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Intra‑wound versus systemic vancomycin 
for preventing surgical site infection induced 
by methicillin‑resistant S. aureus after spinal 
implant surgery in a rat model
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Abstract 

Background  Systemic vancomycin administration pre-operatively for the infection prophylaxis of spinal implant sur-
gery remains unsatisfactory. This study aimed to explore the efficacy and dosage of local use of vancomycin powder 
(VP) in preventing surgical site infections after spinal implant surgery in a rat model.

Methods  Systemic vancomycin (SV; intraperitoneal injection, 88 mg/kg) or intraoperative intra-wound VP (VP0.5: 
44 mg/kg, VP1.0: 88 mg/kg, VP2.0: 176 mg/kg) was applied after spinal implant surgery and methicillin-resistant S. 
aureus (MRSA; ATCC BAA-1026) inoculation in rats. General status, blood inflammatory biomarkers, microbiological 
and histopathological evaluation were performed during 2 weeks post-surgery.

Results  No post-surgical deaths, wound complications and obvious signs of vancomycin adverse effects were 
observed. Bacterial counts, blood and tissue inflammation were reduced in the VP groups compared with the SV 
group. VP2.0 group showed better outcomes in weight gain and tissue inflammation than the VP0.5 and VP1.0 group. 
Microbial counts indicated that no bacteria survived in the VP2.0 group, whereas MRSA was detected in VP0.5 and 
VP1.0 groups.

Conclusions  Intra-wound VP may be more effective than systemic administration in preventing infection caused by 
MRSA (ATCC BAA-1026) after spinal implant surgery in a rat model.

Keywords  Postoperative infection, Spinal implant surgery, Intra-wound vancomycin powder, Infection prophylaxis, 
Rat model

Introduction
Surgical sites infection (SSI) is one of the most serious 
complications after spinal surgery, ranging from 0.3% to 
20% [1, 2]. Staphylococcus aureus (S. aureus) and Staph-
ylococcus epidermidis (S. epidermidis) are the major 
pathogenic bacteria [3], while approximately 23.1–75% of 
Staphylococcus clinically isolated are methicillin-resistant 
[3–5]. Studies indicated that systemic antibiotics admin-
istration such as cefazolin or vancomycin could not 
achieve a satisfactory effect of infection prophylaxis [6, 
7]. Thus, intra-wound antibiotics powder such as VP in 
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the surgical site for preventing SSI attracts the attention 
of the orthopedists.

Some clinical studies suggested that intra-wound VP 
intraoperatively in surgical sites of spinal surgery could 
significantly reduce the SSI rate without severe complica-
tions [8–15]. However, several studies reported that local 
use of VP in surgical wounds did not significantly alter 
the incidence of SSI in patients with surgically treated 
spinal pathologies [16–19]. All above studies illustrate the 
efficacy and safety of intra-wound VP in spinal surgery 
remain controversial. Moreover, no current guidelines 
are available for the use of intra-wound VP in prevent-
ing SSI, and no standard dosage for the drug exists. The 
dosage of intra-wound VP in most of the previous studies 
ranged from 0.5 g to 2 g, which was determined by the 
orthopedists, experience. The optimal dosage of intra-
wound VP had never been evaluated in all the previous 
studies [10, 12, 20].

Herein, this study explored the dosage, efficacy and 
safety of intra-wound VP in preventing the post-surgical 
infection after spinal implant surgery in a rat model for 
purpose of providing evidence for clinical strategies.

Materials and methods
Animals and reagents
Wistar rats of SPF grade (male, aged 10 weeks, weighting 
251  g ± 6  g) were obtained from the Center for Disease 
Control and Prevention (Hubei, China). The protocol of 
animal experiments was approved by the Committee on 
the Ethics of Animal Experiments of the School of Medi-
cine, Wuhan University (No. AF339). All procedures of 
this study were designed and carried out following the 
Animal Research: Reporting of In  Vivo Experiments 
(ARRIVE) and the Institutional Animal Care and Use 
Committee (IACUC) guidelines. All rats were housed 

in ventilated and sterilized cages at 22 ± 2  °C (humidity: 
55 ± 5%) on a 12-h light/dark cycle with free access to 
standard chow and water and subjected to surgery after 
adaptive feeding for 1  week. Clinical-grade vancomy-
cin hydrochloride for injection was obtained from Lilly 
(Japan).

Bacteria
Individual colonies of MRSA (ATCC BAA-1026) were 
grown in tryptic soy broth (TSB; Solarbio, China), and 
the culture was diluted with PBS to a final bacterial load 
of 1.6 × 106 CFU/100 µl, confirmed by viable plate count 
as we previously described [21].

Study design
According to previously described rat spinal surgery 
models [22, 23], orthopedic-grade titanium alloy screws 
were chosen to simulate clinical spinal implant surgery. 
Sixty-five rats were randomly assigned to 5 groups: (1) 
CON (control, no antibiotics), n = 13. (2) SV: systemic 
vancomycin (88 mg/kg, intraperitoneal injection, half an 
hour pre-surgery, equivalent to 1  g in an adult human), 
(3) VP 0.5, VP 1.0 and VP 2.0: intra-wound vancomycin 
powder (44  mg/kg, 88  mg/kg and 176  mg/kg, respec-
tively; once before the closure of incision intraopera-
tively). Doses of systemic vancomycin and intra-wound 
vancomycin were based on the dosage used in a prior rat 
model [24–26]. Table 1 reports the allocation of rats per 
group and the relative analysis.

Surgical procedure
Spinal implant surgery was carried out on rats under 
general anesthesia using 2.5% isoflurane. A 3-cm midline 
longitudinal skin incision was made over the back at the 
level of the fourth and sixth lumbar vertebrae (L4-L6). 

Table 1  Allocation of animals per group and investigations

ALT alanine aminotransferase, AST aspartate aminotransferase, Cr creatinine. UN urea nitrogen. SEM scanning electron microscopy

Analyses Animals 
(n = 13 per 
group)
1 2 3 4 5 6 7 8 9 10 11 12 13

Spinal surgery + bacterial inoculation (Day 0) x x x x x x x x x x x x x

Serum levels of vancomycin (Day 0) x x x x x x x x

General status (Day 0, 4, 7, 14) x x x x x x x x x x x x x

Incision examination (Day 14) x x x x x x x x x x x x x

Tissue histology (Day 14) x x x x x

Implant SEM (Day 14) x x x x x

Microbiology (Day 14) x x x x x x x x

Liver and kidney histology (Day 14) x x x x x x x x x x x x x

Serum ALT, AST, BUN and Cr (Day 14) x x x x x x x x x x x x x
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An incision of the fascia and muscle was performed in 
order to expose the L4-L5 vertebra and spinous, with sur-
rounding musculature and fascia separating. A 1.3-mm 
hole was drilled into the L5 vertebral pedicle, pointing 
obliquely to the L5 centrum, and an orthopedic-grade 
titanium alloy screw (width: 1.4 mm, length: 6 mm) was 
screwed into the hole (Fig. 1A–C); then, hemostasis was 
performed after saline irrigation. The surfaces of the 
screws and surrounding tissues were inoculated with 
1.6 × 106 CFUs of MRSA (ATCC BAA 1026) in 100  µl 
PBS (Solarbio, China; Fig.  1D). Intra-wound vancomy-
cin powder was assigned to those rats of VP groups in 
the surgical sites (Fig.  1E). The surgical sites and over-
lying skin were closed with 4–0 sutures (Fig.  1F). X-ray 
was obtained following surgery to validate the correct 
location of the implants before continuing further experi-
ments (Fig. 1G, H). Buprenorphine was used as postoper-
ative analgesic (0.1 mg/kg/day) for 3 days. The rats were 
monitored daily for general status, incision healing, and 
vancomycin-related reaction any local soft tissue or sys-
temic reaction related to the vancomycin and surgery. On 
post-surgical days 14, all rats were killed for blood collec-
tion and tissue harvest.

General status and serum biomarkers
Body temperature and weight of rats in each group were 
measured preoperatively (day 0), and on post-surgical 
days 4, 7 and 14. Serum creatinine (Cr), urea nitrogen 
(UN), alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) were measured by ELISA 

kit (CUSABIO, China) on post-surgical days 14. The 
serum levels of vancomycin at 0.5  h, 2  h and 4  h after 
intra-wound VP application were detected by high-per-
formance liquid chromatography-mass spectrometry 
(HPLC–MS, Thermo TSQ Quantis, USA).

Scanning electron microscopy (SEM)
Samples preparations of the removal implants were 
referred to the previous protocols [27] and observed 
using Gatan digital camera system (Zeiss, Germany). The 
visual spherical structures of no surface deformities and 
approximately 1  µm in diameter were considered fea-
tures of MRSA [28]. Five fields of view (FOV) on each 
implant were randomly observed under high magnifica-
tion (× 5000) and counted.

Incision healing and tissue histopathology evaluation
Incision healing was evaluated using a modified index 
score [29]. Gross tissue pathology was assessed on the 
base of the criteria of modified Rissing scale score [30], as 
follows: score 0, absence of abscess and ulcerative tissue; 
score 1, presence of minimal ulcerative tissue without 
abscess; score 2, tissue ulcerative and minimal abscess; 
score 3, abscess, sinus tract drainage or grossly purulent 
exudate; score 4, severe bone resorption, abscess. Soft tis-
sue histopathology stained with hematoxylin and eosin 
(H&E) was performed to assess the tissue morphology of 
inflammation. Histological score of soft tissues referred 
to the modified Petty’s scale [31–33], as follows: score 0 
(absent), absence of inflammatory cells; score 1 (mild), 

Fig. 1  Surgical procedures for spinal implant surgery and modeling of the surgical site infection in a rat. A–C Spinal implant surgery procedures 
were performed in a rat model. D 1.6 × 106 CFUs/100 µl of methicillin-resistant S. aureus (MRSA; ATCC BAA 1026) was inoculated in the surgical site. 
E Vancomycin powder was distributed in the wound during the surgery. F, G Anteroposterior and lateral radiographs of the implanted titanium 
alloy screws in the rat model were performed postoperatively (Bruker Xtreme BI, Germany; filter: 0.4 mm; 45 kVp; exposure time: 1.2 s; bin: 1 × 1 
pixels; field of view [FOV]: 10 cm; f Stop: 2)
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presence of occasional polymorph nucleated leukocytes; 
score 2 (moderate), scattered polymorph nucleated leu-
kocytes and micro-abscesses; score 3 (severe), diffuse 
polymorph nucleated leukocytes with several micro- and 
great abscesses.

Microbiological analysis
The centrum bone of L5 or surrounding soft tissues were 
harvested and homogenized by a tissue grinder (70HZ, 
10 min; JXFSTPRP-48, China) with 5 ml of PBS on days 
14, respectively. Each implant was placed in sterile PBS 
(2 ml), vortexed and sonicated to stimulate isolate of bac-
teria adherent to the implant [34]. Each tissue homoge-
nate or sonicate solution was plated and CFUs counted 
after overnight culture at 37  °C. Bacterial colonies were 
identified as MRSA using Gram stain, catalase testing, 
plasma coagulase rapid agglutination tests and cefoxitin 
disc.

Statistical analysis
Data were analyzed using SPSS software (versions 22.0, 
SPSS Inc., USA) and are presented as the means and 
standard errors of the means. Data were compared by 
analysis of variance (ANOVA) or unpaired 1-tailed 
Mann–Whitney test. P values of < 0.05 were considered 
significant.

Results
General status and serum inflammation marker
No statistical differences were detected in the body tem-
perature among the 5 groups (Fig.  2A, P > 0.05). Body-
weight in the VP 2.0 group was greater than other four 
treatment groups (Fig. 2B, P < 0.05), whereas no statisti-
cal differences were observed in the CON, SV, VP 0.5 and 
VP 1.0 groups on postoperative days 14 (Fig. 2B, P > 0.05). 
Serum α1-AGP levels of rats in the CON and SV groups 
were significantly higher than in the VP group at 14 days 
postoperatively, and the VP 2.0 group was lower than 
that of the VP 0.5 and VP 1.0 groups (Fig. 2C, P < 0.01). 
The incisions of rats in each treatment group were healed 
on days 14 without wound ulceration or sinus tract, the 
incision healing scores were greater than 4, no statisti-
cal differences were observed between 5 groups (Fig. 2D, 
P > 0.05).

Microbial counts
A greater quantity of MRSA cells was observed on the 
implants in the CON and SV groups by SEM compared 
with the VP groups, surrounding with leukocytes or/and 
erythrocytes (Fig. 3A). No bacteria were observed in the 
VP 2.0 group, with fewer MRSA cells observed in the 
VP 1.0 group than that of VP 0.5 group (Fig. 3A, B). The 
representative tryptic soy agar (TSA) plates of bacterial 

culture are shown in Fig.  3C. The CFUs counts of each 
sample in the VP groups were significantly less than the 
CON and SV groups, and the CFUs of VP 0.5 and VP 1.0 
groups were statistically higher than that of VP 2.0 group 
(Fig. 3D–G, P < 0.01).

Tissue inflammation evaluation
Soft tissues ulceration and abscess formation were 
observed in the CON and SV groups by gross pathol-
ogy of the surgical sites, whereas these changes were 
improved in the VP groups, especially in the VP 2.0 
group (Fig. 4A). Modified Rissing scale scores in the VP 
2.0 group were statistically lower compared with those of 
the CON, SV, VP 0.5 and VP 1.0 groups on post-surgical 
days 14 (P < 0.01, Fig. 4B). Acute purulent inflammation 
was observed in the surrounding soft tissues of CON 
and SV groups by histopathology, with abscess and infil-
trations of immunoinflammatory cells (Fig.  4C). These 
changes were greatly reduced in the VP groups, among 
which the least inflammatory changes were observed in 
rats from the VP 2.0 group, with almost no inflammatory 
cells infiltration. Modified Petty’s scale scores in the VP 
2.0 group were lower compared with those of the CON, 
SV, VP 0.5 and VP 1.0 groups (P < 0.01, Fig. 4D).

Safety evaluation of intra‑wound VP application 
in the spinal implant surgery
No obvious structural changes were observed in the liver 
and kidney of each treatment group (Fig.  5A, B). No 
significant differences were observed among the CON, 
SV and VP groups in the serum Cr, UN, ALT and AST 
(Fig. 5C–F, P > 0.05). Serum vancomycin levels in the SV 
and VP groups were lower than the reported concentra-
tion necessary to induce nephrotoxicity (15–20  µg/ml) 
[35–39] (Table 2).

Discussion
Several clinical and basic studies indicated that the appli-
cation of intra-wound VP in spinal implant surgery could 
reduce the incidence of post-surgical infection. Report 
from Lemans et al. refereed that the use of intra-wound 
VP was associated with a significant reduction in the 
post-surgical infection of spinal implant surgery [40]. 
Thompson et al. suggested that the application of VP in 
spinal surgery decreased the postoperative SSI rate (4.8% 
vs 13.8%; P = 0.038) compared with the untreated group 
[41]. Hida et  al. studied 174 consecutive spinal surgery 
patients and found that intra-wound VP was effective in 
preventing SSI in cases with high risks of infection, with-
out any side effects [42]. A meta-analysis of prospective 
and retrospective studies suggested that topical adminis-
tration of VP could significantly decrease the incidence 
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of post-surgical infection and was an effective and safe 
protocol to prevent infection after spinal operations [43].

However, the optimal and safe prophylactic dosage of 
intra-wound VP in the spinal implant surgery had never 
been evaluated in all these aforementioned studies. This 
rat-based study mimicked the use of intra-wound VP in 
the clinical spinal implant surgery and suggested that 
intra-wound VP resulted in less bacterial residue in sur-
gical sites and milder inflammatory reaction in blood 
and tissues compared with systemic vancomycin. The 
dosage of 176  mg/kg of intra-wound VP (equal to 2.0  g 
in human) could eliminate the MRSA in the bone, soft 

tissue and implants of surgical sites. Therefore, the above 
study data indicated that intra-wound VP might replace 
systemic vancomycin as an effective protocols of infec-
tion prevention after spinal implant surgery.

Compared with systemic antibiotics, local use of anti-
biotics could reach higher concentrations (about 20 
times of the minimal inhibitory concentration) while 
maintaining a safe systemic antibiotics concentration 
[44]. This local antibiotic administration achieves greater 
concentrations in critical areas such as postoperative 
seroma and ischemic tissue, while avoiding systemic 
toxicity reactions [45]. Due to the higher local antibiotic 

Fig. 2  Changes in general status and serum inflammation marker throughout the experimental period. A Changes in body temperature during the 
study. Mean body temperature of rats in each group was measured preoperatively (day 0) and on post-surgical days 4, 7 and 14 using electronic 
thermometer. n = 13. B Mean body weight of rats in each group was measured preoperatively (day 0) and on post-surgical days 4, 7 and 14. 
n = 13. C The serum levels of α1-AGP during the study (pre-surgery [day 0] and on post-surgical days 7 and 14) in each treatment group. n = 8. D 
Incision healing scores of each treatment group on post-surgical days 14. n = 13. CON: control (no antibiotics); SV: system vancomycin (88 mg/
kg, intraperitoneal injection, half an hour pre-surgery); VP 0.5: intra-wound vancomycin powder, 44 mg/kg, once before the closure of incision 
intraoperatively; VP 1.0: intra-wound vancomycin powder, 88 mg/kg; VP 2.0: intra-wound vancomycin powder, 176 mg/kg. Data were compared 
by analysis of variance (ANOVA) test. **P < 0.01 (compared with CON group), ##P < 0.01 (compared with SV group), ΔΔP < 0.01 (compared with VP0.5 
group). □□P < 0.01 (compared with VP1.0 group)
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concentration, resistant bacteria may even be eliminated 
[46]. Given that surgical sites infections after spinal sur-
gery caused by MRSA are particularly difficult to elimi-
nate, local use of antibiotics, especially vancomycin, has 
been widely concerned and practiced by orthopedic 
scholars [47].

Some orthopedists have expressed concerning about 
the topical application of VP in spinal surgery. Horii et al. 
reviewed 2,859 spine surgical patients and found that 
intra-wound application of VP could not significantly 
decrease the incidence of surgical sites infections after 
spinal implant surgeries (1.73% vs 0.97%) compared with 
the untreated group [15]. Some studies suggested that 
intra-wound VP could not reduce the risk of deep SSI 
after spinal surgery, but might increase the propensity 
for gram-negative species [17, 48, 49]. A meta-analysis 
concerning that although intra-wound VP in spinal sur-
gery decreased total infection rate (2.3% vs 3.8%; P < 0.05) 

compared with the untreated group, widespread use of 
intra-wound VP might increase the incidence of gram-
negative and polymicrobial infection [50]. Martin found 
that no significant difference was observed in the inci-
dence of peri-implanted infection rates with routine use 
of intra-wound VP [18]. Michael proposed that intra-
wound VP could not completely eliminated SSI in high-
risk patients; 16 patients (3.2%) in the cohort returned to 
the operating room for post-surgical infection [14].

No sufficient safety evaluation of intra-wound VP in 
the surgical sites of spinal operation was performed in 
these reports. In the current study, we found the serum 
vancomycin levels in the SV, VP 1.0 and VP 2.0 groups 
were higher than the MIC of ATCC BAA 1026 (2 µg/ml) 
within two hours after spinal implant surgery, but lower 
than that of inducing renal toxicity (15–20  µg/ml). In 
addition, no severe wound complications and obvious 
signs of vancomycin adverse effects in the structure and 

Fig. 3  Microbiological evaluation in each treatment group. A SEM scanning of the implant with high magnification (× 5000). B Five fields of 
view (FOV) on each implant were randomly observed under high magnification (× 5000) and counted. n = 5. C Representative tryptic soy agar 
(TSA) plates of microbial culture of bone, soft tissue and implant in each treatment group. D The mean CFUs counts of the L5 centrum in each 
treatment group. E The mean CFUs counts of all soft tissues around the L5 centrum in each treatment group. F The mean CFUs counts of implant 
in each treatment group. G The mean CFUs counts of the whole animal in each treatment group. n = 8. CON: control (no antibiotics); SV: system 
vancomycin (88 mg/kg, intraperitoneal injection, half an hour pre-surgery); VP 0.5: intra-wound vancomycin powder, 44 mg/kg, once before the 
closure of incision intraoperatively; VP 1.0: intra-wound vancomycin powder, 88 mg/kg; VP 2.0: intra-wound vancomycin powder, 176 mg/kg. 
Data were compared by an unpaired 1-tailed Mann–Whitney test. *P < 0.05, **P < 0.01 (compared with CON group), ##P < 0.01 (compared with SV 
group), ΔΔP < 0.01 (compared with VP0.5 group). □□P < 0.01 (compared with VP1.0 group). The red arrow indicates MRSA, the blue triangle indicates 
leukocyte, and the yellow circle indicates erythrocyte
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function of the liver and kidney were detected in rats that 
receiving intra-wound application of VP.

The current study does have limitations. First, the bac-
terial load of MRSA used in this study was higher than 
the clinical post-surgical infection cases, although the 
bacterial load was determined according to the prior rat 
studies that indicated a repeatable and stable postop-
erative spinal implant infection model [51, 52]. Second, 
2 week of postoperative observation period may be too 
short for detecting chronic or delayed infection and oste-
ogenic toxicity of vancomycin, further studies remain 
necessary.

In summary, in a rat model of a contaminated spinal 
implant surgery, use of intra-wound vancomycin powder 
could completely eliminate MRSA bacterial contami-
nation at the dosage of 176  mg/kg (equal to 2.0  g in an 

adult). Animals treated with intra-wound vancomycin 
powder were more effective than systemic vancomycin in 
preventing MRSA contamination.

Fig. 4  Gross pathology and histopathological assessment of the soft tissues in surgical sites. A Representative soft tissue of the lumbar spine 
appearance in surgical sites after post-surgical days 14 in each treatment group, after overlying skin was removed. B The gross tissue pathology 
scores based on the criteria of modified Rissing scale on post-surgical days 14 in each treatment group. n = 13. C Representative pathological H&E 
staining of the soft tissues in surgical sites on postoperative days 14 in each treatment group. D Mean soft tissue histological scores based on the 
criteria of modified Petty’s scale on postoperative days 14 in each treatment group. n = 5. CON: control (no antibiotics); SV: system vancomycin 
(88 mg/kg, intraperitoneal injection, half an hour pre-surgery); VP 0.5: intra-wound vancomycin powder, 44 mg/kg, once before the closure of 
incision intraoperatively; VP 1.0: intra-wound vancomycin powder, 88 mg/kg; VP 2.0: intra-wound vancomycin powder, 176 mg/kg. Data were 
compared by analysis of variance (ANOVA) test. **P < 0.01 (compared with CON group), #P < 0.05, ##P < 0.01 (compared with SV group), ΔΔP < 0.01 
(compared with VP0.5 group). □P < 0.05, □□P < 0.01 (compared with VP1.0 group)

Table 2  Serum levels of vancomycin after spinal implant surgery 
(µg/ml)

CON control (no antibiotics); SV system vancomycin (88 mg/kg, intraperitoneal 
injection, half an hour pre-surgery); VP 0.5: intra-wound vancomycin powder, 
44 mg/kg, once before the closure of incision intraoperatively; VP 1.0: intra-
wound vancomycin powder, 88 mg/kg; VP 2.0: intra-wound vancomycin powder, 
176 mg/kg. n = 8

Group 0.5 h 2 h 4 h

CON 0 0 0

SV 10.21 ± 1.09 3.55 ± 0.36 0.45 ± 0.06

VP 0.5 1.36 ± 0.30 0.55 ± 0.06 0.42 ± 0.08

VP 1.0 2.98 ± 0.35 0.74 ± 0.07 0.50 ± 0.06

VP 2.0 5.20 ± 0.66 1.39 ± 0.15 0.75 ± 0.09
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