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Abstract 

Purpose It is known that muscle strength and muscle mass play a crucial role in maintaining bone mineral density 
(BMD). Despite this, there are uncertainties about how muscle mass, lower extremity muscular strength, and BMD 
are related. We examined the impact of lower extremity muscle strength and mass on BMD in the general American 
population using cross-sectional analysis.

Methods In the study, we extracted 2165 individuals from the National Health and Nutrition Examination Survey 
1999–2002. Multivariate logistic regression models were used to examine the association between muscle strength, 
muscle mass, and BMD. Fitted smoothing curves and generalized additive models were also performed. To ensure 
data stability and avoid confounding factors, subgroup analysis was also conducted on gender and race/ethnicity.

Results After full adjustment for potential confounders, significant positive associations were detected between peak 
force (PF) [0.167 (0.084, 0.249) P < 0.001], appendicular skeletal muscle index (ASMI) [0.029 (0.022, 0.036) P < 0.001], 
and lumbar spine BMD. A positive correlation was also found between PF, ASMI, and pelvis and total BMD. Following 
stratification by gender and race/ethnicity, our analyses illustrated a significant correlation between PF and lumbar 
spine BMD in both men [0.232 (0.130, 0.333) P < 0.001] and women [0.281 (0.142, 0.420) P < 0.001]. This was also seen 
in non-Hispanic white [0.178 (0.068, 0.288) P = 0.002], but not in non-Hispanic black, Mexican American and other 
race–ethnicity. Additionally, there was a positive link between ASMI and BMD in both genders in non-Hispanic whites, 
and non-Hispanic blacks, but not in any other racial group.

Conclusion PF and ASMI were positively associated with BMD in American adults. In the future, the findings reported 
here may have profound implications for public health in terms of osteopenia and osteoporosis prevention, early 
diagnosis, and treatment.
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Introduction
Described as a disease of the bones, osteopenia and oste-
oporosis result in reduced bone mass and degeneration 
of bone tissue structure, which increases susceptibility to 
bone fragility and fracture [1]. By 2030, there will be 13.5 
million people with osteoporosis in the USA, up from 
10.2 million in 2010, and projections estimate that over 
47 million Americans will be afflicted with osteopenia 
in 2020 [2–5]. Osteoporotic fracture is a serious clinical 
complication of osteoporosis, which is responsible for 
more than 1.5 million fractures annually [6]. Approxi-
mately two million dollars was spent on osteoporosis-
related unintentional fractures in 2005, and the costs 
continue to rise [7]. Due to the growing morbidity and 
mortality, and expense of healthcare, osteoporosis has 
emerged as a significant public health issue.

A number of risk factors contribute to osteopenia 
and osteoporosis, including hormonal factors, low peak 
bone mass, smoking, low physical activity, race/ethnic-
ity, and low strength and muscle. In assessing the risk of 
low bone mass, these factors should all be considered. 
Among them, muscle strength, muscle mass, and BMD 
have triggered extensive research due to the interdepend-
ence of the skeletal and muscular systems. However, the 
relationship between them is unclear, and the outcomes 
associated with this relationship are controversial. Ahedi 
et al. [8] discovered that hip muscle cross-sectional area 
and muscle strength were positively correlated with hip 
BMD. Similarly, Zhou et al. [9] also explored the connec-
tion between muscle strength and BMD and confirmed 
that the decrease in muscle strength was positively cor-
related with the decrease in BMD. Furthermore, in both 
men and women, a cross-sectional study demonstrated 
a link between BMD and muscle mass [10]. However, 
some researchers reported no relationship between mus-
cular strength and BMD. According to a cross-sectional 
investigation, the isokinetic strength of hip muscles may 
not contribute to the BMD of the proximal femur [11]. 
Similarly, a cross-sectional study of 58 women (aged 
62.1 ± 4.8  years) indicated an association between body 
fat mass and BMD of the proximal femur but not in lean 
body mass or appendicular lean mass (ALM) [12]. The 
emergence of such contradictory conclusions may be due 
to different study designs, different muscle measurement 
instruments, and problems with sample sizes between 
studies. Therefore, we used data from the larger data of 
NHANES and a more established method of muscle 
measurement.

Muscle strength is a measure of how a muscle can exert 
maximum strength. Presently, most of the research in 
the area of muscle strength is on grip strength. It mainly 
focuses on the hand and forearm measurement of power. 
Nevertheless, the main anatomical area for muscle 

function measurement is in the lower body, and these 
muscles are essential for daily activities. Additionally, 
lower limb strength loss is the biggest risk factor leading 
to falls and other injuries and disabilities [13, 14]. Thus, 
it will be of more clinical significance to explore the cor-
relation between lower limb muscle strength and BMD to 
intervene, protect, and prevent osteoporosis. We evalu-
ated muscle mass by calculating the Appendicular Skel-
etal Muscle Mass Index (ASMI) [15], and as appendicular 
muscle mass is less confounded by noncontractile lean 
body mass differences, we selected it over total lean body 
mass for our analysis. Therefore, we aimed to explore the 
feasibility of using the lower extremity muscle peak force 
(PF) value as an indicator of muscle strength and ASMI 
to predict BMD based on cross-sectional data from the 
1999–2002 NHANES.

Materials and methods
Study population
All data in this study were obtained from the National 
Health and Nutrition Examination Survey (NHANES), 
a major, ongoing cross-sectional survey conducted by 
the Centers for Disease Control and Prevention that has 
released data in two year increments since 1999. The 
NHANES participants signed informed consent prior to 
the implementation of the NHANES protocols approved 
by the National Center for Health Statistics Research 
Ethics Review Board [16].

The NHANES datasets were utilized for this investiga-
tion from 1999 to 2002. In total, there were 21,004 par-
ticipants who completed nutrition and health condition 
questionnaires, as well as health examinations. Conse-
quently, 2165 participants were included in this study 
due to the following: (1) there were no peak force data 
(n = 17,962); (2) no Lumbar spine BMD data (n = 19); 
and (3) patients with cancer, thyroid disease, or diabetes 
(n = 858) (Fig. 1).

Definitions of muscle strength and mass
Muscle strength
It is reported that Kinetic Communicator MP isokinetic 
dynamometers (Chaptex Corp., Chattanooga, TN) were 
used by NHANES to measure voluntary peak knee exten-
sor strength. Six measurements of muscle strength were 
taken at 60 degrees per second on the right quadriceps 
muscle [17, 18]. Analyses were excluded from those indi-
viduals with abnormal force–velocity limits (under 55 
degrees/second or above 65 degrees/s) [19].

This portion of the test was used to learn movements 
and warm up, so individuals were instructed not to exert 
their maximal effort during the first three trials. Mus-
cle strength was measured during the last three trials 
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with maximum effort. A maximum peak force value was 
selected if they had completed 4–6 trials [20].

Muscle mass
Using a DXA QDR-4500 Hologic scanner, appendicular 
skeletal muscle mass (ASM) was determined as the com-
bined muscle mass of the legs and arms [21]. It was deter-
mined that all muscle tissue, excluding fat and bone mass, 
was skeletal muscle, while ASM was defined as all lean soft 
tissue in the limbs [22]. In our study, ASMI was used to 
quantify muscle mass. The ASMI was calculated with ASM 
(kg) and height (m), where ASMI = ASM/height2 [15].

BMD measurement
In this study, BMD was measured by dual-energy X-ray 
absorption (DXA) with a Hologic QDR 4500A fan beam 
densitometer (Hologic Inc., Bedford, MA, USA) [23]. In 
order to assess fragility-fracture risk, this screening tool 
is commonly used internationally. We used radiologic 
technologists who are certified and trained to administer 
DXA examinations. In the survey, all participants aged 8 
and older were eligible to receive a DXA scan. DXA is not 
suitable for pregnant women, individuals weighing over 

300 pounds, or those who have taken radiographic con-
trast material in the past 7 days [22].

Other covariates
The covariates are demographic data, examination data, 
and questionnaire data. Demographic data included 
age (years, range 50–85, average: 64), gender (male and 
female), race–ethnicity, level of education (less than 
high school graduate, some college, missing), annual 
family income ($0–19,999, Over $20,000, missing), and 
marital status (separated/divorced/widowed/never mar-
ried, married/living with partner, missing/refused/don’t 
know). Examination data included weight (kg), height 
(m), body mass index (BMI, kg/m2). Additionally, ques-
tionnaire data included information on smoking behavior 
(yes/no), arthritis (yes/no), physical activity, alcohol con-
sumption (yes/no), and hypertension. Phosphorus (mg/
dL), energy (kcal/day), total fat (g/day), and caffeine (mg/
day) intake were considered potential confounders [24–
27]. The level of physical activity done in the past 30 days 
was defined as moderate (yes/no), vigorous (yes/no), and 
muscle strengthening (yes/no).

Fig. 1 Study flowchart. NHANES, National Health and Nutrition Examination Survey; BMD, body mineral density
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Statistical analysis
The complex survey design elements of the NHANES, 
including weighting, clustering, and stratification, 
were taken into consideration in accordance with the 
National Center for Health Statistics (NCHS) norma-
tive analysis guidelines. Our categorical variables were 
expressed as percentages, and our continuous variables 
were expressed as means and standard deviations. The 
link between ASMI, PF and BMD levels was evaluated 
through univariable and multivariable linear regres-
sion modeling. To further investigate the correlation 
between independent variables and dependent vari-
ables, we conducted multiple regressions. In the models 
of multivariate linear regression, an unadjusted model 
(Model 1) was first established, followed by an adjusted 
model (Model 2) that included age, gender, and race/eth-
nicity. A fully adjusted model (Model 3) was then calcu-
lated using variables from Models 1 and 2 plus smoking 
status, family income, physical activity, marital status, 
education level, energy, total fat and caffeine, and phos-
phorus intake. Moreover, we stratified the data by race/
ethnicity and gender to examine the robustness of the 
results. In addition, non-linearity was also handled using 
a weighted generalized additive model and smooth curve 
fitting. R software (version 4.0.3; easily accessible at 
https:// www.R- proje ct. org) and Empower Stats (version 
2.0; available at http:// www. empow ersta ts. com) were 
employed for all analyses. Statistical significance was set 
at P < 0.05.

Results
Baseline characteristics of the participants
A total of 2165 participants were included in our analy-
sis, with the weighted characteristics of the participants 
subclassified on the basis of lumbar spine BMD quar-
tiles (Q1:0.499–0.877  g/cm2; Q2:0.878–0.990  g/cm2; 
Q3:0.991–1.123  g/cm2; and Q4:1.124–1.809  g/cm2), as 
shown in Table  1. Baseline characteristics differed sig-
nificantly between the quartiles of lumbar spine BMD. In 
comparison with those in the lower quartiles (Q1), those 
in the higher quartiles (Q2–Q4) tended to be younger, 
male, and have higher family income, drank less, engaged 
in greater leisure time physical activity, and reported 
greater energy and caffeine intake. In addition, what is 
more noteworthy is that the former has higher PF and 
ASMI.

The relationship between BMD and PF and ASMI
An analysis of the correlation between BMD and PF and 
ASMI was conducted using a multiple linear regression 
model.

Table  2 shows the results of all three models. Our 
findings illustrate a significant correlation between 

muscle strength and BMD (β = 0.263, 95% CI 0.207–
0.319, P < 0.00001). We also identified a significant posi-
tive relationship between lumbar spine BMD and PF 
(β = 0.167, 95% CI 0.084–0.249, P = 0.00008). We also 
found a significant association between PF and total 
BMD and pelvis BMD in the fully adjusted models. For 
muscle mass, Table  2 illustrates a positive association 
between ASMI and BMD (β = 0.033, 95% CI: 0.028–
0.038, P < 0.00001). This association remains significant 
following adjustment (β = 0.029, 95% CI: 0.022–0.036, 
P < 0.00001). There were strong positive relationships 
between ASMI and total BMD, pelvis BMD across all 
fully adjusted models. The same trend was observed 
across quartiles in a sensitivity analysis, analyzing lum-
bar spine BMD categorical variables (quartiles), and the P 
value for the trend was 0.0001. Furthermore, we defined 
the nonlinear relationship between PF, ASMI, and BMD 
using smooth curve fitting and a generalized additive 
model (Figs. 2, 3, 4, 5, 6 and 7).

Subgroup analyses stratified by gender and race/ethnicity
We stratified analyses by major covariates known to affect 
ASMI and PF to ensure that our findings are robust to the 
effects of potential confounding. Table 3 illustrates a sub-
group analysis stratified by gender. Following adjustment, 
PF was positively correlated with lumbar spine BMD in 
both males (β = 0.210, 95% CI: 0.107–0.312, P = 0.00006) 
and females (β = 0.274, 95% CI: 0.135–0.412, P = 0.00011). 
Our findings indicate a significant relationship between 
ASMI and lumbar BMD in both genders. Furthermore, 
total BMD and pelvis BMD were clearly associated with 
PF and ASMI in both males and females.

In a race–ethnicity subgroup analysis, following 
adjustment, PF was positively and significantly associ-
ated with lumbar spine BMD in non-Hispanic whites 
(β = 0.033, 95% CI 0.024–0.043, P < 0.00001); however, 
this association was not significant following adjust-
ment in Mexican Americans (β = 0.104, 95% CI − 0.079 
to 0.287, P = 0.26357), non-Hispanic black (β = 0.128, 
95% CI −  0.088 to 0.343, P = 0.24604), and other 
race-ethnicities (β = 0.170, 95% CI −  0.088 to 0.428, 
P = 0.19864). The positive association between ASMI 
and lumbar spine BMD was significant in non-Hispanic 
white (β = 0.033, 95% CI 0.024–0.043, P < 0.00001), and 
non-Hispanic blacks (β = 0.032, 95% CI 0.017–0.048, 
P = 0.00008); however, this association was not sig-
nificant following adjustment in Mexican Americans 
(β = 0.015, 95% CI −  0.001 to 0.031, P = 0.07197) and 
other race/ethnicities (β = 0.017, 95% CI −  0.003 to 
0.037, P = 0.09786). Additionally, after fully adjust-
ing for potential confounding factors, PF and ASMI 
were significantly linked with pelvis BMD among non-
Hispanic white, non-Hispanic black, and Mexican 

https://www.R-project.org
http://www.empowerstats.com
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Table 1 Sociodemographic, health conditions and habits, psychical activity, anthropometric and body composition, strength, and 
dietary intake of person by quartile of lumbar spine BMD. NHANES, 1999–2002

Lumbar spine BMD (g/cm2) Quartile 1 Quartile 2 Quartile 3 Quartile 4 P-value

0.499–0.877 g/cm2 0.878–0.990 g/cm2 0.991–1.123 g/cm2 1.124–1.809 g/cm2

Demographic

Age (years) 63.96 ± 10.10 61.28 ± 9.09 59.84 ± 8.85 61.53 ± 9.70 < 0.0001
Gender (%) < 0.0001
Male 39.37 44.57 54.1 58.34

Female 60.63 55.43 45.9 41.66

Race/ethnicity (%) < 0.0001
Non-Hispanic White 76.60 82.12 81.62 82.17

Non-Hispanic Black 5.34 4.75 7.97 12.91

Mexican American 5.09 2.98 2.65 2.36

Other race/ethnicity 12.97 10.15 7.76 2.56

Level of education (%) 0.0003
Under high school graduate 54.86 50.59 43.03 41.86

Some college or over 44.98 49.41 56.97 58.08

Missing 0.16 – – 0.06

Annual family income (%) < 0.0001
$0–19,999 27.44 22.52 18.94 15.53

Over $20,000 42.15 37.27 43.89 41.54

Missing 30.41 40.21 37.18 42.93

Marital status (%) < 0.0001
Separated/divorced/widowed/never married 33.07 27.44 22.21 23.80

Married/living with partner 59.70 66.97 72.00 73.05

Missing/refused/don’t know 7.23 5.59 5.79 3.15

Health conditions and habits

Hypertension (%) 0.0123
Yes 35.43 37.62 35.23 43.91

No 64.57 62.38 64.77 56.09

Arthritis (%) 0.0508

Yes 20.50 21.49 22.32 27.93

No 47.73 44.71 42.19 40.33

Missing 31.77 33.80 35.49 31.73

Smoking behavior (%) 0.0100
Yes 18.68 19.11 16.22 13.94

No 35.71 37.46 34.50 44.11

Missing 45.61 43.43 49.28 41.96

Drinking (%) < 0.0001
Yes 21.77 16.53 16.54 15.23

No 18.51 13.86 14.00 8.96

Missing 59.73 69.61 69.46 75.81

Psychical activity

Moderate PA in past 30 days 0.449

Yes 46.69 47.35 51.05 47.47

No 53.31 52.65 48.95 52.53

Vigorous PA in past 30 days 0.0006
Yes 20.57 25.88 28.89 31.76

No 79.43 74.12 71.11 68.24

Strengthen PA in past 30 days 0.0300
Yes 18.08 15.85 20.69 22.45
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Data are described as mean ± standard error or percentage (confidence interval). Bold means that the p-value is statistically significant

Table 1 (continued)

Lumbar spine BMD (g/cm2) Quartile 1 Quartile 2 Quartile 3 Quartile 4 P-value

No 81.92 84.15 79.31 77.55

Anthropometric and body composition

Weight (kg) 70.24 ± 14.07 78.92 ± 17.24 82.39 ± 16.42 85.41 ± 18.41 < 0.0001
Height (m) 1.64 ± 0.10 1.67 ± 0.10 1.69 ± 0.10 1.71 ± 0.09 < 0.0001
Body mass index (kg/m2) 26.09 ± 4.57 28.07 ± 5.16 28.72 ± 5.32 29.27 ± 5.70 < 0.0001
Appendicular skeletal muscle mass (kg) 18.46 ± 4.92 20.52 ± 5.63 22.08 ± 5.47 22.92 ± 5.76 < 0.0001
Appendicular skeletal muscle index (kg/m2) 6.77 ± 1.26 7.22 ± 1.40 7.60 ± 1.35 7.77 ± 1.45 < 0.0001
Strength

Peak force (kN) 0.33 ± 0.12 0.36 ± 0.12 0.40 ± 0.13 0.40 ± 0.13 < 0.0001
Time to peak force (seconds) 1.17 ± 0.73 1.16 ± 0.75 1.10 ± 0.56 1.08 ± 0.63 0.0925

Peak force velocity (degree/second) 53.70 ± 18.16 54.37 ± 17.22 55.24 ± 16.49 55.09 ± 16.72 0.4456

Dietary intake

Energy (kcal/day) 1841.16 ± 923.64 1996.65 ± 905.51 2055.10 ± 919.63 2079.41 ± 919.68 0.0002
Carbohydrate (g/day) 235.46 ± 113.39 247.85 ± 125.61 251.57 ± 114.79 248.21 ± 114.51 0.1414

Total fat (g/day) 67.43 ± 47.36 76.03 ± 43.33 78.04 ± 45.77 79.25 ± 43.43 0.0001
Dietary fiber (g/day) 16.17 ± 10.33 15.82 ± 10.11 16.69 ± 10.76 16.06 ± 9.54 0.5116

Caffeine (mg/day) 199.22 ± 222.13 251.79 ± 310.44 193.66 ± 204.75 209.18 ± 206.38 0.0001
Biochemical parameters

Albumin (g/dL) 4.33 ± 0.27 4.32 ± 0.28 4.31 ± 0.27 4.34 ± 0.31 0.4957

Total calcium (mg/dL) 9.48 ± 0.40 9.46 ± 0.41 9.42 ± 0.39 9.43 ± 0.38 0.1123

Phosphorus (mg/dL) 1.17 ± 0.17 1.13 ± 0.16 1.13 ± 0.16 1.13 ± 0.17 < 0.0001
Potassium (mmol/L) 4.13 ± 0.35 4.12 ± 0.35 4.13 ± 0.35 4.14 ± 0.36 0.6693

Table 2 Associations between PF, ASMI, and BMD in different models

Linear regression models:

Model 1: no covariates were adjusted

Model 2 was adjusted for demographic factors, including gender, age and race/ethnicity

Model 3 was adjusted for gender, age, race/ethnicity, level of education, physical activity, smoking behavior, annual family income, marital status, energy, total fat and 
caffeine intake and phosphorus

Model 1
β (95% CI, P)

Model 2
β (95% CI, P)

Model 3
β (95% CI, P)

Lumbar spine BMD (g/cm2)

ASMI (kg/m2) 0.033 (0.028, 0.038)
< 0.00001

0.032 (0.025, 0.038)
< 0.00001

0.029 (0.022, 0.036)
< 0.00001

PF (kN) 0.263 (0.207, 0.319)
< 0.00001

0.199 (0.118, 0.280)
< 0.00001

0.167 (0.084, 0.249) 0.00008

Total BMD (g/cm2)

ASMI (kg/m2) 0.044 (0.040, 0.047)
< 0.00001

0.022 (0.018, 0.026)
< 0.00001

0.019 (0.015, 0.023)
< 0.00001

PF (kN) 0.481 (0.445, 0.518)
< 0.00001

0.187 (0.136, 0.237)
< 0.00001

0.154 (0.104, 0.205)
< 0.00001

Pelvis BMD (g/cm2)

ASMI (kg/m2) 0.067 (0.062, 0.072)
< 0.00001

0.054 (0.048, 0.061)
< 0.00001

0.050 (0.044, 0.057)
< 0.00001

PF (kN) 0.690 (0.635, 0.746)
< 0.00001

0.413 (0.335, 0.490)
< 0.00001

0.386 (0.308, 0.464)
< 0.00001



Page 7 of 14Han et al. Journal of Orthopaedic Surgery and Research          (2023) 18:397  

Americans but not in other race-ethnicities. As seen in 
the Model 3, we also observed that ASMI was signifi-
cantly associated with total BMD across all race–eth-
nicities. However, PF was only moderately related with 
total BMD among non-Hispanic white (β = 0.153, 95% 
CI 0.086–0.220, P < 0.00001) and Mexican Americans 
(β = 0.223, 95% CI 0.109–0.337, P = 0.00014).

Discussion
We utilized data from the NHANES 1999–2002 for this 
cross-sectional study. The results of the current study 
suggest that muscle mass and strength are significantly 
and positively associated with BMD both in univariate 
and multivariate linear regression analyses. The strong 

Fig. 2 Association between peak force and lumbar spine BMD. a Each black point represents a sample. b Solid red line represents the smooth 
curve fit between variables. Blue bands represent the 95% of confidence interval from the fit. Adjusted for gender, age, race-ethnicity, level of 
education, physical activity, smoking behavior, annual family income, marital status, energy, total fat and caffeine intake and phosphorus

Fig. 3 Association between ASMI and lumbar spine BMD. a Each black point represents a sample. b Solid red line represents the smooth curve fit 
between variables. Blue bands represent the 95% of confidence interval from the fit. Adjusted for gender, age, race-ethnicity, level of education, 
physical activity, smoking behavior, annual family income, marital status, energy, total fat and caffeine intake and phosphorus
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association between muscle mass and strength and 
BMD persisted after controlling for multiple covariates.

Previous studies have indicated that muscle strength 
is closely related to BMD [28]. Similarly, Elhakeem et al. 
[29] discovered that hip BMD in postmenopausal women 
was independently associated with peak lower extremity 
muscular strength; an analysis of 979 postmenopausal 

women from Finland (mean age 68.1  years) in a popu-
lation-based study illustrated that both body composi-
tion and muscle strength had a substantial impact on 
bone density [28]; furthermore, research by Seabra et al. 
[30] demonstrated that in teenagers, lower limb mus-
cular strength was related to BMD and bone mineral 
content (BMC) across the board; a connection between 

Fig. 4 Association between peak force and pelvis BMD. a Each black point represents a sample. b Solid red line represents the smooth curve fit 
between variables. Blue bands represent the 95% of confidence interval from the fit. Adjusted for gender, age, race-ethnicity, level of education, 
physical activity, smoking behavior, annual family income, marital status, energy, total fat and caffeine intake and phosphorus

Fig. 5 Association between ASMI and pelvis BMD. a Each black point represents a sample. b Solid red line represents the smooth curve fit between 
variables. Blue bands represent the 95% of confidence interval from the fit. Adjusted for gender, age, race-ethnicity, level of education, physical 
activity, smoking behavior, annual family income, marital status, energy, total fat and caffeine intake and phosphorus
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older people’s muscle mass, strength, and bone mass was 
shown to be gender-specific in a prospective community-
based study [31]. In contrast, our findings indicated that 
muscular strength and BMD are positively associated and 
do not differ based on gender. Two considerations might 
account for the contrast: first, variations in research 
design, muscle-measuring tools, or statistical correction 

factors; second, variations in sample sizes between 
investigations.

By employing ASMI, we later examined the connec-
tion between muscle mass and BMD and observed that 
there was a strong significant relationship between the 
two variables. This is consistent with the findings of Segal 
et al. [32], who revealed that muscle mass was positively 

Fig. 6 Association between peak force and total BMD. a Each black point represents a sample. b Solid red line represents the smooth curve fit 
between variables. Blue bands represent the 95% of confidence interval from the fit. Adjusted for gender, age, race-ethnicity, level of education, 
physical activity, smoking behavior, annual family income, marital status, energy, total fat and caffeine intake and phosphorus

Fig. 7 Association between ASMI and total BMD. a Each black point represents a sample. b Solid red line represents the smooth curve fit between 
variables. Blue bands represent the 95% of confidence interval from the fit. Adjusted for gender, age, race-ethnicity, level of education, physical 
activity, smoking behavior, annual family income, marital status, energy, total fat and caffeine intake and phosphorus
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Table 3 Subgroup analyses stratified by gender and race/ethnicity

Model 1
β (95% CI, P)

Model 2
β (95% CI, P)

Model 3
β (95% CI, P)

ASMI (kg/m2) (Quartile)

Q1 Reference Reference Reference

Q2 0.052 (0.032, 0.072) < 0.00001 0.051 (0.031, 0.072) < 0.00001 0.048 (0.027, 0.068) < 0.00001

Q3 0.082 (0.062, 0.102) < 0.00001 0.076 (0.053, 0.099) < 0.00001 0.069 (0.046, 0.092) < 0.00001

Q4 0.121 (0.102, 0.141) < 0.00001 0.112 (0.087, 0.137) < 0.00001 0.100 (0.074, 0.126) < 0.00001

P for trend  < 0.0001  < 0.0001  < 0.0001

Peak force (kN) (Quartile)

Q1 Reference Reference Reference

Q2 0.037 (0.015, 0.059) 0.00081 0.035 (0.013, 0.058) 0.00192 0.031 (0.009, 0.054) 0.00702

Q3 0.064 (0.043, 0.085) < 0.00001 0.055 (0.030, 0.079) < 0.00001 0.045 (0.021, 0.070) 0.00029

Q4 0.095 (0.074, 0.115) < 0.00001 0.074 (0.046, 0.102) < 0.00001 0.063 (0.034, 0.092) 0.00002

P for trend  < 0.0001  < 0.0001  < 0.0001

Lumbar spine bone mineral density
Subgroup analysis stratified by gender

ASMI

 Male 0.032 (0.023, 0.041) < 0.00001 0.040 (0.031, 0.049) < 0.00001 0.040 (0.030, 0.050) < 0.00001

 Female 0.037 (0.028, 0.045) < 0.00001 0.029 (0.020, 0.038) < 0.00001 0.031 (0.021, 0.040) < 0.00001

Peak force (kN)

 Male 0.051 (− 0.034, 0.136) 0.24027 0.228 (0.130, 0.327) < 0.00001 0.210 (0.107, 0.312) 0.00006

 Female 0.521 (0.403, 0.638) < 0.00001 0.315 (0.178, 0.452) < 0.00001 0.274 (0.135, 0.412) 0.00011

Subgroup analysis stratified by race

ASMI

 Non-Hispanic White 0.031 (0.025, 0.038) < 0.00001 0.035 (0.026, 0.044) < 0.00001 0.033 (0.024, 0.043) < 0.00001

 Non-Hispanic Black 0.039 (0.026, 0.052) < 0.00001 0.031 (0.016, 0.046) 0.00008 0.032 (0.017, 0.048) 0.00008

 Mexican American 0.030 (0.019, 0.042) < 0.00001 0.022 (0.006, 0.039) 0.00729 0.015 (− 0.001, 0.031) 0.07197

 Other race/ethnicity 0.029 (0.013, 0.045) 0.00068 0.021 (0.002, 0.039) 0.03289 0.017 (− 0.003, 0.037) 0.09786

Peak force (kN)

 Non-Hispanic White 0.241 (0.169, 0.313) < 0.00001 0.212 (0.103, 0.320) 0.00013 0.163 (0.053, 0.273) 0.00378

 Non-Hispanic Black 0.355 (0.182, 0.528) 0.00007 0.179 (− 0.029, 0.387) 0.09178 0.128 (− 0.088, 0.343) 0.24604

 Mexican American 0.296 (0.167, 0.426) < 0.00001 0.158 (− 0.025, 0.342) 0.09206 0.104 (− 0.079, 0.287) 0.26537

 Other race/ethnicity 0.327 (0.146, 0.509) 0.00054 0.210 (− 0.034, 0.455) 0.09322 0.170 (− 0.088, 0.428) 0.19864

Pelvis bone mineral density
Subgroup analysis stratified by gender

ASMI

 Male 0.082 (0.073, 0.091) < 0.00001 0.073 (0.064, 0.083) < 0.00001 0.070 (0.061, 0.080) < 0.00001

 Female 0.055 (0.046, 0.064) < 0.00001 0.039 (0.030, 0.047) < 0.00001 0.038 (0.030, 0.047) < 0.00001

Peak force (kN)

 Male 0.539 (0.453, 0.625) < 0.00001 0.442 (0.341, 0.543) < 0.00001 0.403 (0.299, 0.507) < 0.00001

 Female 0.891 (0.778, 1.004) < 0.00001 0.446 (0.321, 0.571) < 0.00001 0.419 (0.292, 0.546) < 0.00001

Subgroup analysis stratified by race

ASMI

 Non-Hispanic White 0.068 (0.062, 0.075) < 0.00001 0.058 (0.050, 0.066) < 0.00001 0.055 (0.046, 0.063) < 0.00001

 Non-Hispanic Black 0.067 (0.055, 0.080) < 0.00001 0.057 (0.044, 0.071) < 0.00001 0.055 (0.041, 0.069) < 0.00001

 Mexican American 0.066 (0.054, 0.078) < 0.00001 0.059 (0.043, 0.074) < 0.00001 0.051 (0.035, 0.066) < 0.00001

 Other race/ethnicity 0.040 (0.021, 0.058) 0.00004 0.022 (0.003, 0.042) 0.02748 0.021 (0.000, 0.041) 0.05092

Peak force (kN)

 Non-Hispanic White 0.696 (0.626, 0.767) < 0.00001 0.421 (0.318, 0.524) < 0.00001 0.387 (0.282, 0.492) < 0.00001

 Non-Hispanic Black 0.686 (0.516, 0.856) < 0.00001 0.412 (0.214, 0.610) 0.00006 0.352 (0.151, 0.553) 0.00069

 Mexican American 0.719 (0.588, 0.851) < 0.00001 0.474 (0.293, 0.656) < 0.00001 0.402 (0.225, 0.580) 0.00001
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associated with hip BMD. According to a cross-sectional 
investigation, the incidence of spinal compression frac-
tures may be substantially related to lower limb muscle 
mass and grip strength [33]. In addition, compared with 
the study of Qin et  al. [10], our study selected a wider 
range of people, no longer limited to those under 59 years 
old. Moreover, for BMD, this study selected a greater 
amount of regional BMD data, which should ensure that 
the conclusions of this paper are more rigorous. Com-
pared with some previous studies with small sample-size 
studies, we utilized nationally representative NHANES 
data, which improved the external validity. Thus, this sur-
vey will give convincing support for the use of ASMI and 
muscular strength testing for osteopenia and osteoporo-
sis screening methods in the USA.

There has been a struggle among researchers to 
understand how bone health and muscle are linked. In 
Bone’s mechanostat theory, mechanical strain applied 
to bone determines bone remodeling, and bones adapt 
to static and dynamic forces generated by muscle con-
tractions [34]. As muscles become stronger, they may 
exert greater stress on their bones, putting them under 
load and encouraging bone formation and retention, 
which contributes to bone mass [35]. Skeletal muscle 

mass increases with an increase in mechanical load, 
whereas skeletal muscle mass decreases with a decrease 
in mechanical load [36]. There is evidence that skeletal 
muscle-derived mechanical loading plays an impor-
tant role in bone development and maintenance [37, 
38]. Besides being mechanically active, skeletal mus-
cle can also function endocrinely to maintain skeletal 
homeostasis. It is believed that skeletal muscle is an 
endocrine organ that releases a set of cytokines and a 
protein called myokines whenever muscles contract. 
Muscle myokines function autocrinely by controlling 
muscle metabolism, while bone, fat, brain, and liver 
myokines function paracrinely [39]. A mouse model of 
limb muscle removal affects bone growth and minerali-
zation; however, mice receiving minced skeletal muscle, 
non-limb SKM, or cardiac muscle were able to form 
cartilage and bone nodules [40]. Animals with frac-
tures where a skeletal muscle segment is excised heal 
better (and even increase their bone synthesis) when 
high molecular weight molecules derived from the 
muscle are infused into the injured area [41, 42]. The 
skeletal muscle releases actin directly to regulate the 
interaction between the muscle and the bones. In addi-
tion, the underlying mechanisms of muscle effects on 

Table 3 (continued)

Model 1
β (95% CI, P)

Model 2
β (95% CI, P)

Model 3
β (95% CI, P)

 Other race/ethnicity 0.568 (0.370, 0.767) < 0.00001 0.317 (0.063, 0.570) 0.01571 0.249 (− 0.014, 0.512) 0.06590

Total bone mineral density (g/cm2)
Subgroup analysis stratified by gender

ASMI

 Male 0.032 (0.026, 0.037) < 0.00001 0.028 (0.023, 0.034) < 0.00001 0.027 (0.021, 0.032) < 0.00001

 Female 0.029 (0.023, 0.035) < 0.00001 0.018 (0.012, 0.024) < 0.00001 0.019 (0.013, 0.025) < 0.00001

Peak force (kN)

 Male 0.232 (0.180, 0.284) < 0.00001 0.223 (0.162, 0.284) < 0.00001 0.194 (0.131, 0.256) < 0.00001

 Female 0.535 (0.457, 0.613) < 0.00001 0.218 (0.132, 0.303) < 0.00001 0.184 (0.098, 0.270) 0.00003

Subgroup analysis stratified by race

ASMI

 Non-Hispanic White 0.044 (0.039, 0.048) < 0.00001 0.022 (0.016, 0.028) < 0.00001 0.020 (0.014, 0.026) < 0.00001

 Non-Hispanic Black 0.043 (0.034, 0.052) < 0.00001 0.025 (0.016, 0.034) < 0.00001 0.026 (0.016, 0.035) < 0.00001

 Mexican American 0.044 (0.037, 0.051) < 0.00001 0.026 (0.016, 0.036) < 0.00001 0.021 (0.011, 0.031) 0.00008

 Other race/ethnicity 0.035 (0.024, 0.047) < 0.00001 0.017 (0.004, 0.029) 0.00917 0.014 (0.001, 0.028) 0.03134

Peak force (kN)

 Non-Hispanic White 0.480 (0.433, 0.527) < 0.00001 0.194 (0.127, 0.261) < 0.00001 0.153 (0.086, 0.220) < 0.00001

 Non-Hispanic Black 0.456 (0.340, 0.571) < 0.00001 0.132 (0.006, 0.258) 0.04145 0.075 (− 0.057, 0.208) 0.26667

 Mexican American 0.496 (0.413, 0.579) < 0.00001 0.279 (0.165, 0.393) < 0.00001 0.223 (0.109, 0.337) 0.00014

 Other race/ethnicity 0.442 (0.313, 0.571) < 0.00001 0.172 (0.010, 0.334) 0.03914 0.161 (− 0.008, 0.330) 0.06422

Model 1: no covariates were adjusted

Model 2: age, gender and race/ethnicity were adjusted

Model 3: gender, age, race/ethnicity, level of education, physical activity, smoking behavior, annual family income, marital status, energy, total fat and caffeine intake 
and phosphorus
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BMD, including mechanical and metabolic aspects, still 
require further investigation.

A gender-based subgroup analysis was conducted to 
determine if gender affected bone metabolism. In both 
genders, PF, ASMI, and BMD correlated significantly 
and positively. The association remained significant after 
adjusting for multiple confounding factors, suggesting 
that the relationship was independent of gender.

However, analyses stratified by race/ethnicity in our 
group showed that ASMI and PF were consistently posi-
tively associated with BMD in non-Hispanic whites, 
whereas associations became less significant in other 
racial/ethnic groups. And this means that race/ethnicity 
can influence the association of ASMI and PF with BMD 
in this study. A cross-sectional study of 1190 community-
dwelling men showed that greater bone strength among 
black American men than among their white counter-
parts and may indicate elevated fracture risk among older 
Hispanic American subpopulations [43]. The same is true 
for women; studies from NHANES III reported higher 
femoral neck BMD and shorter hip axis length in Mexi-
can American women compared to non-Hispanic white 
women in the USA [44]. Consistent with the previous 
study, non-Hispanic whites have been reported to have 
significantly lower BMD and higher fracture rates com-
pared with non-Hispanic blacks [45–47]. Moreover, Noel 
et  al. [48] demonstrated differences in BMD and osteo-
porosis among major racial and ethnic groups, high-
lighting the need to study individual groups by origin or 
background. It is worth noting that research by Berenson 
et  al. [49] discovered differences in genetic risk factors, 
obesity status, alcohol consumption, and other factors 
across racial/ethnic groups, which may provide a possi-
ble explanation for noted race-specific differences. Future 
studies with larger populations would benefit from exam-
ining associations across a wider range of race/ethnicity.

Our research has several advantages. First, it is accom-
plished by analysis of the NHANES data, a dependable 
data source for epidemiological studies. There is less like-
lihood of sampling bias because NHANES contains a sub-
stantial representative sample of the whole US population. 
Moreover, questionnaires and laboratory data sets offer 
comprehensive demographic, lifestyle, dietary, and medical 
information. We can better manage possible confounders 
in multiple regression models with the use of this data. We 
also have more ability to produce meaningful results thanks 
to the large sample size that NHANES provides. Finally, the 
knee extensor peak strength test is a commonly used mus-
cle strength measure. ASMI is easier to obtain with DXA, 
so both are easier to use as screening tests for low BMD.

The study has several limitations. On the one hand, as 
a result of the cross-sectional design of this study, causal 
relationships between muscle strength, mass, and BMD 

cannot be inferred. On the other hand, even though we 
included a number of covariables when performing the 
multivariate regression analysis, there may still be some 
residual confounding.

Conclusion
We found that muscle mass and strength were signifi-
cantly and positively associated with BMD in the total, 
pelvis, and lumbar spine in nationally representative 
sample of US adults, suggesting that PF and ASMI in the 
lower extremities may be a screening indicator for low 
BMD. This makes it easier to intervene early in osteo-
porosis risk individuals. For future research direction, 
it is suggested to further explore the causal relationship 
between muscle mass, strength, and BMD. This will be 
very helpful for our future research.
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