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Abstract 

Purpose  To systematically assess the quality of radiomics research in giant cell tumor of bone (GCTB) and to test the 
feasibility of analysis at the level of radiomics feature.

Methods  We searched PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and Wanfang 
Data to identify articles of GCTB radiomics until 31 July 2022. The studies were assessed by radiomics quality score 
(RQS), transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) state-
ment, checklist for artificial intelligence in medical imaging (CLAIM), and modified quality assessment of diagnostic 
accuracy studies (QUADAS-2) tool. The radiomic features selected for model development were documented.

Results  Nine articles were included. The average of the ideal percentage of RQS, the TRIPOD adherence rate and the 
CLAIM adherence rate were 26%, 56%, and 57%, respectively. The risk of bias and applicability concerns were mainly 
related to the index test. The shortness in external validation and open science were repeatedly emphasized. In GCTB 
radiomics models, the gray level co-occurrence matrix features (40%), first order features (28%), and gray-level run-
length matrix features (18%) were most selected features out of all reported features. However, none of the individual 
feature has appeared repeatably in multiple studies. It is not possible to meta-analyze radiomics features at present.

Conclusion  The quality of GCTB radiomics studies is suboptimal. The reporting of individual radiomics feature data 
is encouraged. The analysis at the level of radiomics feature has potential to generate more practicable evidence for 
translating radiomics into clinical application.
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Introduction
Giant cell tumor of bone (GCTB) is typically composed 
of neoplastic mononuclear stromal cells, macrophages 
and osteoclast-like giant cells [1], and marked by a muta-
tion in the H3F3A gene [2]. GCTB has a potential of 
aggressive behavior with high local recurrence rate, and 
thus, needs personalized stratified management [3, 4]. 
Yet, GCTB rarely metastases to distinct site or shows 
malignant transformation [5]. Imaging is of importance 
throughout the clinical routine of GCTB management 
[5, 6], from differential diagnosis [7, 8], evaluation of 
response to denosumab [9], and prediction of local recur-
rence [10]. Radiomics, an emerging workflow that asso-
ciates quantitative imaging biomarkers with significant 
clinical outcomes [11-15], has been employed in muscu-
loskeletal oncology [16-19]. The radiomics models have 
also showed promising performance for diagnostic, pre-
dictive, and prognostic purpose in GCTB patients [20-
28]. However, the quality of radiomics studies on GCTB 
has not been evaluated, and it is still unclear which radi-
omics features are genuinely of significance with biologic 
correlation.

As a subset of artificial intelligence, many recently 
developed tools have been recommended to assess the 
quality and reporting of radiomics research [18, 19, 29, 
30], including radiomics quality score (RQS) [31], the 
transparent reporting of a multivariable prediction model 
for individual prognosis or diagnosis (TRIPOD) check-
list [32], the checklist for artificial intelligence in medical 
imaging (CLAIM) [33], and the modified quality assess-
ment of diagnostic accuracy studies (QUADAS-2) tool 
[34]. Although these tools are useful in identifying the 
reporting disadvantages, methodological shortness, and 
potential risk of bias in radiomics studies, their rating are 
all at the level of study. The impact factor of radiomics 
reproducibility has been measured at the level of radi-
omics features [35], while the approach of analysis at the 
level of radiomics feature has not been established so far, 
neither has the analysis on effect size of individual fea-
tures been performed yet. Nevertheless, it is believed 
that genuinely promising biomarkers appear in multiple 
studies [36, 37], and the meta-analysis of these repeatably 
appearing features allows a signal of whether a predictor 
has genuine promise [38]. Therefore, we hypothesized 
that analysis at the level of radiomics features can provide 
additional information for radiomics studies.

The aim of the present study is to systematically assess 
the quality of radiomics research in GCTB and to test the 
feasibility of analysis at the level of radiomics feature.

Materials and methods
Protocol and workflow
Ethics committee approval is not required, because 
the nature of this study, which is a systematic review. 
This systematic review was conducted per Preferred 
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement [39], and correspond-
ing PRIMSA  checklists are  presented as  Additional 
file  2. The review protocol has been  been  registered 
as  CRD42022185399 via  the International Prospective 
Register Of Systematic Reviews (PROSPERO;  https://​
www.​crd.​york.​ac.​uk/​prosp​ero), and is present in Addi-
tional file  1: Note S1  and  Additional file  3. The litera-
ture search, study selection, data extraction, quality 
assessment, and data analysis were duplicated by two 
independent reviewers each with 4  years’ experience in 
radiology and radiomics research. The disagreements 
were solved after consulting a third reviewer from our 
review group consisting of radiologists, orthopedists, and 
pathologists.

Literature search and selection
We searched five peer-reviewed databases (PubMed, 
Embase, Web of Science, China National Knowledge 
Infrastructure, and Wanfang Data) until 31 July 2022 for 
primary research articles concerning on radiomics in 
GCTB for diagnostic, prognostic, or predictive purposes. 
We did not set publication period restrictions, while only 
articles in English, Japanese, Chinese, German or French 
were available. The titles and abstracts were screened 
after the removal of duplications. The full-texts and cor-
responding supplementary  materials  of these  poten-
tial records were obtained to determine their eligibility. 
The reference lists of included articles were browsed by 
hand  for additional potentially eligible articles. The 
search and selection strategy are shown in Additional 
file 1: Note S2.

Data extraction and quality assessment
We used a data collection instrument to collect biblio-
graphical information, study characteristics, radiomics 
considerations, and model metrics of included studies 
(Additional file 1: Table S1) [18, 19]. The included stud-
ies were comprehensively evaluated using RQS [31], 
TRIPOD [32], CLAIM [33], and QUADAS-2 tools [34] 
(Additional file  1: Tables S2 to S5). The RQS rating is a 
consensus list composed of six key domains with six-
teen items emphasizing radiomics-specific issues, and is 
one of the most acceptable quality evaluation tools for 
radiomics researches [29, 30]. The TRIPOD statement 
provides a checklist consisting of twenty-two criteria 

https://www.crd.york.ac.uk/prospero
https://www.crd.york.ac.uk/prospero
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with thirty-seven items, and is recommended for dis-
tinguishing shortness of model reporting of radiomics 
models [29, 30]. The CLAIM tool includes seven topics 
with forty-two items, and is considered as a better tool 
to identify technical disadvantages in radiomics studies 
[18]. The QUADAS-2 tool was tailored to our review by 
modifying the signaling questions [18, 19]. The consensus 
reached during data extraction and quality assessment 
are shown in Additional file 1: Note S3.

Data synthesis and analysis
The statistical analysis was performed with R language 
version 4.1.3  (https://​www.r-​proje​ct.​org/) within RStu-
dio version 1.4.1106  (https://​www.​rstud​io.​com/) [40]. 
The RQS rating, the ideal percentage of RQS, and adher-
ence rates of RQS, TRIPOD and CLIAM were calculated. 
In case a score of at least one point for each item was 
obtained without minus points, it was considered to have 
basic adherence, as those have been reported [18, 19, 29, 
30]. The QUADAS-2 assessment result was summarized. 
A two-tailed P value < 0.05 indicated statistical signifi-
cance, unless otherwise specified. In current review, we 
performed an analysis at the level of radiomics feature. 
We determined the group of radiomics features in GCTB 

models, and find out whether they appeared in multiple 
studies [36-38]. The meta-analysis was not conducted 
due to the high heterogeneity and insufficient report-
ing [41]. We further determined the model type [32] and 
study phase [42] to show the gap between current stud-
ies and clinical application (Additional file  1: Tables S6 
and S7). The detailed data analysis method is described in 
Additional file 1: Note S4.

Results
Literature search
Our systematic review identified 53 unique records after 
removal of 32 duplicates (Fig. 1). We screened their titles 
and abstracts, and obtained the full-texts and Additional 
file  1 of ten potentially available articles for eligibility 
assessment. Finally, nine articles were included [20-28]. 
There were no additional eligible articles detected by 
browsing reference lists of included articles and relevant 
reviews.

Study characteristics
The characteristics of included studies was summarized 
(Table  1). The average ± standard deviation (median, 
range) sample size of the included studies was of 97 ± 56 

Fig. 1  Flow diagram of study inclusion

https://www.r-project.org/
https://www.rstudio.com/
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(92, 29–215). Five studies were based on CT [20-22, 25, 
28], three were conducted with MRI [23, 24, 26], respec-
tively, and the left one study used both CT and MRI [27]. 
The included nine articles covered a vast range of clinical 
questions of GCTB (Fig. 2). Seven models attempted to 
differentiate GCTB from other types of tumors, including 
aneurysmal bone cyst [21, 24], chordoma [25-27], neuro-
genic tumor [28], or metastatic tumor [26], but only one 
model compared the performance of radiomics with radi-
ologists’ assessment and showed significant improvement 
[24]. One model was developed for expression of p53 and 
VEGF in GCTB, and provided better performance than 
clinical scoring or staging system [23]. One model was 
built for prognostic purpose for early recurrence of spinal 
GCTB [22].

The radiomics models was established with various 
methodologic settings (Table  2). Most of the models 
manually defined the region of interest (89%), by radi-
ologists with relevant subspecialist expertise (44%) or 
unspecified expertise (44%). Seven models used intraclass 

coefficient to measure the reproducibility of radiomics 
features extracted from two segmentations, and selected 
the reproducible ones. Artificial Intelligence Kit were 
employed in more than a half of the models for feature 
extraction (55%), while less than a half of the models 
include non-radiomics feature into the model (44%). 
According to the sample size and the validation datasets, 
one model was defined as TRIPOD type 3 model, and 
four models were classified as phase II for image mining. 
The details of studies and models are present in Addi-
tional file 1: Table S8 to S11.

Study quality
The overall quality of GCTB radiomics studies was 
suboptimal (Fig.  3). The average ± standard deviation 
(median, range) of the total RQS rating was 9.3 ± 5.1 (11, 
− 2 to 16) and a percentage of ideal score of 26% (9.3/36) 
(Table  3). The overall adherence rate of RQS, TRIPOD 
and CLAIM were 45% (65/144), 56% (142/252), and 57% 
(262/459), respectively (Tables  3, 4 and 5). The risk of 
bias and applicability concerns were mainly related to the 
index test, because the models were not validated using 

Table 1  Characteristics of included studies

ABC aneurysmal bone cyst, CLAIM checklist for artificial intelligence in medical imaging, GCTB giant cell tumor of bone, RQS radiomics quality score, SINS spinal 
instability neoplastic score, TRIPOD transparent reporting of a multivariable prediction model for individual prognosis or diagnosis

Study Sample size Imaging 
modality

Comparing 
test

Reference 
standard

Biomarker Outcome RQS (%) TRIPOD (%) CLAIM (%)

Nie [20] 92 (33 GCTB + 59 
chordoma)

CT None Histology Diagnosis GCTB vs. 
chordoma

44 73 65

Shi [21] 43 (34 GCTB + 9 
ABC)

CT None Histology Diagnosis GCTB vs. ABC 0 38 35

Wang [22] 62 GCTB CT None Follow up Prognosis Early recur-
rence in spinal 
GCTB

17 65 59

Wang [23] 80 GCTB MRI SINS score, 
Enneking 
stage

Immunohis-
tochemical 
staining

Prediction Expression of 
p53 and VEGF 
in GCTB

25 65 61

Wu [24] 29 (16 GCTB + 13 
ABC)

MRI Radiologists’ 
assessment

Histology Diagnosis GCTB vs. ABC 25 62 51

Yin [25] 95 (42 GCTB + 53 
chordoma)

CT None Histology Diagnosis GCTB vs. 
chordoma in 
sacrum

31 58 67

Yin [26] 120 (30 
GCTB + 54 + chor-
doma + 36 meta-
static tumors)

MRI None Histology Diagnosis GCTB vs. 
chordoma vs. 
metastatic 
tumor in 
sacrum

31 58 57

Yin [27] 137 (54 GCTB + 83 
chordoma)

CT + MRI None Histology Diagnosis GCTB vs. 
chordoma in 
sacrum

36 62 61

Yin [28] 215 (120 
GCTB + 95 neuro-
genic tumors)

CT None Histology Diagnosis GCTB vs. neu-
rogenic tumor 
in pelvic and 
sacral tumor

0 65 59
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independent external datasets. The quality ratings per 
study are present in Additional file 1: Table S12 to S15.

The RQS rating assessed the studies from a radiomics-
specific view, pointing out the deficiency in test–retest 
(0%), phantom study (0%), cut-off analysis (0%), and cost-
effective analysis (0%). The TRIPOD checklist showed 
room for improvement in reporting of title (0%), and 
blindness of outcome and predictor assessment (0% and 
0%). The CLAIM tool identified shortness in technical 
aspects including study hypothesis statement (0%), data 

de-identification method (0%), and failure analysis (0%). 
The disadvantage of comparing test (22% and 22%) drew 
attention of the RQS rating and the CLAIM tool, while the 
lacking of sample size determination with power calcula-
tion (0% and 0%) and missing data handling (0% and 0%) 
were both addressed by the TRIPOD checklist and the 
CLAIM tool. The validation (0%, 40% and 11%) and open 
science (6%, 6%, and 4%) were emphasized by all three 
tools.

Fig. 2  Imaging and radiomics in GCTB management
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Table 2  Radiomics analysis details of included studies

ICC intraclass coefficient, SR radiologist with relevant subspecialist expertise, UR radiologist with unspecified expertise

Study Segmentation and 
software

Observers and 
agreement

Feature extraction 
software

Non-radiomics 
features

Validation dataset Model type Phase 
classification

Nie [20] Manual; ITK-SNAP 2 URs; ICC Radiomics cloud 
platform

Clinical parameters Separate data from 
other institution

3 1

Shi [21] Manual; Image J Not documented Image J None Exactly the same 
data

1a 0

Wang [22] Manual; not docu-
mented

2 SRs; none Pyradiomics None Tenfold cross-
validation

1b 0

Wang [23] Manual; Image J 2 SRs; none Pyradiomics Clinical parameters Tenfold cross-
validation

1b 0

Wu [24] Manual; ITK-SNAP 2 URs; ICC Artificial intelli-
gence kit

Radiologists’ assess-
ment

Exactly the same 
data

1a 0

Yin [25] Manual; ITK-SNAP 2 SRs; ICC Artificial intelli-
gence kit

None Randomly splitting 
data

2a 0

Yin [26] Manual; ITK-SNAP 2 URs; ICC Artificial intelli-
gence kit

None Randomly splitting 
data

2a 1

Yin [27] Manual; ITK-SNAP 2 SRs; ICC Artificial intelli-
gence kit

Clinical parameters Randomly splitting 
data

2a 1

Yin [28] Semi-automatic; 
MITK

2 SRs; ICC Artificial intelli-
gence kit

Clinical parameters Randomly splitting 
data

2a 1

Fig. 3  Quality assessment of included studies. a ideal percentage of RQS, b TRIPOD adherence rate, c CLAIM adherence rate d QUADAS-2 
assessment result
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Analysis at the level of radiomic feature
The radiomics features selected for model building were 
summarized (Fig.  4). The multiple models developed in 
the same study were counted as different models [23, 26, 
27] and one study did not document the selected features 
were excluded [25]. The gray level co-occurrence matrix 
features (40%), first order features (28%), and gray-level 
run-length matrix features (18%) were most selected 
features out of all reported features in GCTB radiom-
ics. The gray level co-occurrence matrix features and first 
order features were usually selected in both CT-based 
(34% and 37%) and MRI-based (23% and 42%) models, 
but only gray-level run-length matrix features remained 
a percentage of 28% in MRI-based models. These three 
feature families also showed high percentages of included 
features in diagnostic models (28%, 43%, and 20%). In 
contrast, none of the neighbourhood gray-tone differ-
ence matrix features was considered of significance for 

radiomics model. Notably, none of the reported indi-
vidual feature has appeared repeatably in multiple stud-
ies, although some of them attempted to answer the same 
clinical question in GCTB.

Discussion
This review found that most of the current GCTB radi-
omics researches developed diagnostic models. Their 
methodological and reporting quality was suboptimal 
according to the RQS rating, the TRIPOD checklist, 
and the CLAIM tool. The risk of bias related to index 
testing has been identified by the QUADAS-2 tool. The 
most three significant feature families in GCTB radi-
omics models were gray level co-occurrence matrix 
(GLCM)  features, first order features, and gray-level 
run-length matrix (GLRLM) features.

Our review identified seven out of nine studies that 
aimed to distinguish GCTB from other tumors. The 

Table 3  RQS rating of included studies

The ideal score was described as score and percentage of score to ideal score for each item. In the cases where a score of one point per item was obtained, the study 
was considered to have basic adherence to each item. The adherence rate was calculated as proportion of the number of articles with basic adherence to number of 
total articles. The bolded numbers indicated the sum of domains or RQS

RQS radiomics quality score

16 Items according to 6 key domains Range Median (range) Percentage of ideal 
score, n (%)

Adherence rate, n (%)

Total 16 items − 8 to 36 11 (− 2 to 16) 9.3 (26) 65/144 (45)
Domain 1: protocol quality and stability in image and 
segmentation

0 to 5 2 (1 to 2) 1.9 (38) 17/36 (47)

 Protocol quality 0 to 2 1 (1 to 1) 1.0 (50) 9/9 (100)

 Multiple segmentations 0 to 1 1 (0 to 1) 0.9 (89) 8/9 (89)

 Test–retest 0 to 1 0 (0 to 0) 0.0 (0) 0/9 (9)

 Phantom study 0 to 1 0 (0 to 0) 0.0 (0) 0/9 (0)

Domain 2: feature selection and validation − 8 to 8 5 (− 8 to 6) 1.3 (17) 13/18 (72)
 Feature reduction or adjustment of multiple testing − 3 to 3 3 (− 3 to 3) 2.3 (78) 8/9 (89)

 Validation − 5 to 5 2 (− 5 to 3) − 1.0 (0) 5/9 (56)

Domain 3: biologic/clinical validation and utility 0 to 6 3 (2 to 6) 3.6 (59) 21/36 (58)
 Non-radiomics features 0 to 1 1 (0 to 1) 0.6 (56) 5/9 (56)

 Biologic correlations 0 to 1 1 (0 to 1) 0.6 (56) 5/9 (56)

 Comparison to “gold standard” 0 to 2 0 (0 to 2) 0.4 (22) 2/9 (22)

 Potential clinical utility 0 to 2 2 (2 to 2) 2.0 (100) 9/9 (100)

Domain 4: model performance index 0 to 5 2 (1 to 4) 2.3 (47) 12/27 (44)
 Cut-off analysis 0 to 1 0 (0 to 0) 0.0 (0) 0/9 (0)

 Discrimination statistics 0 to 2 2 (1 to 2) 1.7 (83) 9/9 (100)

 Calibration statistics 0 to 2 0 (0 to 2) 0.7 (33) 3/9 (33)

Domain 5: high level of evidence 0 to 8 0 (0 to 0) 0.0 (0) 0/18 (0)
 Prospective study 0 to 7 0 (0 to 0) 0.0 (0) 0/9 (0)

 Cost-effectiveness analysis 0 to 1 0 (0 to 0) 0.0 (0) 0/9 (0)

Domain 6: open science and data 0 to 4 0 (0 to 1) 0.2 (6) 2/9 (22)



Page 8 of 15Zhong et al. Journal of Orthopaedic Surgery and Research          (2023) 18:414 

Table 4  TRIPOD adherence of included studies

37 Selected items in 22 criteria according to 7 sections (N = 9) Study, n (%)

Overall (excluding items 5c, 11, 14b, 10c, 10e, 12, 13, 17, and 19a) 142/252 (56)

Section 1: Title and abstract 4/18 (22)

 1. Title—identify developing/validating a model, target population, and the outcome 0/9 (0)

 2. Abstract—provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, 
and conclusions

4/9 (44)

Section 2: Introduction 13/18 (72)

 3a. Background—explain the medical context and rationale for developing/validating the model 9/9 (100)

 3b. Objective—specify the objectives, including whether the study describes the development/validation of the model or both 4/9 (44)

Section 3: Methods 73/117 (62)

 4a. Source of data—describe the study design or source of data (randomized trial, cohort, or registry data) 9/9 (100)

 4b. Source of data—specify the key dates 9/9 (100)

 5a. Participants—specify key elements of the study setting including number and location of centers 9/9 (100)

 5b. Participants—describe eligibility criteria for participants (inclusion and exclusion criteria) 8/9 (89)

 5c. Participants—give details of treatment received, if relevant (N = 1) 1/1 (100)

 6a. Outcome—clearly define the outcome, including how and when assessed 9/9 (100)

 6b. Outcome—report any actions to blind assessment of the outcome 0/9 (0)

 7a. Predictors—clearly define all predictors, including how and when assessed 8/9 (89)

 7b. Predictors—report any actions to blind assessment of predictors for the outcome and other predictors 2/9 (22)

 8. Sample size—explain how the study size was arrived at 0/9 (0)

 9. Missing data—describe how missing data were handled with details of any imputation method 0/9 (0)

 10a. Statistical analysis methods—describe how predictors were handled 9/9 (100)

 10b. Statistical analysis methods—specify type of model, all model-building procedures (any predictor selection), and method for internal 
validation

8/9 (89)

 10d. Statistical analysis methods—specify all measures used to assess model performance and if relevant, to compare multiple models (dis-
crimination and calibration)

2/9 (22)

 11. Risk groups—provide details on how risk groups were created, if done (N = 1) 1/1 (100)

Section 4: Results 25/54 (46)

 13a. Participants—describe the flow of participants, including the number of participants with and without the outcome. A diagram may be 
helpful

3/9 (33)

 13b. Participants—describe the characteristics of the participants, including the number of participants with missing data for predictors and 
outcome

3/9 (33)

 14a. Model development—specify the number of participants and outcome events in each analysis 8/9 (89)

 14b. Model development—report the unadjusted association between each candidate predictor and outcome, if done (N = 5) 1/1 (100)

 15a. Model specification—present the full prediction model to allow predictions for individuals (regression coefficients, intercept) 3/9 (33)

 15b. Model specification—explain how to the use the prediction model (nomogram, calculator, etc.) 2/9 (22)

 16. Model performance—report performance measures (with confidence intervals) for the prediction model 6/9 (67)

Section 5: Discussion 276/27 (96)

 18. Limitations—discuss any limitations of the study 8/9 (89)

 19b. Interpretation—give an overall interpretation of the results 9/9 (100)

 20. Implications—discuss the potential clinical use of the model and implications for future research 9/9 (100)

Section 6: Other information 1/18 (6)

 21. Supplementary material—provide information about the availability of supplementary resources, such as study 0/9 (0)

 22. Funding—give the source of funding and the role of the funders for the present study 1/9 (11)

Section 7: Validation for model type 2a, 2b, 3, and 4 (N = 5) 8/20 (40)

 10c. Statistical analysis methods—describe how the predictions were calculated 2/5 (40)

 10e. Statistical analysis methods—describe any model updating (recalibration), if done (N = 0) n/a

 12. Development versus validation—identify any differences from the development data in setting, eligibility criteria, outcome, and predictors 3/5 (60)

 13c. Participants (for validation)—show a comparison with the development data of the distribution of important variables 3/5 (60)

 17. Model updating—report the results from any model updating, if done (N = 0) n/a

 19a. Interpretation (for validation)—discuss the results with reference to performance in the development data and any other validation data 0/5 (0)
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differentiation between GCTB and aneurysmal bone 
cyst may be difficult, when the GCTB contains obvious 
cystic component or formats secondary aneurysmal bone 
cysts [43]. Most of GCTB develop in long bones, while it 
may mimic chordoma when it occurs in sacrum [44]. The 
studies claimed that radiomics models could offer a valu-
able contribution to the differential diagnosis [21, 24-28], 
while it is still unclear whether the radionics could pro-
vide better performance comparing to the radiologists 
[24]. Further, the definitive diagnosis is required for the 
malignant GCTB cannot be differentiated radiologically 
and histopathology [45]. Pitiably, none of the GCTB radi-
omics research investigated the vital differential diagno-
sis between the malignant GCTB and the conventional 
GCTB. One radiomics model pre-operatively predicted 
the expression of p53 and VEGF in GCTB, and showed 
better performance than current methods [23]. Since the 
mutant of p53 and high expression of VEGF have been 
considered as risk factors for local recurrence and malig-
nant transformation in GCTB [46-48], the prediction has 
potential in choosing optimal treatment selections and 
surveillance protocols [23]. However, as an established 
targeted therapy for GCTB [10], the predictive model 
for GCTB response to denosumab has not been built 
yet, only a radiomics analysis on radiography showed 
changes of feature readouts during treatment [49]. There 
was only one prognostic radiomics model developed for 
early recurrence of the spinal GCTB [22]. Considering 
the complex treatment procedure of GCTB [3, 4], the 
prognostic models are of urgent to improve management 
strategies.

The insufficient study quality of radiomics studies 
has been repeatedly addressed [16-19, 29, 30, 50]. The 
ideal percentage of the RQS rating of GCTB radiom-
ics researches was comparable to other musculoskeletal 
sarcomas [16-19]. The adherence rate of the TRIPOD 
checklist and the CLAIM tool were also similar to pre-
vious reviews [18, 19, 29, 30, 50]. The prospective study 
design, phantom study, test–retest analysis, validation, 
analysis of cut-offs, cist-effectiveness and clinical util-
ity, as well as open science items have been suggested as 
common issues across radiomics research. However, the 
RQS includes five steps in the radiomics workflow: data 
selection, medical imaging, feature extraction, explora-
tory analysis, and modelling [13, 31]. We supposed that 
some of the issue may not be possible in one single article 

that aimed to develop and validate a model, but can be 
accomplished in a series of articles that aimed to identify 
the robust radiomics features, to tell whether the model is 
possible, and to test the model in the real-world, respec-
tively. In spite of the suboptimal methodological quality 
itself, it could be another reasonable cause for low RQS 
rating of current modeling articles. Actually, a checklist 
specialized for radiomics robustness researches has been 
already developed [51], and there are other guidelines 
could be employed for radiomics investigations in clini-
cal settings [52-55]. In contrast, the TRIPOD checklist 
and the CLAIM tool might be more suitable for cur-
rent modeling radiomics researches, because they were 
designed for quality evaluation at the level of model. The 
TRIPOD checklist and the CLAIM tool can both identify 
disadvantages in missing data handling and sample size 
or power calculation, while the CLAIM can better cap-
ture unique shortness in radiomics researches, such as 
data de-identification and failure analysis [17]. The ben-
efit of CLAIM has been also confirmed in our review that 
it could provide more technical insights for study design 
and reporting. The Image Biomarkers Standardization 
Initiative (IBSI) checklist is another potentially available 
tool for radiomics research [56]. We did not apply the 
IBSI checklist since it is largely overlapping with the RQS, 
the TRIPOD, and the CLAIM. The TRIPOD checklist 
and the QUADAS tool with artificial intelligence exten-
sions is now under development, it would be interesting 
to test their feasibility in radiomics modeling researches 
[57, 58].

The meta-analysis was not possible neither at the level 
of study nor at the level of radiomics feature. Neverthe-
less, we summarized the feature family of the selected 
features, and identified three most important families. 
The radiomics researches are commonly haphazard, 
inconsistent, and underpowered, with most appearing 
promising due to methodological error rather than 
intrinsic ability [36, 37], For avoiding biases and pitfalls 
introduced during the design, analysis, or reporting, 
there were approaches described at the level of study 
[59]. Although Kothari et  al. have tried to summarized 
the repeatedly appearing features in prognostic mod-
els of non-small cell lung cancer [60], this is the first 
attempt for meta-analyzing the repeatably appearing fea-
tures so far. We believe this approach could allow us to 
tell whether an imaging biomarker has genuine promise 

Table 4  (continued)
In the cases where a score of one point per item was obtained, the study was considered to have basic adherence to each item. The adherence rate was calculated 
as proportion of the number of articles with basic adherence to number of total articles. During the calculation, the “if done” or “if relevant” items (5c, 11, and 14b) 
and validation items (10c, 10e, 12, 13, 17, and 19a) were excluded from both the denominator and numerator. The bolded numbers indicated the sum of sections or 
TRIPOD

TRIPOD transparent reporting of a multivariable prediction model for individual prognosis or diagnosis, n/a not applicable
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Table 5  CLAIM adherence of included studies

CLAIM items (N = 9) Study, n (%)

Overall (excluding item 15a and 27) 262/459 (57)
Section 1: Title and abstract 15/18 (83)

 1. Title or abstract—identification as a study of AI methodology 9/9 (100)

 2. Abstract—structured summary of study design, methods, results, and conclusions 6/9 (67)

Section 2: Introduction 18/27 (67)
 3. Background—scientific and clinical background, including the intended use and clinical role of the AI approach 9/9 (100)

 4a. Study objective 9/9 (100)

 4b. Study hypothesis 0/9 (0)

Section 3: Methods 193/315 (61)
 5. Study design—prospective or retrospective study 9/9 (100)

 6. Study design—study goal, such as model creation, exploratory study, feasibility study, non-inferiority trial 9/9 (100)

 7a. Data—data source 9/9 (100)

 7b. Data—data collection institutions 9/9 (100)

 7c. Data—imaging equipment vendors 9/9 (100)

 7d. Data—image acquisition parameters 9/9 (100)

 7e. Data—institutional review board approval 7/9 (78)

 7f. Data—participant consent 5/9 (56)

 8. Data—eligibility criteria 8/9 (89)

 9. Data—data pre-processing steps 1/9 (11)

 10. Data—selection of data subsets (segmentation of ROI in radiomics studies) 8/9 (89)

 11. Data—definitions of data elements, with references to Common Data Elements 9/9 (100)

 12. Data—de-identification methods 0/9 (0)

 13. Data—how missing data were handled 0/9 (0)

 14. Ground truth—definition of ground truth reference standard, in sufficient detail to allow replication 9/9 (100)

 15a. Ground truth—rationale for choosing the reference standard, if alternatives exist (N = 0) n/a

 15b. Ground truth—definitive ground truth 9/9 (100)

 16. Ground truth—manual image annotation 5/9 (56)

 17. Ground truth—image annotation tools and software 1/9 (11)

 18. Ground truth—measurement of inter- and intra-rater variability; methods to mitigate variability and/or resolve discrepancies 6/9 (67)

 19a. Data partitions—intended sample size and how it was determined 9/9 (100)

 19b. Data partitions—provided power calculation 0/9 (0)

 19c. Data partitions—distinct study participants 3/9 (33)

 20. Data partitions—how data were assigned to partitions; specify proportions 3/9 (33)

 21. Data partitions—level at which partitions are disjoint (e.g., image, study, patient, institution) 9/9 (100)

 22a. Model—provided reproducible model description 8/9 (89)

 22b. Model—provided source code 0/9 (0)

 23. Model—software libraries, frameworks, and packages 5/9 (56)

 24. Model—initialization of model parameters (e.g., randomization, transfer learning) 0/9 (0)

 25. Training—details of training approach, including data augmentation, hyperparameters, number of models trained 8/9 (89)

 26. Training—method of selecting the final model 7/9 (78)

 27. Training—ensembling techniques, if applicable (N = 5) 5/5 (100)

 28. Evaluation—metrics of model performance 9/9 (100)

 29. Evaluation—statistical measures of significance and uncertainty (e.g., confidence intervals) 6/9 (67)

 30. Evaluation—robustness or sensitivity analysis 1/9 (11)

 31. Evaluation—Methods for explainability or interpretability (e.g., saliency maps), and HOW they were validated 2/9 (22)

 32. Evaluation—validation or testing on external data 1/9 (11)

Section 4: Results 19/54 (35)
 33. Data—flow of participants or cases, using a diagram to indicate inclusion and exclusion 3/9 (33)

 34. Data—demographic and clinical characteristics of cases in each partition 3/9 (33)
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[36-38]. Unfortunately, this approach is currently hin-
dered by insufficient reporting of effect size of individual 
radiomics features, and the limited number of studies. 
Although the association between each candidate predic-
tor and outcome (item 14b) has been addressed as an “if 
done” item in the TRIPOD checklist, it is seldomly done 
in radiomics researches. It is not reasonable to report 
the effect size of all tested radiomics features, but at least 
the reporting of the effect size of the selected radiomics 
features is encouraged in the future. Except for identify-
ing meaningful features, this approach can guide future 
investigation in radiomics robustness and biological 
correlation. The current radiomics robustness analysis 
weighs each radiomics feature equal since they all poten-
tially correlate with clinical outcomes. Instead of testing 
a huge amount of radiomics features, the number of fea-
tures that needed to be test could be lessen to those with 
clinically significance [51, 61]. The radiomics workflow 
for specific clinical purpose could be simplified, because 
only a limited number of features needed to be robust. 
The data-driven radiomics processes extract features with 
no a priori assumptions on their correlation with biologi-
cal processes, but the biological links could be explored 
a posteriori [61, 62]. Comparing to the features without 
clinical meaning, those associated with subsequent out-
comes have a higher possibility to correlate with specific 
biological processes and pathways.

Our review has several limitations that should be 
acknowledged. Firstly, there were only a limited num-
ber of articles included in our review, but our review 
focused on the GCTB to provide insights for this field. 
There were some studies from the same institutions 
[22, 23, 25-27],  which potentially influenced on the 
results of the current systematic review and introduced 

bias. GCTB  occurs most frequently in the long bones 
of the extremities, but it is notable that six out of nine 
included studies focused on tumors of axial bones [20, 
22, 23, 25-27].We did not include the GCTB researches 
using deep learning methodology, because one of our 
study aims was to test the feasibility of analysis at the 
level of radiomics feature. Secondly, the study qual-
ity was assessed by multiple tools, including the RQS, 
the TRIPOD, and the CLAIM, as these three tools 
have been confirmed to be suitable for radiomics 
reviews [18, 19, 29, 30, 50]. However, some items and 
their weight in the evaluation still needs clarification 
[18, 63]. The  CheckList for EvaluAtion of Radiom-
ics research (CLEAR) has been  developed  to improve 
the quality and reliability and, in turn, the reproduc-
ibility of radiomics research  [64]. This tool may  serve 
well as a single and complete scientific documentation 
tool for authors and reviewers to improve the radiom-
ics literature.However, we did not utilize it,  since this 
checklist  has not  been introduced to the radiomics 
community when the current  systematic review was 
undergoing. We are going  to use  this tool in future 
researches and  reviews.  Thirdly, the meta-analysis 
at the level of radiomics features was not performed 
due to the limited number of studies and suboptimal 
reporting of effect size of individual radiomics fea-
tures. Our group introduced this approach here, and 
plan to test its feasibility in other diseases which have 
been more widely investigated. The selection of radi-
omics features  strongly depends on the model used 
[65]. Since  statistically similar models may  generally 
identify different features as relevant, the selection 
of  radiomics  features  by a single model is misleading. 
Hence, there is a need for determining whether features 

Table 5  (continued)

CLAIM items (N = 9) Study, n (%)

 35a. Model performance—test performance 5/9 (56)

 35b. Model performance—benchmark of performance 2/9 (22)

 36. Model performance—estimates of diagnostic accuracy and their precision (such as 95% confidence intervals) 6/9 (67)

 37. Model performance—failure analysis of incorrectly classified cases 0/9 (0)

Section 5: Discussion 17/18 (94)
 38. Study limitations, including potential bias, statistical uncertainty, and generalizability 8/9 (89)

 39. Implications for practice, including the intended use and/or clinical role 9/9 (100)

Section 6: Other information 1/27 (4)
 40. Registration number and name of registry 0/9 (0)

 41. Where the full study protocol can be accessed 0/9 (0)

 42. Sources of funding and other support; role of funders 1/9 (11)

In the cases where a score of one point per item was obtained, the study was considered to have basic adherence to each item. The adherence rate was calculated as 
proportion of the number of articles with basic adherence to number of total articles. During the calculation, the “if alternatives exist” item (15a) and “if applicable” 
item (27) were excluded from both the denominator and numerator. The bolded numbers indicated the sum of sections or CLAIM

CLAIM checklist for artificial intelligence in medical imaging
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are biologically relevant imaging biomarkers. The meta-
analysis on repeatedly appearing features in multiple 
models might be possible, when a sufficient number of 
models have been established with complete report-
ing for a similar clinical question  [15, 66]. Lastly, the 
meta-analysis at the level of radiomics models has 
not been conducted because of the high heterogene-
ity of included studies. The meta-analysis could be 
done with evidence rating in an updated review, when 
there are reasonable number of models developed with 
homogeneity.

In conclusion, the methodological and reporting 
quality of GCTB radiomics studies is insufficient. More 
research for predictive and prognostic purpose are 
encouraged, and the quality of radiomics models distin-
guishing GCTB from other tumors needs improvement. 
The room for methodological improvement includes 
external validation, association with biological, analy-
sis of clinical utility, and open science. The reporting of 
effect size of individual radiomics feature is necessary 
for identifying genuine promising imaging biomarkers.

Fig. 4  The selected radiomic features in models. T2FS T2-weighted imaging with fat saturation, T1CE T1-weighted imaging with 
contrast-enhancement, mpMRI multiparametric MRI (T1WI, T2WI, DWI, and T1CE), PDFS proton-density-weighted imaging with fat saturation, CECT 
contrast-enhanced CT, GLCM gray level concurrence matrix, GLSZM gray level size zone matrix, GLRLM gray level run length matrix, GLDM gray level 
dependence matrix, NGTDM neighbourhood gray tone difference matrix
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