, 8]. The primary 
dietary forms of VD are vitamin D3, found in foods like 
fatty fish and egg yolks, and vitamin D2, or ergocalciferol, 
which is obtained from plant sources and fortified foods 

Fig. 2  Uptake, synthesis, and metabolism of vitamin D2 and D3. Vitamin D can be obtained through natural sun exposure and from dietary 
sources such as fish, mushrooms, cheeses, milk, butter, cereal, and whole grains. Vitamin D3 is synthesized in the skin when pro-vitamin D3 
(7-dehydrocholesterol) is converted to pre-vitamin D3 in response to sunlight exposure (ultraviolet B radiation). Alternatively, Vitamin D3 can 
be obtained from natural or fortified foods and supplements from vitamin D2 (ergocalciferol) and vitamin D3. After entering the bloodstream, 
vitamin D2 and D3 bind to vitamin D-binding protein (DBP) and are transported to the liver where they are hydroxylated by liver 25-hydroxylases 
to form 25-hydroxycholecalciferol [25(OH)D] (calcifediol or calcidiol). 25(OH)D is then transported to the kidney where it is further hydroxylated 
by 1α-hydroxylase to produce the active secosteroid 1,25(OH)2D (calcitriol). The synthesis of 1,25(OH)2D is regulated by parathyroid hormone 
and is suppressed by calcium, phosphate, and 1,25(OH)2D itself
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(Fig.  2) [7, 8]. Both forms are metabolized in the same 
manner within the body [7, 8].

Structure and functions of VDR
Molecular structure of VDR
VDR is a nuclear hormone receptor that regulates gene 
expression in response to VD [18]. The VDR protein con-
sists of several domains that contribute to its structure 
and function [19, 20]. The N-terminal domain (NTD) 
contains transcriptional activation functions and inter-
acts with coactivators and corepressors (Fig. 3A) [19, 20]. 
The DNA-binding domain (DBD) allows the VDR to bind 
to specific DNA sequences called vitamin D response 
elements (VDREs) (Fig. 3A) [19, 20]. The ligand-binding 
domain (LBD) is responsible for ligand recognition and 
dimerization with the retinoid X receptor (RXR) (Fig. 3A) 
[19, 20]. Together, these domains enable the VDR to 
interact with DNA and other proteins to modulate gene 
expression [19, 20].

Ligand binding and activation of VDR
VDR is activated by binding to its ligand, calcitriol [21]. 
Upon ligand binding, the VDR undergoes conforma-
tional changes that facilitate its interaction with coactiva-
tor proteins [22]. The VDR-ligand complex then forms a 

heterodimer with RXR, and the complex translocates to 
the nucleus [22]. In the nucleus, the VDR-RXR heterodi-
mer binds to VDREs located in the promoter regions of 
target genes, leading to the recruitment of coactivators 
and the initiation of gene transcription (Fig.  3B) [22]. 
The ligand-binding process is crucial for the activation of 
VDR and the regulation of target gene expression [22].

VDR signaling pathways
Activation of VDR can trigger a multitude of signal-
ing pathways that contribute to its myriad physiological 
effects, ranging from maintaining bone homeostasis to 
modulating immune responses [23–25]. The binding of 
VDR–RXR heterodimer to VDREs on gene promoters 
represents the classic genomic pathway of VDR, which 
has been shown to regulate numerous genes [e.g., Cal-
bindin (CaBP), Cytochrome P450, Family 27, Subfam-
ily B, Polypeptide 1 (CYP27B1), nuclear factor kappa-Β 
ligand (RANKL), fibroblast growth factor 23 (FGF23)] 
involved in calcium and phosphate metabolism (Fig. 3B), 
crucial for bone health [9, 23, 26].

Besides the classic pathway, VDR can also initiate rapid 
non-genomic actions, which take effect within minutes to 
hours of VD administration [27, 28]. In these pathways, 
VDR interacts with and is phosphorylated by various 

Fig. 3  Functional domains of VDR protein and activation of VDR. A Functional domains of VDR proteins. Different domains, including NTD, 
DBD, and LBD, are shown. B The classic VDR signaling. The VDR-ligand complex forms a heterodimer with RXR, and the complex translocates 
to the nucleus. In the nucleus, the VDR-RXR heterodimer binds to VDREs located in the promoter regions of target genes, leading to the recruitment 
of coactivators and the initiation of gene transcription
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protein kinases, such as protein kinase A (PKA), mito-
gen-activated protein kinase (MAPK), protein kinase C 
beta (PKC-β), and casein kinase 2 (CK2) or with phos-
pholipase C to modulate intracellular calcium and phos-
phate levels (Fig. 4A) [27, 29, 30].

Moreover, VDR can interact with other signaling mole-
cules, exemplified by its crosstalk with the Wnt/β-catenin 
signaling pathway, which is instrumental for bone forma-
tion [31, 32]. In addition, VDR has been found to interact 
with other nuclear receptors, such as estrogen recep-
tor (ER) and peroxisome proliferator-activated receptor 
gamma (PPARγ), indicating complex interactions in reg-
ulating bone health and inflammation [33].

Emerging evidence indicates a pivotal role for the VD/
VDR signaling pathway in modulating inflammatory 
responses as well. Some studies have demonstrated the 
inhibitory effect of VD/VDR signaling on the activation 
of the NF-κB pathway, a key player in inflammation, in 
specific cell types such as embryonic fibroblasts and 
intestinal epithelial cells [34–37]. Moreover, VD has been 
found to downregulate the expression of hypoxia-induci-
ble factor-1α (HIF-1α) in osteoclasts, while tumor necro-
sis factor-alpha (TNFα) appears to reciprocally decrease 
VDR levels [38]. Additionally, VDR signaling has been 
implicated in immune regulation, cell proliferation, and 
differentiation [39, 40]. The VDR is expressed in immune 
cells, and its activation can modulate immune responses, 
such as the production of antimicrobial peptides and the 
regulation of immune cell differentiation [39, 40].

Regulation of VDR expression
The expression of VDR can be regulated at multiple lev-
els. Transcriptional regulation plays a crucial role in 
determining VDR abundance. Factors such as VD status, 
calcium levels, and hormonal signals can influence VDR 

gene transcription [25, 41]. Additionally, posttranscrip-
tional mechanisms, including mRNA stability and micro-
RNA-mediated regulation, can impact VDR expression 
[25, 41]. Furthermore, epigenetic modifications, such as 
DNA methylation and histone modifications, can affect 
VDR expression by altering chromatin structure and 
accessibility [25, 41]. These modifications can be influ-
enced by environmental factors, including diet, lifestyle, 
and exposure to sunlight [25, 41].

Effects of VD/VDR on osteoblasts and osteoclasts
VDR regulation of osteoblast function and mineralization
Osteoblasts, the cells responsible for bone formation, 
play a crucial role in maintaining skeletal integrity and 
bone remodeling [42]. Emerging evidence has highlighted 
the importance of VDR in regulating osteoblast function 
and differentiation [43, 44]. After binding of calcitriol, 
VDR activation promotes osteoblast differentiation, a 
tightly regulated process involving the transition of mes-
enchymal stem cells into mature osteoblasts [43, 44]. 
Studies have demonstrated that VDR activation enhances 
the expression of key osteogenic markers, such as runt-
related transcription factor 2 (Runx2), osterix (Osx), and 
alkaline phosphatase (ALP) [45–47]. These factors are 
essential for osteoblast commitment and maturation, as 
well as the subsequent synthesis and mineralization of 
the bone matrix [48].

Beyond its role in osteoblast differentiation, VDR 
exerts profound effects on osteoblast function and min-
eralization [49]. VDR activation stimulates the produc-
tion of various extracellular matrix proteins, including 
type I collagen, osteopontin, and osteocalcin, which are 
essential for bone formation and maintenance of bone 
strength [43, 44]. Moreover, VDR activation modulates 
the balance between osteoblast-mediated bone formation 

Fig. 4  Phosphorylation sites of VDR by kinases and chromosomal positions of VDR polymorphisms. A Phosphorylation sites of VDR by kinases 
(PKC-β, PKA, and CK2). B Chromosomal positions of four VDR polymorphisms (rs7975232, rs1544410, rs228570, and rs731236) are shown
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and osteoclast-mediated bone resorption by influenc-
ing the expression of receptor activator of nuclear fac-
tor kappa-B ligand (RANKL) and osteoprotegerin (OPG) 
[50–52]. RANKL is a key osteoclastogenic factor, while 
OPG acts as a decoy receptor, inhibiting RANKL and 
preventing osteoclast activation [50–52]. VDR activation 
in osteoblasts leads to decreased RANKL expression and 
increased OPG expression, thereby suppressing osteo-
clastogenesis and maintaining bone homeostasis [50–52].

VDR regulation of osteoclast function and bone resorption
Osteoclasts, the cells responsible for bone resorption, 
play a crucial role in maintaining bone homeostasis 
through the removal of old or damaged bone tissue [53]. 
Emerging evidence suggests that VDR is involved in the 
regulation of osteoclast differentiation and activation. 
Studies have demonstrated that VDR activation inhibits 
osteoclast differentiation by suppressing the expression 
of key osteoclastogenic factors such as RANKL and mac-
rophage colony-stimulating factor (M-CSF) [54]. VDR 
activation reduces the production of RANKL and M-CSF, 
thereby inhibiting osteoclast formation and subsequent 
bone resorption [54].

In addition to its effects on osteoclast differentiation, 
VDR has been shown to regulate the function of mature 
osteoclasts and the process of bone resorption [54, 55]. 
VDR activation has been reported to suppress the expres-
sion of genes involved in osteoclast activity, such as 
cathepsin K, matrix metalloproteinase-9 (MMP-9), and 
tartrate-resistant acid phosphatase (TRAP) [56]. Cathep-
sin K is a lysosomal protease involved in the degradation 
of the organic matrix of bone, while MMP-9 participates 
in the breakdown of the collagenous matrix [56]. TRAP 
is an enzyme associated with osteoclast function and is 

used as a marker for osteoclast activity [56]. By down-
regulating the expression of these genes, VDR activation 
reduces the resorptive capacity of osteoclasts [56]. By 
increasing the OPG-to-RANKL ratio and Wnt/β-catenin 
signaling, VDR activation helps maintain a balance 
between bone formation and resorption [32].

Genetic variations in the VDR gene 
and osteoporosis
Polymorphisms in the VDR gene and osteoporosis 
susceptibility
The human VDR gene is located on the short arm of 
chromosome 12q13.1 [57]. This gene is more than 100 kb 
in length and consists of 6 untranslated exons (exons 
1a–1f) and 8 protein-coding exons (exons 2–9) [58]. 
More than 60 polymorphisms of the VDR gene have been 
reported, ranging from sites in the promoter, exons, and 
introns to the 3’-untranslated region (UTR) [59]. Genetic 
variations in the VDR gene have been extensively studied 
in relation to osteoporosis susceptibility. Several single 
nucleotide polymorphisms (SNPs) have been identified 
in the VDR gene, and these variations can influence VDR 
function and subsequent effects on bone health. Com-
monly studied VDR SNPs include FokI (rs2228570), ApaI 
(rs7975232), BsmI (rs1544410), and TaqI (rs731236). Of 
these polymorphisms, ApaI and BsmI are located in the 
intron between exon 8 and exon 9, FokI is present in exon 
2, and TaqI is located in exon 9 (Fig. 4B) [60].

Extensive research has been carried out globally on the 
relationship between VDR gene polymorphisms, particu-
larly ApaI, TaqI, and BsmI, and osteoporosis (Table  1) 
[61–75]. Although there are variations in study results, 
a significant association between these polymorphisms 
and osteoporosis risk has been predominantly reported 

Table 1  Association of different VDR polymorphisms with osteoporosis risks

Polymorphism Osteoporosis Risk Ethnicity References

ApaI
TaqI

Significantly associated with osteoporosis incidence risk Saudi, White British males, Postmenopausal Chinese 
women, Korea Saudi Arabia

[61, 62, 66, 67, 69]

ApaI
TaqI

No correlation with BMD Austria, Spanish women aged over 60 [64, 71]

BsmI Significant association with osteoporosis susceptibility Caucasians, Asian [65, 70]

BsmI No statistical association with osteoporosis risk 
and BMD

Postmenopausal Spanish women undergoing osteopo-
rosis treatment, Han Chinese

[71, 74]

FokI Potential biomarker for osteoporosis development Postmenopausal Thai, Italian postmenopausal women, 
Chinese, Caucasian

[63, 68, 72, 75]

FokI Association with osteoporosis risk in Asians, not in Cau-
casians

Meta-analysis [73]

rs11568820 Association with risk of fracture and osteoporosis Young, healthy, postmenopausal Spanish women [76]

rs11568820 No significant association with osteoporosis risk Meta-analysis [12]

p.Gly14Ala
p.His305Gln

Association with osteoporosis risk Postmenopausal Chinese women [77]
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(Table  1). Notably, studies conducted in various eth-
nic populations including Saudis, British, and Chinese 
revealed significant associations between these polymor-
phisms and BMD or osteoporosis risk, despite some dis-
crepancies (Table 1) [61–75].

In addition to the mentioned polymorphisms, others 
like rs11568820, and genetic variants p.Gly14Ala and 
p.His305Gln have been identified as potential osteopo-
rosis predictors in certain populations (Table 1) [12, 76, 
77]. Nevertheless, their association with osteoporosis risk 
remains inconclusive, as results varied among different 
studies.

Influence of VDR polymorphisms on BMD
BMD is a key indicator of bone health and osteopo-
rosis risk [2]. Multiple studies have reported that the 
FokI, BsmI, TaqI, and ApaI polymorphisms significantly 
impact BMD in different populations, thereby influenc-
ing osteoporosis risk. However, these findings have been 
inconsistent, with some studies revealing significant 
associations between these polymorphisms and BMD, 
while others show no such relationship [61–75]. This dis-
parity has been attributed to factors such as ethnic diver-
sity and genetic heterogeneity.

Recent advances in genomic research have further shed 
light on how VDR polymorphisms might interact with 
environmental factors to influence BMD. For instance, 
the impact of VDR polymorphisms on BMD may be 
modulated by VD levels, dietary calcium intake, and sun 
exposure [78, 79]. Several studies have reported that the 
association between VDR polymorphisms and BMD 
becomes more pronounced under conditions of low 
calcium intake or VD deficiency [80, 81]. Additionally, 
research has started to unravel the mechanisms through 
which these polymorphisms might influence BMD, with 
data suggesting that they can affect the efficiency of 
VD signaling, and therefore the regulation of calcium 
and phosphate homeostasis [79–81]. However, further 
research is needed to fully understand the complex inter-
actions between VDR polymorphisms, BMD, and osteo-
porosis risk.

Interplay between VDR and other key players 
in bone metabolism
VDR and parathyroid hormone
The interplay between VDR and parathyroid hormone 
(PTH) is crucial for maintaining calcium homeostasis 
and bone health [82]. PTH plays a central role in regu-
lating serum calcium levels, while VD and its receptor 
are involved in calcium absorption and utilization in 
the body [82]. The VDR is expressed in the parathyroid 
glands, where it modulates the production and secre-
tion of PTH [83]. PTH acts on target tissues, such as 

the kidneys and bones, to increase calcium levels [83]. 
Through its interaction with the VDR, PTH regulates the 
expression of genes involved in calcium metabolism and 
bone remodeling [18, 82, 83].

VDR and calcium‑sensing receptor
The calcium-sensing receptor (CaSR) is another key 
player in calcium homeostasis [84]. It is expressed in var-
ious tissues, including the parathyroid glands, kidneys, 
and bones [84]. The CaSR detects changes in extracellu-
lar calcium levels and regulates PTH secretion accord-
ingly [85]. The VDR and CaSR have a complex interplay 
in maintaining calcium balance. VD, acting through the 
VDR, stimulates intestinal calcium absorption, which 
indirectly affects the activity of the CaSR [84, 85]. The 
CaSR, in turn, modulates PTH secretion and calcium 
reabsorption in the kidneys [84, 85]. Both the VDR and 
CaSR are involved in feedback mechanisms that regulate 
PTH production and calcium levels in the body [84, 85].

VDR and estrogen receptor
Estrogen plays a critical role in bone health, and its defi-
ciency contributes to the development of osteoporosis 
[86]. The estrogen receptor (ER) and VDR have interac-
tions that influence bone metabolism [87, 88]. Estrogen 
stimulates calcium absorption in the intestines and inhib-
its bone resorption by osteoclasts [89]. Estrogen and VD 
signaling pathways can cross-regulate each other, high-
lighting the interconnectedness between these receptors 
in maintaining bone health.

Understanding the interplay between the VDR, PTH, 
CaSR, and ER is crucial for unraveling the complex 
mechanisms involved in bone metabolism and calcium 
homeostasis. Dysregulation or disruption of these inter-
actions can lead to imbalances in bone remodeling, 
impaired calcium absorption, and increased osteoporosis 
risk. Further research is needed to elucidate the intricate 
molecular pathways and regulatory mechanisms underly-
ing the interplay between the VDR and other key play-
ers in bone metabolism. This knowledge may open new 
avenues for targeted therapeutic interventions for bone-
related disorders, including osteoporosis.

Therapeutic implications of targeting the VD/VDR 
signaling
VD supplementation in osteoporosis
VD supplementation is a widely used therapeutic 
approach in the management of osteoporosis [90, 91]. As 
VD is essential for calcium absorption and bone mineral-
ization, inadequate levels can contribute to bone loss and 
increased fracture risk [90, 91]. Supplementation with 
VD aims to optimize serum VD levels and enhance cal-
cium absorption, thereby improving bone health [90, 91].
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Clinical studies have shown that VD supplementa-
tion, especially when combined with calcium, can reduce 
the risk of fractures in osteoporotic individuals [90, 91]. 
The optimal dosage and duration of VD supplementa-
tion vary depending on individual factors such as age, 
sunlight exposure, and baseline VD levels [90, 91]. Reg-
ular monitoring of serum VD levels is recommended to 
ensure adequate supplementation [90, 91].

Selective VDR modulators
Selective vitamin D receptor modulators (VDRMs) (e.g., 
paricalcitol, eldecalcitol, maxacalcitol, seocalcitol, and 
lithocholic acid, Fig. 5) are a class of drugs that target the 
VDR pathway [92, 93]. These compounds interact with 
the VDR and selectively modulate its activity, offering the 
potential to enhance bone health without the side effects 
associated with systemic VD [92, 93].

VDRMs have shown promise in preclinical and clini-
cal studies for their ability to promote bone formation, 
reduce bone resorption, and improve BMD [94, 95]. 
These compounds exhibit tissue-selective effects, acting 
specifically on bone and reducing the risk of hypercalce-
mia and other adverse effects associated with high-dose 
VD supplementation [94–96]. However, further research 
is needed to evaluate their long-term efficacy, safety, 
and potential benefits compared to traditional VD 
supplementation.

Combination therapies targeting VDR pathway
Combination therapies that target the VDR pathway 
have gained attention as potential approaches to opti-
mize bone health and reduce fracture risk in osteoporotic 

individuals. These therapies involve combining VD sup-
plementation or VDRMs with other agents that enhance 
bone formation or inhibit bone resorption. For example, 
combining vitamin K, VD supplementation with calcium 
and bisphosphonates, which inhibit bone resorption, has 
been shown to have synergistic effects in improving BMD 
and reducing fracture risk [97, 98]. Other agents, such 
as denosumab (a monoclonal antibody targeting bone 
resorption) [99], teriparatide (a parathyroid hormone 
analog promoting bone formation) [100], and selective 
estrogen receptor modulators (SERMs) [101], can also 
be used in combination with VD-based therapies to opti-
mize bone health.

The rationale behind combination therapies is to target 
multiple aspects of bone metabolism, including calcium 
absorption, bone formation, and bone resorption, to 
achieve a comprehensive and synergistic effect on bone 
health. However, further research is needed to determine 
the optimal combinations, dosages, and treatment dura-
tions, as well as to assess the long-term safety and effi-
cacy of these approaches.

Discrepancies in findings: VD supplementation 
and fracture risk reduction
In recent years, randomized controlled trials in the gen-
eral population examining the effects of supplemental VD 
on fracture outcomes have yielded inconsistent results. 
Some studies have demonstrated benefits, whereas oth-
ers showed no significant effects [102–107]. Several 
factors might account for these inconsistent findings, 
including the use of bolus dosing, limited sample sizes in 
some studies, co-administration of calcium, and baseline 

Fig. 5  Chemical structures of VDRMs. Chemical structures of dfferent VDRMs, such as paricalcitol, eldecalcitol, maxacalcitol, seocalcitol, 
and lithocholic acid, are shown
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VD levels [102–107]. A critical aspect yet to be fully 
addressed is the potential variability in VDR functional-
ity among the participants. To more comprehensively 
understand the correlation between VD supplementation 
and fractures, forthcoming experimental designs should 
address certain limitations. These encompass the hetero-
geneity of study populations, ambiguities related to the 
optimal blood concentration of VD, the unavailability of 
data on participants’ baseline VD levels, and the absence 
of insights into genetic variations in the VDR gene.

Conclusion and future perspectives
In this review, we have explored the role of the VD/VDR 
system in the pathogenesis of osteoporosis. The VDR is a 
key regulator of bone metabolism, mediating the effects 
of VD on calcium absorption, bone mineralization, and 
bone remodeling. Genetic variations in the VDR gene 
have been associated with osteoporosis susceptibility and 
BMD. Furthermore, the VDR interacts with other key 
players in bone metabolism, including the parathyroid 
hormone, the calcium-sensing receptor, and the estrogen 
receptor, contributing to the complex regulation of bone 
homeostasis.

Therapeutically, targeting the VDR pathway has shown 
promise in the management of osteoporosis [90–93]. VD 
supplementation, particularly in combination with cal-
cium, has been widely used to improve bone health and 
reduce fracture risk. Selective VDR modulators offer a 
more targeted approach, selectively modulating VDR 
activity to enhance bone formation and reduce bone 
resorption [90–93]. Combination therapies that combine 
VDR-targeting agents with other bone-modifying drugs 
have also shown potential synergistic effects [97, 98].

Despite significant advancements in our understand-
ing of the VDR and its role in osteoporosis, several 
areas warrant further investigation. First, more studies 
are needed to elucidate the mechanisms underlying the 
interplay between the VDR and other key players in bone 
metabolism, such as PTH, CaSR, and ER. Understanding 
these interactions at a molecular level may uncover novel 
therapeutic targets for osteoporosis. Furthermore, the 
influence of genetic variations in the VDR gene on osteo-
porosis susceptibility and treatment response requires 
further exploration. Large-scale genetic studies, includ-
ing genome-wide association studies and functional 
analyses, can provide insights into the specific VDR 
polymorphisms and their implications for personalized 
medicine in osteoporosis. In terms of therapeutics, future 
research should focus on optimizing the use of VDR-tar-
geting agents, including selective VDR modulators and 
combination therapies. This includes identifying the most 
effective combinations, determining optimal dosages and 
treatment durations, and assessing long-term safety and 

efficacy in diverse patient populations. Additionally, the 
potential role of VDR-based therapies in other bone-
related conditions, such as osteomalacia and secondary 
osteoporosis, should be explored. Lastly, the integration 
of emerging technologies, such as omics approaches and 
advanced imaging techniques, can enhance our under-
standing of the VDR pathway and its interactions with 
other molecular networks in bone metabolism. These 
technologies can provide a comprehensive and multidi-
mensional view of the molecular mechanisms underlying 
osteoporosis, paving the way for personalized and preci-
sion medicine approaches.

In conclusion, the VDR pathway plays a critical role in 
the pathogenesis of osteoporosis, and targeting this path-
way holds significant therapeutic potential. Continued 
research efforts are needed to unravel the complexities 
of the VDR network, explore genetic influences, optimize 
therapeutic strategies, and leverage emerging technolo-
gies. These advancements will contribute to the devel-
opment of novel treatments and improve outcomes for 
individuals with osteoporosis in the future.
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