Open Access

Kinematic alignment versus mechanical alignment in primary total knee arthroplasty: an updated meta-analysis of randomized controlled trials

Binfeng Liu^{1,2,3}, Chengyao Feng^{1,3} and Chao Tu^{1,3*}

Abstract

Background: The purpose of this study was to perform an updated meta-analysis to compare the outcomes of kinematic alignment (KA) and mechanical alignment (MA) in patients undergoing total knee arthroplasty.

Methods: PubMed, EMBASE, Web of Science, Google Scholar, and the Cochrane Library were systematically searched. Eligible randomized controlled trials regarding the clinical outcomes of patients undergoing total knee arthroplasty with KA and MA were included for the analysis.

Results: A total of 1112 participants were included in this study, including 559 participants with KA and 553 patients with MA. This study revealed that the Western Ontario and McMaster Universities Osteoarthritis Index, Knee Society Score (knee and combined), and knee flexion range were better in the patients with kinematic alignment than in the mechanical alignment. In terms of radiological results, the femoral knee angle, mechanical medial proximal tibial angle, and joint line orientation angle were significantly different between the two techniques. Perioperatively, the walk distance before discharge was longer in the KA group than in the MA group. In contrast, other functional outcomes, radiological results, perioperative outcomes, and postoperative complication rates were similar in both the kinematic and mechanical alignment groups.

Conclusions: The KA technique achieved better functional outcomes than the mechanical technique in terms of KSS (knee and combined), WOMAC scores, and knee flexion range.

PROSPERO trial registration number CRD42021264519. Date registration: July 28, 2021.

Keywords: Kinematic alignment, Mechanical alignment, Total knee arthroplasty, Total knee replacement, Metaanalysis

Background

Knee osteoarthritis (OA) is one of the most common degenerative joint diseases that impose a substantial socioeconomic burden on society and health care systems

*Correspondence: tuchao@csu.edu.cn

¹ Department of Orthopaedics, The Second Xiangya Hospital, Central

South University, Changsha 410011, Hunan, China

Full list of author information is available at the end of the article

[1]. The incidence of knee OA has significantly increased in recent decades due to the continuous increase in obesity and the aging population in the world [2]. Total knee arthroplasty (TKA) is the most effective treatment for end-stage knee OA, which can significantly alleviate pain and improve quality of life. Meanwhile, new technologies have further improved the clinical efficacy and safety of TKA, including novel concept implants, novel extramedullary guides, and computer-assisted surgery [3–5].

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicate otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Cristian Aletto et al. revealed that computer-assisted TKA ensures good functional outcomes [3]. As a result, the number of patients undergoing TKA has steadily increased each year as these medical technologies continue to advance [6]. Previous studies claim that, by 2030, 3.8 million people will have undergone TKA each year [7]. The accurate restoration of knee alignment is essential to the success of TKA, which is vital for the recovery of the patient's postoperative function and implant survival [8]. Currently, the alignment methods of the lower limbs used in TKA mainly include kinematic alignment (KA) and mechanical alignment (MA).

MA is the traditional alignment method in TKA and has been used for more than 30 years. MA aims to create a neutral hip-knee-ankle angle (HKA) to restore the overall limb alignment to a neutral position [9]. From a mechanical perspective, MA can optimize load distribution in patients undergoing TKA and prolong prosthesis survival by reducing polyethylene wear and component loosening [10]. Previous studies have also reported that the MA technique can improve patient satisfaction and relieve pain [11]. For instance, navigation-assisted TKA can effectively replicate the neutral MA of the knee, thereby reducing alignment outliers [12]. However, it was reported that up to 25% of patients undergoing MA in TKA still have unsatisfactory outcomes [13, 14]. This may be due to abnormal touch kinematics caused by MA changing the limb axis of the knee, thus resulting in substandard patient satisfaction [15].

In contrast, the KA technique aims to restore the alignment and kinematics of the TKA implant, thus ensuring its match to the pre-osteoarthritis anatomy. Due to the disadvantages of MA, the clinical application of KA in TKA has become increasingly popular since Howell et al. introduced it in 2006 [16]. The KA technique was the preferential method to place the knee implant in a natural anatomical position, compensate for the tibia and femur rotation changes, and preserve the original soft-tissue envelope. It reduces the loosening of soft tissues and ligaments around the knee and achieves better physiological kinematics of the knee [17, 18]. To date, accumulating evidence has demonstrated that KA in TKA will also help patients achieve better functional outcomes and alleviate postoperative pain [13, 19, 20]. However, several limitations remain in this technique: Restoring natural varus can increase the contact stress between the tibiofemoral and patellofemoral joints, which may lead to an increased risk of early implant dysfunction and failure.

Currently, no systematic evidence exists regarding whether the KA technique can attain similar or greater clinical outcomes than the classical MA technique in TKA. Although several randomized control trials (RCTs) and meta-analyses compared the clinical outcomes of KA and MA in TKA, the results remain controversial. For instance, Gao et al. [21] reported that patients undergoing KA in TKA had better clinical outcomes than patients undergoing MA in TKA. In contrast, another study revealed that KA and MA achieved similar results in TKA [22]. Furthermore, there have been several new RCTs in recent years, which have not been included in previous meta-analyses. Therefore, an updated metaanalysis is necessary to further explore whether KA is superior to MA. Accordingly, the aim of the current study was to conduct an updated meta-analysis of RCTs to evaluate the clinical differences, including the functional, radiological, perioperative, and complication results between the KA technique and the traditional MA technique in patients undergoing TKA.

Methods

Literature search strategy

In compliance with the referenced guidelines [23], two independent reviewers conducted a systematic search for relevant studies in PubMed, EMBASE, Web of Science, Google Scholar, and the Cochrane Library (from inception to January 17, 2022). The search terms consisted of Kinematic, Kinematical, Kinematically, Kinematic alignment, KA, Mechanical, Mechanically, Mechanical alignment, MA, osteoarthritis, OA, total knee replacement, total knee arthroplasty, TKA, and TKR. The language was limited to English. In addition, to identify other relevant potential research, the references of retrieved studies and previous relevant meta-analyses were further screened. This meta-analysis has been registered with the International Prospective Register of Systematic Reviews (PROSPERO; CRD42021264519).

Inclusion criteria and exclusion criteria

Studies were included in this study if they met the following criteria: (1) all RCTs compared KA with the MA technique in TKA; (2) the participant underwent primary TKA using the KA or MA technique; (3) the experimental and control groups were KA and MA, respectively; and (4) outcome indices included the knee functional score, postoperative radiological results, perioperative results, and complications. The exclusion criteria were as follows: (1) review articles, case series or case reports, retrospective studies, letters, nonhuman studies, and cadaver studies; (2) research published in languages other than English; and (3) studies that lacked comparative data.

After excluding duplicate publications, two investigators (BFL and CYF) selected studies independently as per the above criteria. First, initial eligibility was screened by the titles and abstracts of all identified studies. Subsequently, the full text of all potentially eligible studies was reviewed. Disagreements were resolved through discussion between the two investigators, and any disputes were resolved by a third investigator (CT) to reach a consensus.

Data extraction

Two independent reviewers extracted data (BFL and CYF). A third reviewer (CT) was an assistant to resolve any disagreements by discussion and consensus. The following characteristics were extracted from individual eligible studies: name of the first author, publication years, country, study type, sample size, average age, follow-up times, and outcomes.

The outcomes included functional, radiological, perioperative, and complication results. Primary outcomes included functional and radiological results, while secondary outcomes included perioperative and complication outcomes. Of them, the functional outcomes comprised the Knee Society Score (KSS), Knee Injury and Osteoarthritis Outcome Score (KOOS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Oxford Knee Score (OKS), EuroQoL 5-dimension questionnaire (EQ-5D), Forgotten Joint Score (FJS), and range of motion (ROM). The radiological results consisted of the HKA, femoral knee angle (FKA), mechanical medial proximal tibial angle (mMPTA), mechanical lateral distal femoral angle (mLDFA), joint line orientation angle (JLOA), tibial slope (TS), and femoral flexion-extension angle (FFA). Perioperative outcomes included operative time (OT), change in hemoglobin (CHb), wound length (WL), walking distance (WD), and hospital stay (HS). The complication results were divided into two subgroups: major complications and minor complications. The major complications included any complications that resulted in reoperation or revision, such as deep infection, patellar dislocation, and implant loosening, while minor complications referred to those that would not lead to deep infections or require revision, including postoperative pain, swelling, stiffness, and recurrent hemarthrosis.

Risk-of-bias assessment

Two independent reviewers (BFL and CYF) evaluated the methodological quality of the enrolled studies by using the Cochrane Collaboration's tool. This tool focuses on the trial's internal validity and assessment of the risk of possible bias in different phases of the trial. In addition, a funnel plot was used to assess publication bias. Disagreements were resolved through discussion.

Statistical analysis

Review Manager (RevMan 5.3; The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen,

Denmark) was used to conduct relevant analysis in this study. In terms of continuous data, the mean difference (MD) and 95% confidence interval (CI) were applied for data analysis. The Mantel-Haenszel odds ratio (OR) and 95% CI will be used as effect measurements for categorical data. Heterogeneity was assessed using the Cochrane Q test (Chi-square test), and p < 0.1 was set as the level of significant heterogeneity. I^2 was also used for the quantitative analysis of heterogeneity. $I^2 < 50\%$ indicates no heterogeneity, and the fixed-effect model was used. $I^2 > 50\%$ was considered too strong heterogeneity, and a random-effects model was adopted. If necessary, sensitivity analysis was conducted by omitting individual studies consecutively to evaluate their impact on this study. The overall effect was evaluated by the *Z* test, and p < 0.05 was considered to indicate statistical significance.

Results

Characteristics of the included studies

Details of the literature search and study selection are shown in Fig. 1. According to the search strategy, and the inclusion and exclusion criteria, fourteen RCTs were identified and included in this updated meta-analysis. The fourteen RCTs [19, 20, 24–35] were all reported in English, and the total sample size of the included study was 1112 cases, with 559 cases and 553 cases in the KA or MA technique, respectively. Table 1 summarizes these characteristics.

Risk of bias and publication bias

Overall, all included RCTs were evaluated for risk bias according to the seven aspects as follows: random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other bias. The results showed that all the RCTs were considered at low risk of bias. The details of the risk-of-bias assessment results are presented in Fig. 2. Publication bias was measured by a funnel plot. As demonstrated in Additional file 1: Fig. S1, low publication bias was indicated as the funnel plot showed symmetry.

Functional results

As shown in Fig. 3a, eight studies with 572 patients were included in the KSS (knee) evaluation [19, 20, 24, 25, 27, 29, 30, 34]. The pooled MD was 3.24 (95% CI 0.46–6.03), and I² was 59%. After dropping the research performed by Dosset et al. [19], the I^2 dropped to 44%, and the pooled MD (1.72, 95% CI 0.29–3.15) was consistent with previous analysis (Fig. 3b). Three studies, including a total of 370 participants, assessed the KSS (combined) with pooled data (MD=17.81, 95% CI 8.56–27.07, I^2 =54%, Fig. 3d) [19, 20, 33]. The sensitivity analysis

results indicated that the heterogeneity mainly came from Calliess's studies [33] (Fig. 3e). The above results indicated that the KA group had better KSS (knee) and KSS (combined) scores than the MA group. However, we also discovered no significant differences in KSS (function) between the KA and MA groups (MD=4.86, 95% CI - 0.50 to 10.23, I^2 =72%, Fig. 3c) [19, 20, 24–26, 29, 30, 34]. After gradually removing these eight studies, we found no significant change in heterogeneity, indicating that the pooled analysis results of KSS (function) were stable (Table 2).

Six studies compared the WOMAC score [19, 20, 24–26, 33] and the OKS score [19, 20, 24, 25, 28, 32]. The pooled results (Fig. 4a) suggested that the WOMAC score in the KA technique group was better than that in the MA technique group (MD=-6.86, 95% CI -13.23 to -0.48, $I^2=83\%$). Meanwhile, the sensitivity analysis result suggested that the analysis result was robust

(Table 3). However, the pooled results of OKS showed a similar mean score between the two groups (MD = 2.25, 95% CI - 0.03 to 4.54, I^2 = 71%, Fig. 4b). When excluding the study conducted by Dosset et al. [19], the pooled analysis result did not change (MD = 1.25, 95% CI - 0.63 to 3.13, I^2 = 52%). In addition, all four RCTs [24, 25, 28, 31] reported FJS, and the analyzed results (MD = 1.57, 95% CI - 3.26 to 6.40, I^2 = 22%, Fig. 5a) indicated no significant difference in FJS between the two techniques.

Four studies [24, 25, 27, 31] reported EQ-5D data, and the results revealed no significant difference between the two groups (MD=0.13, 95% CI – 2.90 to 3.16, $I^2 = 0\%$, Fig. 5b). Similarly, three articles [27, 28, 31] assessed the KOOS. The pooled results indicated no significant difference in KOOS, KOOS pain, KOOS symptoms, KOOS activities of daily living, KOOS sports, or KOOS QoL between KA and MA (Fig. 6).

References	Years	Location	Study design	Samp size	<u>e</u>	Mean age	-	Femal	Follow-up times	Outcomes
				KA I	NA I	A A	4 V	KA M	(months) A	
Kaneda [35]	2021	Japan	RCT	∞	5	76.3 7	,5 7	4A 5	12	HKA, mLDFA, mMPTA,FFA,TS
Matsumoto [29]	2020	Japan	RCT	30	30	74.2 7	5.5	25 26	12	HKA, mLDFA, mMPTA, KSS, ROM
Young [25]	2020	New Zealand	RCT	47	48	A A N	1 A	AA N,	A 60	KSS, WOMAC, OKS, EQ-5D, FJ, Complication
MacDessi [<mark>3</mark> 1]	2020	Australia	RCT	70	68 (57.4 6	z 0.6	40 34	12	HKA, mLDFA, mMPTA, KOOS, EQ-5D, FJS, OT
McEwen [28]	2020	New Zealand	RCT	41	41	A A N	1 A	AA N,	A 24	HKA, mLDFA, mMPTA, JLOA, FFA,TS, ROM, KOOS, OKS, FJS, Complication
Laende [<mark>32</mark>]	2019	Canada	RCT	24	23 (54 6		16 17	24	HKA, mMPTA, OKS
Yeo [26]	2018	South Korea	RCT	30	30 .	72 7	4	25 27	96	HKA, mLDFA, mMPTA, FFA, TS,WOMAC, ROM
Matsumoto [30]	2017	Japan	RCT	30	30 ;	75.3 7	. 1.9	18 20	24	hka, jloa, kss, rom
Waterson [27]	2016	United Kingdom	RCT	36	35	A A N	1 A	NA N	A 12	KSS, ROM, EQ-5D
Calliess [33]	2016	Germany	RCT	100	100 (57 7	70 é	51 57	12	HKA, mLDFA, mMPTA, FFA, TS, WOMAC, Complication
Young [24]	2016	New Zealand	RCT	49	20	72 7	02	24 24	24	HKA, FKA, mLDFA, mMPTA, TS, KSS, WOMAC, ROM, OKS, EQ-5D, FJS, OT, WL, HS, Complica- tion
Belvedere [34]	2015	Italy	RCT	9	1	A A	4 A	N N/	9	KSS
Dossett [20]	2014	United States	RCT	4	4	56 6	Q	9	24	HKA, FKA, mLDFA, mMPTA, JLOA, KSS, WOMAC, ROM, OKS, HS,CHb,WD, Complication
Dossett [19]	2012	United States	RCT	41	41 (55 6	9	6	9	HKA, FKA, mLDFA, mMPTA, JLOA, FFA, TS, KSS, WOMAC, ROM, OKS, Complication, OT, WL, HS, CHb, WD
KA kinematic aligr orientation angle, Index, OKS Oxford	Iment, <i>M.</i> <i>FFA</i> femc Knee Scc	A mechanical alignm pral flexion-extension pre, EQ-5D EuroQoL 5	nent, <i>HK</i> A hip–knee n angle, <i>TS</i> tibial sk 5-dimension questi	e–ankle ope, KS ¹ ionnaire	angle, 5 knee 3, <i>FJS</i> F	<i>FKA</i> fei society orgotte	v score	knee an , KOOS I t Score,	gle, <i>mLDFA</i> mecha Knee Injury and Os <i>ROM</i> range of moi	nical lateral distal femoral angle, <i>mMPT</i> A mechanical medial proximal tibial angle, <i>JLOA</i> joint line teoarthritis Outcome Score, <i>WOMAC</i> Western Ontario and McMaster Universities Osteoarthritis cion, <i>OT</i> operative time, <i>WL</i> wound length, <i>HS</i> hospital stay, <i>CHb</i> change in hemoglobin, <i>WD</i> walking

 Table 1
 Characteristics of the studies included

5 5 2 distance, NA not applicable, RCT randomized controlled clinical trials

Fig. 2 Risk-of-Bias Assessment summary

Fig. 3 Forest plot of KSS between kinematic alignment and mechanical alignment in total knee arthroplasty. **a** KSS (knee), **b** the sensitivity analysis results of KSS (knee), **c** KSS (function), **d** KSS (combined), **e** the sensitivity analysis results of KSS (combined). KSS knee society score, CI confidence interval, IV inverse variance

Study excluded	Remaining samples	Overall e	ffect		Heterogen	eity
	(KA/MA)	MD	95% Cl	p value	l ² (%)	<i>p</i> value
Belvedere [34]	271/273	4.56	- 1.09 to 10.21	0.11	75	0.0005
Dossett [19]	236/243	3.47	- 1.80 to 8.74	0.20	67	0.006
Dossett [20]	233/240	3.78	- 1.77 to 9.32	0.18	70	0.003
Matsumoto [30]	247/254	5.07	- 1.20 to 11.33	0.11	76	0.0004
Matsumoto [29]	247/254	4.16	- 1.66 to 9.98	0.16	73	0.001
Yeo [26]	247/254	6.30	0.71 to 11.89	0.03	65	0.009
Young [24]	228/234	5.17	- 1.01 to 11.34	0.10	76	0.0004
Young [25]	230/236	6.49	1.08 to 11.89	0.02	67	0.006

Table 2 The sensitivity analysis results of KSS (function)

MD mean difference

A total of eight RCTs, including five trials [19, 20, 28–30], compared the extension range, angle and eight studies [19, 20, 24, 26–30] compared the flexion range angle. For the extension range angle, the pooled results

indicated no significance between the two approaches (MD = -0.24, 95% CI -0.79 to 0.30, $I^2 = 32\%$, Fig. 7a). However, the pooled MD in flexion ROM was 2.48 (MD = 2.48, 95% CI 0.08–4.89, $I^2 = 51\%$, Fig. 7b), which

Study excluded	Remaining samples	Overall effe	ect		Heteroger	neity
	(KA/MA)	MD	95% CI	p value	<i>I</i> ² (%)	<i>p</i> value
Calliess [33]	211/213	- 5.37	- 12.43 to 1.69	0.14	78	0.001
Dossett [19]	270/272	- 5.05	- 12.06 to 1.95	0.16	83	< 0.0001
Dossett [20]	267/269	- 6.11	- 13.47 to 1.25	0.10	86	< 0.00001
Yeo [26]	281/283	- 7.83	- 14.89 to - 0.76	0.03	85	< 0.0001
Young [24]	262/263	- 7.76	- 15.21 to - 0.31	0.04	84	< 0.0001
Young [25]	264/265	- 9.06	- 14.69 to - 3.42	0.002	72	0.007

Table 3 The sensitivity analysis results of WOMAC

MD mean difference

means the KA technique had a higher ROM of flexion than the MA. Moreover, the results of the sensitivity analysis also support this finding (MD = 1.77, 95% CI -0.00 to 3.54, l^2 = 31%, Fig. 7c).

Radiological results

The pooled result of HKA [19, 20, 24, 26, 28–33, 35] indicated that the two techniques have a similar HKA $(MD = -0.24, 95\% \text{ CI} - 1.02 \text{ to } 0.55, I^2 = 85\%, \text{ Fig. 8a}).$ For the FKA assessment, three studies [19, 20, 24] with 269 patients were included in the meta-analysis. The pooled result was 0.71(95% CI 0.05–1.36, $I^2 = 0\%$, Fig. 8b), which means that the FKA of the KA group was significantly greater than that of the MA group. Nine studies [19, 20, 24, 26, 28, 29, 31, 33, 35] compared the mLDFA. The pooled results indicated no significant difference between the two groups (MD = -0.93, 95% CI - 2.23–0.36, $I^2 = 95\%$, Fig. 8c). Similarly, the

difference in FFA (MD = 0.88, 95% CI – 0.23 to 1.99, $I^2 = 95\%$, Fig. 8f) and TS (MD = 0.48, 95% CI – 0.75 to 1.71, $I^2 = 87\%$, Fig. 8g) did not reach statistical significance. However, the pooled MD of nine trials [20, 24, 26, 28, 29, 31–33, 35] with 787 participants indicated that the mMPTA of the two technique groups were different (MD = -2.64, 95% CI – 3.33 to – 1.95, $I^2 = 85\%$, Fig. 8d). In addition, the pooled result in JLOA was – 2.26 (95% CI – 2.99 to – 1.53, $I^2 = 51\%$, Fig. 8e), suggesting that the JLOA was significantly smaller in the KA group (Fig. 8).

Then, sensitivity analysis was performed when the heterogeneity was higher than 50%. As shown in Additional file 2: Fig. S2, the pooled analysis results of JLOA, FFA, and TS were stable with low heterogeneity. In addition, we found that the heterogeneity of HKA, mLDFA, and mMPTA remained higher than 50% after

	Kinema	tic Align	ment	Mechani	cal Align	ment		Mean Difference	Mean Difference
_Study or Subgroup	Mean	SD		Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV. Fixed, 95% Cl
KOOS									
MacDessi 2020	82.2	16.4	70	79.6	14.7	68	9.7%	2.60 [-2.59, 7.79]	
McEwen 2020	89.6	12.9	41	88.5	13.7	41	7.9%	1.10 [-4.66, 6.86]	
Waterson 2016	77.7	20	36	76.4	19	35	3.2%	1.30 [-7.77, 10.37]	
Subtotal (95% CI)			147			144	20.9%	1.83 [-1.72, 5.38]	-
Heterogeneity: Chi ² = 0	.16, df = 2	! (P = 0.9)	2); l² = 0%	6					
Test for overall effect: Z	: = 1.01 (F	° = 0.31)							
KOOS Symptoms									
MacDessi 2020	80.5	16.5	70	77	14.6	68	9.7%	3.50 [-1.69, 8.69]	
McEwen 2020	89.1	11.3	41	89.2	11.1	41	11.2%	-0.10 [-4.95, 4.75]	
Subtotal (95% CI)	00 K 4	(F) 0.0	111	,		109	20.9%	1.58 [-1.97, 5.12]	
Heterogeneity: Chi ² = 0	.99, df = 1	(P = 0.3)	2); 1² = 0%	6					
l est for overall effect: 2	: = 0.87 (F	^y = 0.38)							
KOOS Bain									
MaaDaaai 2020	96 7	16.1	70	05 4	16	60	0.0%	4 20 1 4 06 6 661	
MacDessi 2020	00.7	10.1	10	00.4	14.0	00	9.2%		
Subtotal (95% CI)	93.3	13	111	91.9	14.0	109	16.4%	1 34 [-2 66 5 35]	•
Hotorogonoity: Chi ² = 0	00 df - 1	(P - 0.0)	R)+ I2 − ∩0	4		105	10.470	1.04 [-2.00, 0.00]	
Test for overall effect: 7	.00, ui – 1 ' = 0.66 (E	(F = 0.5) F = 0.51)	5), 1 = 07	0					
	. – 0.00 (i	= 0.01)							
KOOS Activities of da	ilv livina								
MacDessi 2020	86.5	15.2	70	84 5	16.4	68	94%	2 00 [-3 28 7 28]	—
McEwen 2020	93.7	9.3	41	93.5	9.9	41	15.2%	0 20 [-3 96, 4 36]	_
Subtotal (95% CI)		0.0	111	0010	0.0	109	24.6%	0.89 [-2.38, 4.16]	•
Heterogeneity: Chi ² = 0	.28. df = 1	(P = 0.6	0): I ² = 0%	6				• / •	
Test for overall effect: Z	= 0.53 (F	e = 0.59)	<i>,</i> ,						
	,	,							
KOOS Sports									
MacDessi 2020	62.3	25.4	70	57.4	29.1	68	3.2%	4.90 [-4.22, 14.02]	
McEwen 2020	61.5	25	41	62.3	28.3	41	2.0%	-0.80 [-12.36, 10.76]	
Subtotal (95% CI)			111			109	5.1%	2.71 [-4.45, 9.87]	
Heterogeneity: Chi ² = 0	.58, df = 1	(P = 0.4	5); I² = 0%	6					
Test for overall effect: Z	: = 0.74 (F	? = 0.46)							
KOOS QOL									
MacDessi 2020	75.1	22.6	70	71.5	21.8	68	4.8%	3.60 [-3.81, 11.01]	
McEwen 2020	85.8	13.9	41	85	13.9	41	7.3%	0.80 [-5.22, 6.82]	
Subtotal (95% CI)		(D 0.5)	111	,		109	12.1%	1.91 [-2.76, 6.58]	
Heterogeneity: Chi ² = 0	.33, df = 1	(P = 0.5)	/); I ² = 0%	6					
l est for overall effect: 2	. = 0.80 (P	² = 0.42)							
Total (95% CI)			702			689	100.0%	1 52 [-0 10 3 14]	
Hotorogonoity: Chi ² = 2	64 df - 1	2(D - 1)		10/_		000	100.070		
Test for overall effect: 7	'= 1 84 /□	r = 0.07	<i>55</i> , i - C						-20 -10 0 10 20
Test for subgroup differ	ences: Ch	$ni^2 = 0.31$	df = 5 (P	2 = 1 00) ¹²	= 0%				Mechanical Alignment Kinematic Alignment
Fig 6 Forest plot of				ic aliann	ont and	moch	nical ali	anmont in total know	arthroplasty KOOS Knop Injury and Ostoparthritic
Fig. o Folest plot of I		veen i	NI EI I di	.ic allyi III	ient anu	mecha	annear dh	grimerit in total Khee	artinopiasty. NOOS Knee injury and Osle0arthillis
Outcome Sore									

removing each included study (Tables 4, 5, 6). The robustness of these pooled results was indicated.

Perioperative results

The pooled results of three articles [19, 24, 31] showed that the KA group had a similar operation time compared with the MA group (MD = -9.90, 95% CI -22.67 to 2.87, $I^2 = 85\%$, Fig. 9a). When one study [19] was excluded from the meta-analysis, the I^2 dropped to 36% and the result was consistent with the previous pooled result (MD = -2.26, 95% CI -6.82 to 2.29, $I^2 = 36\%$, Fig. 9b), indicating the stability of this meta-analysis. Simultaneously, there was no significant difference between the KA and MA techniques in terms of WL (MD = -0.40, 95% CI -1.47 to 0.67, $I^2 = 62\%$, Fig. 9c), HS (MD = 0.25, 95%

CI - 0.04 to 0.55, $I^2 = 0\%$, Fig. 9d), or CHb (MD = -0.00, 95% CI - 0.32 to 0.31, $I^2 = 17\%$, Fig. 9e). However, two trials [19, 20] compared the WD, and the mean WD for the KA technique group was significantly longer than that of the MA technique group (MD=48.11, 95% CI 11.63-84.58, $I^2 = 0\%$, Fig. 9f).

Complications

Six studies [19, 20, 24, 25, 28, 33] provided the proportion of participants who experienced complications after the operation. As presented in Fig. 10, there were no significant differences between the two groups (KA:21/322, MA: 16/324, OR 1.32, 95% CI 0.69–2.53, $l^2=0\%$). In parallel, the pooled results also revealed that these two techniques had similar outcomes in terms of minor

ematic Al an S -2 3 -1 0 df = 4 (P = 87 (P = 0.3 ematic Ali an S 20 9 21 10 2.3 8 4.7 8	ignment <u>D</u> To .7 .8 .1 2 3 1 0.21); I ² 38) ignment <u>D</u> To 2 2 4 4 4 4 4	Mit tal N 41 44 30 30 41 86 = 32% Me tal M 11	echanic 0.8 -0.8 -2.1 0	212 Aligni 2.2 3.8 1.9 4 3 3	Total 41 44 30 41 186	Weight 41.2% 11.8% 17.6% 11.7% 17.7% 100.0%	Mean Difference IV. Fixed, 95% CI -0.10 [-0.95, 0.75] -1.00 [-2.59, 0.59] -1.20 [-2.50, 0.10] 1.10 [-0.50, 2.70] 0.00 [-1.30, 1.30]	Mean Difference
$\begin{array}{c} \text{cm} & \text{cm} \\ 0.7 & 1 \\ 2 & 3 \\ -2 & 3 \\ -1 \\ 0 \\ \\ \text{df} = 4 \ (\text{P} = 87 \ (\text{P} = 0.3 \ \text{cm} \\ \text{structure} \\ s$	in the second se	41 44 30 30 41 86 = 32% Me al M 41 14	0.8 3 -0.8 -2.1 0 0	2.2 3.8 1.9 4 3 3	1011 41 44 30 30 41 186	41.2% 11.8% 17.6% 11.7% 17.7% 100.0%	10. [-1.142.] 35.3 C1 -0.10 [-0.95, 0.75] -1.00 [-2.59, 0.59] -1.20 [-2.50, 0.10] 1.10 [-0.50, 2.70] 0.00 [-1.30, 1.30] -0.24 [-0.79, 0.30]	Mechanical Alignment Kinematic Alignment
$\begin{array}{c} \text{o}, 7 \\ 2 \\ -2 \\ -1 \\ 0 \\ \end{array}$ $\begin{array}{c} \text{aff} = 4 \ (\text{P} = 0.3 \\ \text{aff} = 87 \ (\text{P} = 0.3 \\ \text{aff} = 0.3 \\ 20 \\ 20 \\ 9 \\ 21 \\ 10 \\ 2.3 \\ 8 \\ 4.7 \\ 8 \end{array}$.7 .8 .1 2 3 (0.21); I ² 38)	44 44 30 30 41 86 = 32% Me al <u>M</u> 41	-0.8 -2.1 0 echanic ean	2.2 3.8 1.9 4 3 3	41 44 30 30 41 186	41.2% 11.8% 17.6% 11.7% 17.7% 100.0%	-0.10 [-0.39, 0.75] -1.00 [-2.59, 0.59] -1.20 [-2.50, 0.10] 1.10 [-0.50, 2.70] 0.00 [-1.30, 1.30] -0.24 [-0.79, 0.30]	Mechanical Alignment Kinematic Alignment
2 3 -2 3 -1 0 ff = 4 (P = 87 (P = 0.3 ematic Alia an S 20 9 21 10 2.3 8 4.7 8	.o .1 2 3 1 0.21); I ² 38) 1 1 0.21); I ² 38)	44 30 30 41 86 = 32% Me <u>al M</u> 11	-0.8 -2.1 0 echanic ean	3.0 1.9 4 3 sal Alignn <u>SD</u>	44 30 30 41 186	11.8% 17.6% 11.7% 17.7%	-1.20 [-2.39, 0.39] -1.20 [-2.50, 0.10] 1.10 [-0.50, 2.70] 0.00 [-1.30, 1.30] -0.24 [-0.79, 0.30]	Mechanical Alignment Kinematic Alignment
-2 3 -1 0 df = 4 (P = 87 (P = 0.3 ematic Ali an <u>S</u> 20 9 21 10 2.3 8 4.7 8	2 3 1 0.21); I ² 38) ignment D Tot .2 4 4	50 30 41 86 = 32% Me <u>al M</u> 11	-0.0 -2.1 0 echanic ean 115	al Alignn	30 30 41 186	17.6% 11.7% 17.7%	-1.20 [-2.30, 0.10] 1.10 [-0.50, 2.70] 0.00 [-1.30, 1.30] -0.24 [-0.79, 0.30]	Mean Difference
-1 0 if = 4 (P = 87 (P = 0.3 ematic Ali an <u>S</u> 20 9 21 10 2.3 8 4.7 8	2 3 1 0.21); I ² 38) ignment <u>D</u> Tot 2 4 4	41 86 = 32% Me <u>sal M</u> 41	echanic	al Alignn	186	100.0%	-0.24 [-0.79, 0.30]	Mechanical Alignment Kinematic Alignment
ematic Ali an S 20 9 21 10 2.3 8 4.7 8	1 0.21); I ² 38) ignment <u>D Tot</u> 2 4 4 9	86 = 32% Me al <u>M</u> 11	echanic lean	al Alignn SD	186 nent Total	100.0%	-0.24 [-0.79, 0.30]	-4 -2 0 2 4 Mechanical Alignment Kinematic Alignment
ematic Ali ematic Ali an S 20 9 21 10 2.3 8 4.7 8	0.21); I ² 38) gnment <u>D Tot</u> .2 .4	= 32% Me al M 11	echanic lean	al Alignn SD	nent		Mean Difference	-4 -2 0 2 4 Mechanical Alignment Kinematic Alignment Mean Difference
ematic Ali an <u>S</u> 20 9 21 10 2.3 8 4.7 8	ignment D Tot .2 4 .4 4	Ме :al <u>М</u> 11	echanic lean	al Alignn SD	nent		Mean Difference	-4 -2 0 2 4 Mechanical Alignment Kinematic Alignment Mean Difference
ematic Ali an <u>S</u> 20 9 21 10 2.3 8 4.7 8	gnment D Tot .2 4 .4 4	Ме : <u>al М</u> 11 14	echanic ean	al Alignn SD	nent		Mean Difference	Mean Difference
ematic Ali an <u>S</u> 20 9 21 10 2.3 8 4.7 8	ignment <u>D Tot</u> .2 4 .4 4	Ме a <u>l М</u> 11 14	chanic ean	al Alignn SD	nent Total		Mean Difference	Mean Difference
an S 20 9 21 10 2.3 8 4.7 8	D Tot .2 4 .4 4	: al M 11 14	ean	SD	Total			
20 9 21 10 2.3 8 4.7 8	.2 4 .4 4	41 14	115		Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
21 10 2.3 8 4.7 8	.4 4 9 4	14	110	12.3	41	12.7%	5.00 [0.30, 9.70]	
2.3 8 4.7 8	9 '		113	12.5	44	12.4%	8.00 [3.20, 12.80]	
4.7 8		30 1 [.]	16.8	12.6	30	10.7%	5.50 [-0.02, 11.02]	
	.1 :	30 12	23.1	6.9	30	15.3%	1.60 [-2.21, 5.41]	- +
27 1	0 4	11	127	11	41	13.1%	0.00 [-4.55, 4.55]	_
8.5 1	2 3	36 1 [.]	18.4	9.4	35	11.9%	0.10 [-4.91, 5.11]	
25 11	.5 3	30	129	11.5	30	10.1%	-4.00 [-9.82, 1.82]	+
19 1	1 4	19	116	11	50	13.7%	3.00 [-1.33, 7.33]	+
	30)1			301	100.0%	2.48 [0.08, 4.89]	•
Chi² = 14.3 02 (P = 0.0	95, df = 7 14)	(P = 0.0	05); I² =	51%			_	-20 -10 0 10 20 Mechanical Alignment Kinematic Alignment
ematic Al	ignment	Me	echanio	cal Aligni	ment		Mean Difference	Mean Difference
ean S	<u>SD To</u>	tal N	lean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
120 9	.2	41	115	12.3	41	14.2%	5.00 [0.30, 9.70]	
121 10	.4	44	113	12.5	44	0.0%	8.00 [3.20, 12.80]	
2.3 8	.9	30 1	16.8	12.6	30	10.3%	5.50 [-0.02, 11.02]	
4.7 8	.1	30 1	23.1	6.9	30	21.7%	1.60 [-2.21, 5.41]	
127	10	41	127	11	41	15.2%	0.00 [-4.55, 4.55]	
8.5	12	36 1	18.4	9.4	35	12.5%	0.10 [-4.91, 5.11]	-+-
125 11	.5	30	129	11.5	30	9.3%	-4.00 [-9.82, 1.82]	+
119	11	49	116	11	50	16.7%	3.00 [-1.33, 7.33]	† -
	2	57			257	100.0%	1.77 [-0.00, 3.54]	▶
df = 6 (P = 96 (P = 0.0	0.19); l² 05)	= 31%						-20 -10 0 10 20 Mechanical Alignment Kinematic Alignment
	27 1 3.5 1 19 1 19 1 19 1 25 11 19 1 20 9 21 10 2.3 8 2.7 - 8.5 - 2.3 8 2.7 - 4.7 8 2.25 11 19 - 4f = 6 (P = = - 96 (P = 0.0 - between - Jults of RC -	27 10 2 21 10 12 25 11.5 3 19 11 4 Grading and the second s	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 10 41 127 35 12 36 118.4 25 11.5 30 129 19 11 49 116 301 Chi² = 14.35, df = 7 (P = 0.05); l² = 0.02 (P = 0.04) ematic Alignment Mechanic 20 9.2 41 115 21 10.4 44 113 2.3 8.9 30 116.8 4.7 8.1 30 123.1 27 10 41 127 8.5 12 36 118.4 25 11.5 30 129 19 11 49 116 257 ff = 6 (P = 0.19); l² = 31% 36 (P = 0.05) between kinematic alignme ults of ROM (flexion). <i>ROM</i> rar	27 10 41 127 11 3.5 12 36 118.4 9.4 25 11.5 30 129 11.5 19 11 49 116 11 301 Chi² = 14.35, df = 7 (P = 0.05); l² = 51% D2 (P = 0.04) Mechanical Alignman Mechanical Alignman 115 10 Total Mean SD 20 9.2 41 115 12.3 21 10.4 44 113 12.5 2.3 8.9 30 116.8 12.6 4.7 8.1 30 123.1 6.9 27 10 41 127 11 8.5 12 36 118.4 9.4 25 11.5 30 129 11.5 19 11 49 116 11 257 tf = 6 (P = 0.19); l² = 31% S0 between kinema	27 10 41 127 11 41 35 12 36 118.4 9.4 35 25 11.5 30 129 11.5 30 19 11 49 116 11 50 301 115 12.3 41 20 9.2 41 115 12.3 41 21 10.4 44 113 12.5 44 2.3 8.9 30 116.8 12.6 30 27 10 41 127 11 41	27 10 41 127 11 41 13. r_{0} 3.5 12 36 118.4 9.4 35 11.9% 3.5 12 36 118.4 9.4 35 11.9% 19 11.5 30 129 11.5 30 10.1% 19 11 49 116 11 50 13.7% 301 301 100.0% Chi2 = 14.35, df = 7 (P = 0.05); I ² = 51% Distribution of the second	27 10 41 127 11 41 13.1% 0.00 [-4.53, 4.55] 35 12 36 118.4 9.4 35 11.9% 0.10 [-4.91, 5.11] 25 11.5 30 129 11.5 30 10.1% -4.00 [-9.82, 1.82] 19 11 49 116 11 50 13.7% 3.00 [-1.33, 7.33] 301 301 100.0% 2.48 [0.08, 4.89] Chi² = 14.35, df = 7 (P = 0.05); l² = 51% Chi² = 14.35 , df = 7 (P = 0.05); l² = 51% Chi² 301 301 100.0% 2.48 [0.08, 4.89] Chi² = 14.35 , df = 7 (P = 0.05); l² = 51% Chi² 301 100.0% 2.48 [0.08, 4.89] Chi² = 14.35 , df = 7 (P = 0.05); l² = 51% Chi² Chi² Chi? 41 115 10.00 4.80 [0.08, 4.89] Chi? 11.6 12.3 41 14.2% 5.00 [0.30, 9.70] 121 10.4 44 113 12.5 <

complications (KA: 15/322, MA: 11/324, OR 1.40, 95% CI 0.63–3.13, $l^2 = 0\%$) and major complications (KA: 6/322, MA: 5/324, OR 1.18, 95% CI 0.39–3.57, $l^2 = 0\%$).

Discussion

The accurate alignment of the lower limb is one of the essential elements influencing the postoperative outcomes and prosthesis survival in patients undergoing TKA. Currently, KA and MA are two primary alignment methods used in TKA. While some RCTs and meta-analyses compared clinical data on the outcomes of KA and MA, the optimal knee alignment for TKA has been inconclusive. Moreover, several new RCT [25, 29, 35] have been published from the previous meta-analysis. Hence, we conducted this updated meta-analysis, aiming to further compare the outcomes of these two alignment methods for TKA. The major finding of this study

was that the KA group achieved a better functional outcome than the MA group. Compared with the MA group, the KA techniques with better KSS (knee), KSS (combined), and WOMAC scores also had better knee flexion results. In terms of radiological results, the KA technique resulted in a slightly greater FKA, and the implant alignment was slightly more varus in the tibia than with MA. In addition, the JLOAs in the KA groups were smaller than those in the MA group. Regarding the perioperative results, we identified that the KA group showed a longer walk distance than the MA group. However, there were no significant differences in other knee function parameters, radiological outcomes, perioperative results, or complication rates between these two groups.

A significant number of patients were dissatisfied after TKA with the traditional MA technique [36]. With the development of new technologies, KA has been widely

mLDFA, **d** mMPTA, **e** JLOA, **f** FFA, **g** TS. *HKA* hip–knee–ankle angle, *FKA* femoral knee angle, *mLDFA* mechanical lateral distal femoral angle, *mMPTA* mechanical medial proximal tibial angle, *JLOA* joint line orientation angle, *FFA* femoral flexion–extension angle, *TS* tibial slope

Study excluded	Remaining samples	Overall effe	ct		Heterogen	eity
	(KA/MA)	MD	95% CI	p value	l ² (%)	<i>p</i> value
Calliess [33]	366/361	0.02	- 0.60 to 0.63	0.95	70	0.0004
Dossett [19]	425/420	- 0.29	- 1.15 to 0.56	0.50	87	< 0.00001
Dossett [20]	422/417	- 0.28	- 1.14 to 0.57	0.52	87	< 0.00001
Kaneda [35]	458/456	-0.18	-0.98 to 0.62	0.66	87	< 0.00001
Laende [32]	442/438	- 0.24	- 1.09 to 0.60	0.58	87	< 0.00001
MacDessi [31]	396/393	- 0.31	- 1.18 to 0.56	0.48	86	< 0.00001
Matsumoto [30]	436/431	- 0.46	- 1.11 to 0.20	0.18	75	< 0.0001
Matsumoto [29]	436/431	-0.13	- 0.96 to 0.71	0.76	86	< 0.00001
McEwen [28]	426/421	-0.18	- 1.04 to 0.68	0.68	87	< 0.00001
Yeo [26]	436/431	- 0.22	- 1.04 to 0.68	0.62	87	< 0.00001
Young [24]	417/411	-0.30	- 1.15 to 0.56	0.50	87	< 0.00001

Table 4 The sensitivity analysis results of HKA

MD mean difference

Table 5 The sensitivity analysis results of mLDFA

Study excluded	Remaining samples	Overall effe	ect		Heterogen	eity
	(KA/MA)	MD	95% CI	p value	l ² (%)	<i>p</i> value
Calliess [33]	313/309	- 0.93	- 2.23 to 0.36	0.16	95	< 0.00001
Dossett [19]	372/368	- 0.73	- 2.12 to 0.67	0.31	96	< 0.00001
Dossett [20]	369/365	- 0.77	- 2.18 to 0.65	0.29	96	< 0.00001
Kaneda [<mark>35</mark>]	405/404	- 0.86	- 2.24 to 0.53	0.23	96	< 0.00001
MacDessi [31]	343/341	- 0.87	- 2.43 to 0.68	0.27	96	< 0.00001
Matsumoto [29]	383/379	- 1.30	- 2.43 to - 0.01	0.05	94	< 0.00001
McEwen [28]	372/368	- 1.35	- 2.44 to - 0.26	0.02	91	< 0.00001
Yeo [26]	383/379	- 0.75	- 2.16 to - 0.67	0.30	95	< 0.00001
Young [24]	364/359	- 0.85	- 2.16 to 0.61	0.25	96	< 0.00001

MD mean difference

Table 6	The sensitivity	y analysis re	esults of mN	ΛΡΤΑ
---------	-----------------	---------------	--------------	------

Study excluded	Remaining samples	Overall effe	ect		Heteroger	eity
	(KA/MA)	MD	95% CI	<i>p</i> value	l ² (%)	<i>p</i> value
Calliess [33]	296/291	- 2.64	- 3.33 to - 1.95	< 0.00001	85	< 0.00001
Dossett [20]	352/347	- 2.72	- 3.49 to - 1.94	< 0.00001	87	< 0.00001
Kaneda [35]	388/386	- 2.29	- 2.82 to - 1.77	< 0.00001	75	0.0005
Laende [32]	372/368	- 2.67	- 3.44 to - 1.91	< 0.00001	87	< 0.00001
MacDessi [31]	326/323	- 2.85	- 3.51 to - 2.20	< 0.00001	80	< 0.0001
Matsumoto [29]	366/361	- 2.55	- 3.31 to - 1.80	< 0.00001	85	< 0.00001
McEwen [28]	355/350	- 2.77	- 3.65 to - 1.88	< 0.00001	87	< 0.00001
Yeo [26]	366/361	- 2.68	- 3.50 to - 1.86	< 0.00001	87	< 0.00001
Young [24]	347/341	- 2.70	- 3.48 to - 1.93	< 0.00001	87	< 0.00001

MD mean difference

A	Kinemati	c Alignm	ent	Mechanic	al Alignm	ent		Mean Difference	Mean Difference
Study or Subgroup	Mean	<u>SD</u>	<u>Total</u>	Mean	<u>SD</u>	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
MacDessi 2020	78	20 12 3	41 70	70	24 17	41 68	37.5%	-1 00 [-50.56, -11.44]	
Young 2016	83	26	49	92	32	50	30.1%	-9.00 [-20.47, 2.47]	
5								. , ,	
Total (95% CI)			160			159	100.0%	-9.90 [-22.67, 2.87]	
Heterogeneity: Tau ² = 1	106.84; Chi² 7 - 1 52 (D -	= 13.60,	df = 2 (F	P = 0.001);	l² = 85%				-50 -25 0 25 50
l'est for overall effect. 2	2 = 1.52 (P =	= 0.13)							Mechanical Alignment Kinematic Alignment
R									
	Kinemati	c Alignm	ent	Mechanic	al Alignm	ent		Mean Difference	Mean Difference
Study or Subgroup	Mean	<u></u>	<u>lotal</u>	Mean	<u>SD</u>	lotal	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% CI
MacDessi 2020	78	20 12 3	41 70	79	24 17	68	0.0% -	-1 00 [-30.56, -11.44]	-
Young 2016	83	26	49	92	32	50	15.8%	-9.00 [-20.47, 2.47]	
5								. , ,	
Total (95% CI)			119			118	100.0%	-2.26 [-6.82, 2.29]	
Heterogeneity: Chi ² = 1	.57, df = 1 (P = 0.21)	; l ² = 369	6					-50 -25 0 25 50
l est for overall effect: 2	2 = 0.97 (P =	= 0.33)							Mechanical Alignment Kinematic Alignment
~									
Ĵ.	Kinemati	ic Aliann	nent	Mechani	cal Aligne	nent		Mean Difference	Mean Difference
Study or Subaroup	Mean	SD	Total	Mean	SD SD	Total	Weiaht	IV, Random. 95% C	IV, Random. 95% CI
Dossett 2012	15.9	1.8	41	15.8	2	41	54.6%	0.10 [-0.72, 0.92]	
Young 2016	22.3	2.9	49	23.3	2.4	50	45.4%	-1.00 [-2.05, 0.05]	
I otal (95% CI)	0.07.05:2	0.64 -1	90 - 1 (D)	0 11): 12	600/	91	100.0%	-0.40 [-1.47, 0.67]	
Heterogeneity: I au ² = (0.37; Chi² =	∠.61, df	= 1 (P =	ロココン 14 =	02%				-4 -2 0 2 4
Last for overall attact.	7 = 0.73 (P)	= 0.47	·	0.11), 1 =					
l est for overall effect: 2	Z = 0.73 (P	= 0.47)	,	0.11),1 =					Mechanical Alignment Kinematic Alignment
l est for overall effect: 2	Z = 0.73 (P	= 0.47)		0.11),1 =					Mechanical Alignment Kinematic Alignment
D	Z = 0.73 (P Kinemat	= 0.47) ic Alignr	nent	Mechar	nical Align	ment		Mean Difference	Mechanical Alignment Kinematic Alignment
D Study or Subgroup	Z = 0.73 (P Kinemat <u>Mean</u>	= 0.47) ic Alignr <u>SD</u>	nent <u>Total</u>	Mechar <u>Mean</u>	nical Align	ment <u>Tota</u>	l Weight	Mean Difference	Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl
Dossett 2012	Z = 0.73 (P Kinemat <u>Mean</u> 4.3	= 0.47) ic Alignr <u>SD</u> 0.8	nent <u>Total</u> 41	Mechar <u>Mean</u> 4.1	nical Align SD 0.6	ment <u>Tota</u> 41	1 Weight 93.5%	Mean Difference IV. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [11.11, 2.11]	Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl
Study or Subgroup Dossett 2012 Dossett 2014 Young 2016	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5	= 0.47) ic Alignr <u>SD</u> 0.8 6.8 3	nent <u>Total</u> 41 44 49	Mechar <u>Mean</u> 4.1 5.2	nical Align SD 0.6 2.2 4	ment <u>Tota</u> 41 44	I Weight 93.5% ↓ 2.0%	Mean Difference IV. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-3.9, 2.39]	Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl
D Study or Subgroup Dossett 2012 Dossett 2014 Young 2016	Z = 0.73 (P Kinemat Mean 4.3 6.2 5	= 0.47)	nent <u>Total</u> 41 44 49	Mechar <u>Mean</u> 4.1 5.2 4	nical Align SD 0.6 2.2 4	ment Tota 41 44 50	I Weight 93.5% ↓ 2.0% ↓ 4.5%	Mean Difference IV. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39]	Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl
D Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% CI)	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5	= 0.47) tic Alignr <u>SD</u> 0.8 6.8 3	nent <u>Total</u> 41 44 49 134	Mechar <u>Mean</u> 4.1 5.2 4	iical Align SD 0.6 2.2 4	ment <u>Tota</u> 41 44 50 135	I Weight 93.5% 2.0% 0 4.5% 5 100.0%	Mean Difference V. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55]	Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl
D Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% Cl) Heterogeneity: Chi ² = -	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5 1.70, df = 2	= 0.47) tic Alignr <u>SD</u> 0.8 6.8 3 (P = 0.43	ment <u>Total</u> 41 44 49 134 3); ² = 0°	Mechar <u>Mean</u> 4.1 5.2 4	nical Align SD 0.6 2.2 4	ment <u>Tota</u> 41 44 50 135	Weight 93.5% 2.0% 4.5% 5 100.0%	Mean Difference IV. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55]	Mechanical Alignment Kinematic Alignment
D Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% CI) Heterogeneity: Chi ² = - Test for overall effect: .	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P	= 0.47) (ic Align SD 0.8 6.8 3 (P = 0.43 = 0.10)	ment <u>Total</u> 41 44 49 134 3); 1² = 0⁰	Mechar <u>Mean</u> 4.1 5.2 4	nical Align SD 0.6 2.2 4	ment <u>Tota</u> 41 44 50 135	Weight 93.5% 93.5% 2.0% 4.5% 100.0%	Mean Difference V. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55]	Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl 4 -2 0 2 4 Mechanical Alignment Kinematic Alignment
D Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% CI) Heterogeneity: Chi ² = - Test for overall effect: .	Z = 0.73 (P Kinemat Mean 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P	= 0.47) tic Alignm <u>SD</u> 0.8 6.8 3 (P = 0.42 = 0.10)	ment Total 41 44 49 134 3); I ² = 0 ^o	Mechar <u>Mean</u> 4.1 5.2 4	nical Align SD 0.6 2.2 4	ment <u>Tota</u> 41 44 50 135	Weight 93.5% 2.0% 4.5% 5 100.0%	Mean Difference V. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55]	Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% CI -4 -2 0 2 4 Mechanical Alignment Kinematic Alignment
Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% CI) Heterogeneity: Chi² = 1 Test for overall effect: .	Z = 0.73 (P Kinemat Mean 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P	= 0.47) iic Alignm SD 0.8 6.8 3 (P = 0.43 = 0.10)	ment <u>Total</u> 41 44 49 134 3); 1 ² = 0 ⁶	Mechar <u>Mean</u> 4.1 5.2 4	nical Align SD 0.6 2.2 4	ment <u>Tota</u> 41 44 50 135	Weight 93.5% 2.0% 4.5% 3.5%	Mean Difference IV, Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55]	Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl
Study or Subgroup Dossett 2012 Dossett 2012 Dossett 2014 Young 2016 Total (95% CI) Heterogeneity: Chi ² = - Test for overall effect: .	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemat	= 0.47) iic Alignr <u>SD</u> 0.8 6.8 3 (P = 0.42 = 0.10) ic Alignr	ment <u>Total</u> 41 49 134 3); I ² = 0 ⁰ nent	Mechar <u>Mean</u> 4.1 5.2 4 %	ical Align SD 0.6 2.2 4	ment <u>Tota</u> 41 44 50 135 ment	Weight 93.5% 2.0% 4.5% 100.0%	Mean Difference IV. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] Mean Difference	Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -4 -2 0 2 4 Mechanical Alignment Kinematic Alignment
Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% Cl) Heterogeneity: Chi ² = - Test for overall effect: -	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemat <u>Mean</u>	= 0.47) iic Alignm <u>SD</u> 0.8 6.8 3 (P = 0.42 = 0.10) ic Alignm <u>SD</u> 0.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	ment <u>Total</u> 41 49 134 3); I ² = 0 ⁰ nent <u>Total</u>	Mechar <u>Mean</u> 4.1 5.2 4 % Mechan <u>Mechan</u>	ical Align 0.6 2.2 4 ical Align SD	ment <u>Tota</u> 41 44 50 135 135 ment <u>Tota</u>	Weight 93.5% 2.0% 4.5% 100.0%	Mean Difference V. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] Mean Difference IV. Fixed, 95% CI	Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -4 -2 0 2 4 Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl
Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% Cl) Heterogeneity: Chi ² = - Test for overall effect: - Study or Subgroup Dossett 2012 Dossett 2012 Dossett 2014	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemat <u>Mean</u> 5.1 2.4	= 0.47) (ic Aligni <u>SD</u> 0.8 6.8 3 (P = 0.42 = 0.10) ic Alignr <u>SD</u> 1.2 0.27	ment <u>Total</u> 41 44 49 134 3); $l^2 = 0^{\circ}$ nent <u>Total</u> 41 41	Mechar <u>Mean</u> 4.1 5.2 4 % Mechan <u>Mean</u> 5.4	ical Align 0.6 2.2 4 ical Align SD 1.6 0.76	ment <u>Tota</u> 41 50 135 ment <u>Total</u> 41	Weight 93.5% 2.0% 4.5% 100.0% Weight 26.1% 73.0%	Mean Difference V. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] Mean Difference IV, Fixed, 95% CI -0.30 [-0.91, 0.31] 0.10 [-0.26, 0.46]	Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -4 -2 0 2 4 Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl
D Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% Cl) Heterogeneity: Chi ² = : Test for overall effect: : E Study or Subgroup Dossett 2012 Dossett 2014	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemat <u>Mean</u> 5.1 3.4	= 0.47) ic Alignum 0.8 6.8 3 (P = 0.42 = 0.10) ic Alignum <u>SD</u> 1.2 0.97	ment <u>Total</u> 41 44 49 134 3); $1^2 = 0^2$ ment <u>Total</u> 41 41 44	Mechar <u>Mean</u> 4.1 5.2 4 % Mechan <u>Mean</u> 5.4 3.3	ical Align 0.6 2.2 4 ical Align <u>SD</u> 1.6 0.76	ment 41 44 50 135 ment <u>Total</u> 41	Weight 93.5% 2.0% 4.5% 100.0% Weight 26.1% 73.9%	Mean Difference IV. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] Mean Difference IV. Fixed, 95% CI -0.30 [-0.91, 0.31] 0.10 [-0.26, 0.46]	Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -4 -2 0 2 4 Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl
D Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% Cl) Heterogeneity: Chi ² = - Test for overall effect: . E Study or Subgroup Dossett 2012 Dossett 2014 Total (95% Cl)	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemat <u>Mean</u> 5.1 3.4	= 0.47) $= 0.47)$ 0.8 0.8 0.8 3 $(P = 0.43)$ $= 0.10)$ ic Alignm $5D$ 1.2 0.97	ment <u>Total</u> 41 43 3); 1 ² = 0 ⁴ nent <u>Total</u> 41 44	Mechar <u>Mean</u> 4.1 5.2 4 % Mechan <u>Mean</u> 5.4 3.3	ical Align 0.6 2.2 4 ical Align <u>SD</u> 1.6 0.76	ment <u>Tota</u> 41 44 50 135 135 ment <u>Total</u> 41 44 85	Weight 93.5% 2.0% 4.5% 100.0% Weight 26.1% 73.9% 100.0%	Mean Difference V. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] Mean Difference IV. Fixed, 95% CI -0.30 [-0.91, 0.31] 0.10 [-0.26, 0.46] -0.00 [-0.32, 0.31]	Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl 4 -2 0 2 4 Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl
Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% Cl) Heterogeneity: Chi ² = - C Study or Subgroup Dossett 2012 Dossett 2014 Test for overall effect: . D Study or Subgroup Dossett 2012 Dossett 2014 Total (95% Cl) Heterogeneity: Chi ² = -	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemat <u>Mean</u> 5.1 3.4 1.21, df = 1	= 0.47) $= 0.47)$ $= 0.47)$ $= 0.40$ $= 0.40$ $= 0.10)$ $= 0.10)$ $= 0.10$ $= 0.10$ $= 0.10$ $= 0.27$ $= 0.27$	ment <u>Total</u> 41 44 49 134 3); $l^2 = 0^{\circ}$ nent <u>Total</u> 41 41 85 '); $l^2 = 17$	Mechar <u>Mean</u> 4.1 5.2 4 % Mechan <u>Mean</u> 5.4 3.3	ical Align 0.6 2.2 4 ical Align <u>SD</u> 1.6 0.76	ment <u>Tota</u> 44 50 135 135 ment <u>Total</u> 41 44 85	 Weight 93.5% 2.0% 4.5% 100.0% Weight 26.1% 73.9% 100.0% 	Mean Difference IV. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] 0.25 [-0.04, 0.55] Mean Difference IV. Fixed, 95% CI -0.30 [-0.91, 0.31] 0.10 [-0.26, 0.46] -0.00 [-0.32, 0.31]	Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl 4 -2 0 2 4 Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl 4 -2 0 2 4 Mechanical Alignment Kinematic Alignment
Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% Cl) Heterogeneity: Chi² = - Study or Subgroup Dossett 2012 Dossett 2012 Dossett 2014 Tost for overall effect: . E Study or Subgroup Dossett 2012 Dossett 2014 Total (95% Cl) Heterogeneity: Chi² = - Test for overall effect: .	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemat <u>Mean</u> 5.1 3.4 1.21, df = 1 Z = 0.03 (P	= 0.47) $= 0.47)$ $= 0.47)$ $= 0.8$ $= 0.43$ $= 0.10)$ $= 0.10)$ $= 0.10$ $= 0.10$ $= 0.10$ $= 0.10$ $= 0.10$ $= 0.10$ $= 0.10$	$\begin{array}{r} \text{ment} \\ \hline \text{Total} \\ 44 \\ 49 \\ 134 \\ 3); ^2 = 0^{\circ} \\ \hline \text{ment} \\ \hline \text{Total} \\ 41 \\ 44 \\ 85 \\ \hline \text{*}; ^2 = 17 \\ \end{array}$	Mechar <u>Mean</u> 4.1 5.2 4 % Mechan 5.4 3.3	ical Align 0.6 2.2 4 ical Align <u>SD</u> 1.6 0.76	ment <u>Tota</u> 44 500 135 ment <u>Total</u> 41 44 85	Weight 93.5% 2.0% 4.5% 100.0%	Mean Difference IV. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] Mean Difference IV. Fixed, 95% CI -0.30 [-0.91, 0.31] 0.10 [-0.26, 0.46] -0.00 [-0.32, 0.31]	Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -4 -2 0 2 4 Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -2 -1 0 1 2 Mechanical Alignment Kinematic Alignment
Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% Cl) Heterogeneity: Chi² = - Test for overall effect: . E Study or Subgroup Dossett 2012 Dossett 2012 Dossett 2012 Dossett 2014 Total (95% Cl) Heterogeneity: Chi² = - Test for overall effect: .	Z = 0.73 (P Kinemat Mean 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemat Mean 5.1 3.4 1.21, df = 1 Z = 0.03 (P	= 0.47) iic Aligni <u>SD</u> 0.8 6.8 3 (P = 0.42 = 0.10) ic Aligni <u>SD</u> 1.2 0.97 (P = 0.27 = 0.98)	ment <u>Total</u> 41 49 134 3); $l^2 = 0^{\circ}$ ment <u>Total</u> 41 44 85 '); $l^2 = 17$	Mechar <u>Mean</u> 4.1 5.2 4 % Mechan <u>Mean</u> 5.4 3.3	ical Align 0.6 2.2 4 ical Align <u>SD</u> 1.6 0.76	ment <u>Tota</u> 44 50 135 ment <u>Total</u> 44 85	Weight 93.5% 2.0% 4.5% 100.0% 4.5% 100.0% 26.1% 73.9% 100.0% 100.0%	Mean Difference IV, Fixed, 95% Cl 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] Mean Difference IV, Fixed, 95% Cl -0.30 [-0.91, 0.31] 0.10 [-0.26, 0.46] -0.00 [-0.32, 0.31]	Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -4 Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -2 Mechanical Alignment Kinematic Alignment
Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% CI) Heterogeneity: Chi ² = - Study or Subgroup Dossett 2012 Dossett 2012 Dossett 2014 Total (95% CI) Heterogeneity: Chi ² = - Test for overall effect: .	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemat <u>Mean</u> 5.1 3.4 1.21, df = 1 Z = 0.03 (P	= 0.47) Sic Alignum 0.8 6.8 3 (P = 0.43) = 0.10) ic Alignum 1.2 0.97 (P = 0.27 = 0.98)	ment <u>Total</u> 41 44 49 134 3); $ ^2 = 0^{\circ}$ nent <u>Total</u> 41 44 85 '); $ ^2 = 17$	Mechar <u>Mean</u> 4.1 5.2 4 % Mechan <u>Mean</u> 5.4 3.3	ical Align 0.6 2.2 4 ical Align <u>SD</u> 1.6 0.76	ment <u>Tota</u> 44 50 135 ment <u>Total</u> 41 44 85	Weight 93.5% 2.0% 4.5% 100.0% Weight 26.1% 73.9% 100.0%	Mean Difference IV. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] Mean Difference IV. Fixed, 95% CI -0.30 [-0.91, 0.31] 0.10 [-0.26, 0.46] -0.00 [-0.32, 0.31]	Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl 4 -2 0 2 4 Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl 4 -2 0 2 4 Mechanical Alignment Kinematic Alignment
Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% Cl) Heterogeneity: Chi ² = - C Study or Subgroup Dossett 2012 Dossett 2012 Dossett 2012 Dossett 2014 Total (95% Cl) Heterogeneity: Chi ² = - Test for overall effect: . F	Z = 0.73 (P Kinemat 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemat 5.1 3.4 1.21, df = 1 Z = 0.03 (P Kinemati		ment <u>Total</u> 44 49 134 3); ² = 0° nent <u>Total</u> 41 44 85 '); ² = 17	Mechar <u>Mean</u> 4.1 5.2 4 % Mechan 5.4 3.3 7%	ical Align 0.6 2.2 4 ical Align 1.6 0.76	ment <u>Tota</u> 44 50 135 ment <u>Total</u> 41 44 85	 Weight 93.5% 2.0% 4.5% 100.0% Weight 26.1% 73.9% 100.0% 	Mean Difference IV. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] 0.25 [-0.0	Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl 4 -2 0 2 4 Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl 4 -2 -1 0 1 2 Mechanical Alignment Kinematic Alignment Mechanical Alignment Kinematic Alignment
Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% CI) Heterogeneity: Chi² = 1 Test for overall effect: 1 Dossett 2012 Dossett 2012 Dossett 2012 Dossett 2014 Total (95% CI) Heterogeneity: Chi² = 1 Dossett 2014 Total (95% CI) Heterogeneity: Chi² = 1 Test for overall effect: 1 F Study or Subgroup	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemati 3.4 1.21, df = 1 Z = 0.03 (P Kinemati <u>Kinemati</u>		ment <u>Total</u> 44 49 134 3); I ² = 0 ⁴ ment 41 44 85 '); I ² = 17 ⊨ent <u>Total</u>	Mechar <u>Mean</u> 4.1 5.2 4 % Mechan 5.4 3.3 7% Mechani <u>Mean</u>	ical Align 0.6 2.2 4 ical Align 5D 1.6 0.76	ment <u>Tota</u> 44 50 135 ment 41 44 85 went <u>Total</u>	Weight 93.5% 2.0% 4.5% 100.0% Weight 26.1% 73.9% 100.0%	Mean Difference IV. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] 0.25 [-0.04, 0.55] 0.25 [-0.04, 0.55] 0.25 [-0.04, 0.55] 0.30 [-0.91, 0.31] 0.10 [-0.26, 0.46] -0.00 [-0.32, 0.31] Mean Difference IV. Fixed, 95% CI	Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl -4 -2 0 2 4 Mechanical Alignment Kinematic Alignment Mean Difference IV. Fixed, 95% Cl -2 -1 0 1 2 Mechanical Alignment Kinematic Alignment
Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% CI) Heterogeneity: Chi² = 7 Study or Subgroup Dossett 2012 Dossett 2012 Dossett 2014 Total (95% CI) Heterogeneity: Chi² = 7 Study or Subgroup Dossett 2014 Total (95% CI) Heterogeneity: Chi² = 7 Test for overall effect: 7 F Study or Subgroup Dossett 2014 Total (95% CI) Heterogeneity: Chi² = 7 Study or Subgroup Dossett 2012	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemati <u>Mean</u> 5.1 3.4 1.21, df = 1 Z = 0.03 (P Kinemati <u>Mean</u> 245		ment <u>Total</u> 41 49 134 3); $ ^2 = 0^{\circ}$ nent <u>Total</u> 41 44 85 '); $ ^2 = 17$ ient <u>Total</u> 41	Mechar <u>Mean</u> 4.1 5.2 4 % <u>Mechan</u> 3.3 7% <u>Mechani Mean</u> 199	ical Align 0.6 2.2 4 ical Align 5D 1.6 0.76	ment <u>Tota</u> 44 50 135 ment 41 44 85 ment <u>Total</u> 41 44 44 44 44 41	 Weight 93.5% 2.0% 4.5% 100.0% Weight 26.1% 73.9% 100.0% Weight 47.3% 	Mean Difference IV, Fixed, 95% Cl 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] Mean Difference IV, Fixed, 95% Cl -0.30 [-0.91, 0.31] 0.10 [-0.26, 0.46] -0.00 [-0.32, 0.31] Mean Difference IV, Fixed, 95% Cl 46.00 [-7.03, 99.03]	Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -4 -2 0 2 4 Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -2 -1 0 1 2 Mechanical Alignment Kinematic Alignment
D Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% Cl) Heterogeneity: Chi ² = - Test for overall effect: : E Study or Subgroup Dossett 2012 Dossett 2014 Total (95% Cl) Heterogeneity: Chi ² = - Test for overall effect: : C Study or Subgroup Dossett 2014 Total (95% Cl) Heterogeneity: Chi ² = - C Study or Subgroup Dossett 2014	Z = 0.73 (P Kinemati Mean 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemati Mean 5.1 3.4 1.21, df = 1 Z = 0.03 (P Kinemati Mean 245 248	= 0.47) tic Aligni 0.8 6.8 3 (P = 0.42 = 0.10) ic Aligni (P = 0.27 = 0.98) c Aligni <u>SD</u> 122 120.1	ment <u>Total</u> 41 44 134 3); $l^2 = 0^{\circ}$ nent <u>Total</u> 44 85 '); $l^2 = 17$ ient <u>Total</u> 41 44	Mechar <u>Mean</u> 4.1 5.2 4 % Mechan <u>Mean</u> 199 198	ical Align 0.6 2.2 4 ical Align <u>SD</u> 1.6 0.76 cal Alignm <u>SD</u> 123 120.4	ment <u>Tota</u> 44 50 135 ment <u>Total</u> <u>Total</u> 41 <u>44</u> 44	 Weight 93.5% 2.0% 4.5% 100.0% Weight 26.1% 73.9% 100.0% Weight 47.3% 52.7% 	Mean Difference IV, Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] 0.25 [-0.04, 0.55] 0.25 [-0.04, 0.55] 0.30 [-0.91, 0.31] 0.10 [-0.26, 0.46] -0.00 [-0.32, 0.31] 0.40 [-7.03, 99.03] 50.00 [-7.03, 99.03]	Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -4 -2 0 2 4 Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -2 -1 0 1 2 Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -2 -1 0 1 2 Mechanical Alignment Kinematic Alignment
Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% CI) Heterogeneity: Chi ² = - Test for overall effect: . E Study or Subgroup Dossett 2012 Dossett 2012 Dossett 2014 Total (95% CI) Heterogeneity: Chi ² = - Test for overall effect: . F Study or Subgroup Dossett 2012 Dossett 2014 Test for overall effect: . F Study or Subgroup Dossett 2012 Dossett 2014 Test for overall effect: . F Study or Subgroup Dossett 2012 Dossett 2012 Dossett 2014 Test 105% CI)	Z = 0.73 (P Kinemat <u>Mean</u> 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemat <u>Mean</u> 5.1 3.4 1.21, df = 1 Z = 0.03 (P Kinemat <u>Mean</u> 245	= 0.47) tic Aligni 0.8 6.8 3 (P = 0.43 = 0.10) ic Aligni (P = 0.27 = 0.98) (P = 0.27 = 0.98) c Aligni SD 122 120.1	ment <u>Total</u> 41 44 49 134 3); $ ^2 = 0^{\circ}$ nent <u>Total</u> 44 85 '); $ ^2 = 17$ ient <u>Total</u> 41 44 4 44 4 4 5 1 1 1 1 1 1 1 1	Mechar <u>Mean</u> 4.1 5.2 4 % Mechan <u>Mean</u> 199 198	ical Align 0.6 2.2 4 ical Align 5D 1.6 0.76	ment <u>Tota</u> 41 44 50 135 135 135 135 135 135 136 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135	 Weight 93.5% 2.0% 4.5% 100.0% Weight 26.1% 73.9% 100.0% Weight 47.3% 52.7% 100.2% 	Mean Difference IV, Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] 0.25 [-0.04, 0.55] 0.25 [-0.04, 0.55] 0.25 [-0.04, 0.55] 0.30 [-0.91, 0.31] 0.10 [-0.26, 0.46] -0.00 [-0.32, 0.31] Mean Difference IV, Fixed, 95% CI 46.00 [-7.03, 99.03] 50.00 [-0.25, 100.25]	Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -4 Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -2 Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -2 Mechanical Alignment Kinematic Alignment
D Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% Cl) Heterogeneity: Chi ² = - Test for overall effect: - E Study or Subgroup Dossett 2012 Dossett 2014 Total (95% Cl) Heterogeneity: Chi ² =	Z = 0.73 (P Kinemati Mean 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemati Mean 5.1 3.4 1.21, df = 1 Z = 0.03 (P Kinemati Mean 245 248 0.01 df = 1	= 0.47) tic Aligni 0.8 6.8 3 (P = 0.42 = 0.10) ic Aligni SD 1.2 0.97 (P = 0.27 = 0.98) c Aligni SD 1.2 0.97 (P = 0.22 = 0.98) c Aligni BD 1.2 1.2 0.97 (P = 0.22 = 0.98) c Aligni BD 1.2 0.97 (P = 0.27 = 0.98) c Aligni BD 1.2 0.97 (P = 0.27 = 0.98) c Aligni BD 1.2 0.97 (P = 0.27 = 0.98) (P = 0.27) (P = 0.	ment <u>Total</u> 41 44 49 134 3); $l^2 = 0'$ nent <u>Total</u> 41 44 85 (); $l^2 = 17$ nent <u>Total</u> 41 44 85 (); $l^2 = 0''$	Mechar Mean 4.1 5.2 4 % Mechan 5.4 3.3 7% Mechani Mean 199 198	ical Align 0.6 2.2 4 ical Align <u>SD</u> 1.6 0.76 cal Alignn <u>SD</u> 123 120.4	ment <u>Tota</u> 44 50 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 	 Weight 93.5% 2.0% 4.5% 100.0% Weight 47.3% 52.7% 100.0% 	Mean Difference IV. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] 0.25 [-0.04, 0.55] 0.00 [-0.25, 0.46] 46.00 [-7.03, 99.03] 50.00 [-0.25, 100.25] 48.11 [11.63, 84.58]	Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -4 Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -2 Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -2 Mechanical Alignment Kinematic Alignment
D Study or Subgroup Dossett 2012 Dossett 2014 Young 2016 Total (95% CI) Heterogeneity: Chi ² = - Cossett 2014 Total (95% CI) Heterogeneity: Chi ² = - Cossett 2014 Total (95% CI) Heterogeneity: Chi ² = - Cossett 2014 Cossett 2014 Dossett 2012 Dossett 2012 Dossett 2014 Total (95% CI) Heterogeneity: Chi ² = - Cossett 2014 Total (95% CI) Heterogeneity: Chi ² = - Cossett 2014 Total (95% CI) Heterogeneity: Chi ² = - Cossett 2014 Total (95% CI) Heterogeneity: Chi ² = - Cossett 2014 Total (95% CI) Heterogeneity: Chi ² = - Cossett 2014 Total (95% CI) Heterogeneity: Chi ² = - Cossett 2014 Total (95% CI) Heterogeneity: Chi ² = - Cossett 2014 Total (95% CI)	Z = 0.73 (P Kinemati <u>Mean</u> 4.3 6.2 5 1.70, df = 2 Z = 1.67 (P Kinemati <u>Mean</u> 5.1 3.4 1.21, df = 1 Z = 0.03 (P Kinemati <u>Mean</u> 245 248 0.01, df = 1 (C) Z = 2 50 (P)	= 0.47) tic Aligni 0.8 6.8 3 (P = 0.42 = 0.10) tic Aligni SD 1.2 0.97 (P = 0.27 = 0.98) c Aligni SD 122 120.1 P = 0.911 = 0.010)	$ment Total 41 44 49 134 3); l^2 = 0^{\circ}mentTotal414485(1); l^2 = 17mentTotal414485(1); l^2 = 0^{\circ}$	Mechar Mean 4.1 5.2 4 % Mechani Mean 199 198	ical Align 0.6 2.2 4 ical Align 5D 1.6 0.76 cal Alignm 5D 123 120.4	ment <u>Tota</u> 41 44 50 135 ment <u>Total</u> 41 44 85 ment <u>Total</u> 41 44 85	 Weight 93.5% 2.0% 4.5% 100.0% Weight 47.3% 52.7% 100.0% 	Mean Difference IV. Fixed, 95% CI 0.20 [-0.11, 0.51] 1.00 [-1.11, 3.11] 1.00 [-0.39, 2.39] 0.25 [-0.04, 0.55] 0.25 [-0.04, 0.55] 0.26 [-0.25, 0.26] 0.26 [-0.25, 100.25] 48.11 [11.63, 84.58]	Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -2 -1 0 2 4 Mechanical Alignment Kinematic Alignment Mean Difference IV, Fixed, 95% Cl -2 -1 0 1 2 Mechanical Alignment Kinematic Alignment

distance

Study or Subgroup Events Total Events Total Weight M-H, Fixed, 95% Cl M-H, Fixed, 95% Cl major complication 2 100 1 100 6.1% 2.02 [0.18, 22.65] Dossett 2012 0 41 0 41 Not estimable Dossett 2014 1 44 6.1% 1.00 [0.06, 16.51] McEwen 2020 1 41 0 41 3.0% 3.07 [0.12, 77.69] Young 2016 0 49 1 50 9.2% 0.33 (0.01, 8.38] 1.07 [0.12, 77.69] Young 2020 2 47 2 48 11.9% 1.02 [0.14, 7.57] Subtocal (95% Cl) 322 324 36.3% 1.18 [0.39, 3.57] 1.37 [0.29, 6.54] Dossett 2012 4 41 3 41 16.9% 1.00 [0.16, 16.55] Young 2020 1 41 1.41 6.1% 1.00 [0.06, 16.55] 1.00 [0.63, 3.13] 1.00 [0.63, 3.13] Dossett 2012 4 47 1 <t< th=""><th></th><th>Kinematic Alig</th><th>nment</th><th>Mechanical Alig</th><th>nment</th><th></th><th>Odds Ratio</th><th>Odds Ratio</th></t<>		Kinematic Alig	nment	Mechanical Alig	nment		Odds Ratio	Odds Ratio
major complication Calliess 2016 2 100 1 100 6.1% 2.02 [0.18, 22.65] Dossett 2012 0 41 0 41 Not estimable Dossett 2014 1 44 1 44 6.1% 1.00 [0.6; 16.51] McEwen 2020 1 41 0 41 3.0% 3.07 [0.12, 77.69] Young 2016 0 49 1 50 9.2% 0.33 [0.01, 8.36] Young 2020 2 47 2 48 11.9% 1.02 [0.14, 7.57] Subtotal (95% CI) 322 324 36.3% 1.18 [0.39, 3.57] 1.02 [0.14, 7.57] Total events 6 5 5 5 5 Heterogeneity: Chi ² = 1.15, df = 4 (P = 0.89); l ² = 0% 100 Not estimable 1.02 [0.29, 6.54] Dossett 2012 4 41 3 41 1.5% 1.00 [0.20, 5.55] McEwen 2020 1 41 1.48 5.7% 1.02 [0.20, 5.3] 1.00 [0.63, 3.13] Young 2020 4 47 1 48 5.7% 1.40 [0.6	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% Cl
Calliess 2016 2 100 1 100 6.1% 2.02 (14, 22.65) Dossett 2012 0 41 0 41 Not estimable Dossett 2014 1 44 1 44 6.1% 1.00 [0.06, 16.51] McEwen 2020 1 41 0 41 3.0% 3.07 [0.12, 77.69] Young 2016 0 49 1 50 9.2% 0.33 [0.01, 8.38] Young 2020 2 47 2 48 11.9% 1.02 [0.14, 7.57] Subtotal (95% CI) 322 324 36.3% 1.18 [0.39, 3.57] Total events 6 5 Heterogeneity: Ch ² = 1.15, df = 4 (P = 0.89); P = 0% Test for overall effect: Z = 0.83 (P = 0.49) Total (95% CI) 322 324 35.3% 1.78 [0.29, 6.54] Dossett 2012 4 41 3 41 16.9% 1.37 [0.29, 6.54] Dossett 2012 4 41 3 41 16.9% 1.37 [0.29, 6.54] Dossett 2012 4 41 3 44 1 16.9% 1.37 [0.29, 6.54] Dossett 2012 4 41 3 44 1 16.9% 1.37 [0.29, 6.54] Dossett 2012 4 41 3 44 3 44 17.5% 1.00 [0.06, 15.52] Young 2016 3 49 3 50 17.5% 4.37 [0.47, 40.66] Subtotal (95% CI) 322 324 63.7% 1.40 [0.63, 3.13] Total events 15 11 Heterogeneity: Ch ² = 1.36, df = 4 (P = 0.85); P = 0% Test for overall effect: Z = 0.83 (P = 0.41) Total (95% CI) 644 648 100.0% 1.32 [0.69, 2.53] Total events 2 1 16 Heterogeneity: Ch ² = 2.0.85 (P = 0.40) Test for overall effect: Z = 0.85 (P = 0.40) Test	major complication							
Dosset 2012 0 41 0 41 Not estimable Dosset 2014 1 44 1 44 6.1% 1.00 [0.66, 16, 51] McEwen 2020 1 41 0 41 3.0% 3.07 [0.12, 77.69] Young 2016 0 49 1 50 9.2% 0.33 [0.01, 8.38] Young 2020 2 47 2 48 11.9% 1.02 [0.14, 7.57] Subtoal (95% Cl) 322 324 36.3% 1.18 [0.39, 3.57] Total events 6 5 Heterogeneity: Chi ^p = 1.56, df = 4 ($P = 0.89$); $P = 0\%$ Test for overall effect: Z = 0.30 ($P = 0.77$) minor complication Calliess 2016 0 100 0 100 Not estimable Dosset 2012 4 41 3 41 16.9% 1.37 [0.29, 6.54] Dosset 2014 3 44 3 44 17.5% 1.00 [0.16, 5.55] Young 2020 4 477 1 48 5.7% 4.37 [0.47, 40.66] Subtoal (95% Cl) 322 324 63.7% 1.40 [0.63, 3.13] Total events 15 11 Heterogeneity: Chi ^p = 1.36, df = 4 ($P = 0.85$); $P = 0\%$ Test for overall effect: Z = 0.83 ($P = 0.41$) Total (95% Cl) 644 648 100.0% 1.32 [0.69, 2.53] Total events 2 1 16 Heterogeneity: Chi ^p = 1.36, df = 4 ($P = 0.81$); $P = 0\%$ Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.80$; $P = 0\%$ Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall effect: Z = 0.85 ($P = 0.40$) Test for overall eff	Calliess 2016	2	100	1	100	6.1%	2.02 [0.18, 22.65]	
Dosset 2014 1 44 1 44 6.1% 1.00 [0.06, 16.51] McEwen 2020 1 41 0 41 3.0% 3.07 [0.12, 77.69] Young 2016 0 49 1 50 9.2% 0.33 [0.01, 8.38] Young 2020 2 47 2 48 11.9% 1.02 [0.14, 7.57] Subtotal (95% CI) 322 324 36.3% 1.18 [0.39, 3.57] Total events 6 5 Heterogeneity: $Chl^{2} = 1.15$, $df = 4 (P = 0.89)$; $l^{2} = 0\%$ Test for overall effect: $Z = 0.30 (P = 0.77)$ minor complication Calliess 2016 0 100 0 100 Not estimable Dosset 2012 4 41 3 41 16.9% 1.37 [0.29, 6.54] Dosset 2012 3 44 3 44 17.5% 1.00 [0.09, 5.25] McEwen 2020 1 41 1 41 6.1% 1.00 [0.06, 16.55] Young 2016 3 49 3 50 17.5% 4.37 [0.47, 40.66] Subtotal (95% CI) 322 324 63.7% 1.40 [0.63, 3.13] Total events 15 11 Heterogeneity: $Chl^{2} = 1.36$, $df = 4 (P = 0.85)$; $l^{2} = 0\%$ Test for overall effect: $Z = 0.38 (P = 0.41)$ Total events 15 11 Heterogeneity: $Chl^{2} = 1.36$, $df = 4 (P = 0.85)$; $l^{2} = 0\%$ Test for overall effect: $Z = 0.83 (P = 0.40)$ Test for overall effect: $Z = 0.85 (P = 0.40)$	Dossett 2012	0	41	0	41		Not estimable	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Dossett 2014	1	44	1	44	6.1%	1.00 [0.06, 16.51]	
Young 2016 0 49 1 50 9.2% 0.33 [0.01, 8.38] Young 2020 2 47 2 48 11.9% 1.02 [0.14, 7.57] Subtotal (95% CI) 322 324 36.3% 1.18 [0.39, 3.57] Total events 6 5 Heterogeneity: Chi ² = 2.0.30 (P = 0.77) minor complication Calliess 2016 0 100 0 100 Not estimable Dossett 2012 4 41 3 41 16.9% 1.37 [0.29, 6.54] Dossett 2012 4 41 3 44 17.5% 1.00 [0.19, 5.25] MeEwen 2020 1 41 1 41 6.1% 1.00 [0.06, 16.55] Young 2016 3 49 3 50 17.5% 1.02 [0.20, 5.33] Young 2020 4 47 1 48 5.7% 4.37 [0.47, 40.66] Subtotal (95% CI) 322 324 63.7% 1.40 [0.63, 3.13] Total events 15 11 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0% Test for overall effect: Z = 0.83 (P = 0.41) Total events 21 10 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0% Test for overall effect: Z = 0.83 (P = 0.41) Total events 21 10 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Test for subroup differences: Chi ² =	McEwen 2020	1	41	0	41	3.0%	3.07 [0.12, 77.69]	
Young 2020 2 47 2 48 11.9% 1.02 [0.14, 7.57] Subtotal (95% Cl) 322 324 36.3% 1.18 [0.39, 3.57] Total events 6 5 Heterogeneity: Chi ² = 1.15, df = 4 (P = 0.89); l ² = 0% Test for overall effect: Z = 0.30 (P = 0.77) minor complication Calliess 2016 0 100 0 100 Not estimable Dossett 2012 4 411 3 441 16.9% 1.37 [0.29, 6.54] Dossett 2014 3 44 3 44 17.5% 1.00 [0.19, 5.25] McEwen 2020 1 411 1 41 6.1% 1.00 [0.06, 16.55] Young 2016 3 49 3 50 17.5% 4.37 (0.27, 6.54] Subtotal (95% Cl) 322 324 63.7% 1.40 [0.63, 3.13] Total events 15 11 Heterogeneity: Chi ² = 1.36, df = 4 (P = 0.85); l ² = 0% Test for overall effect: Z = 0.83 (P = 0.41) Total (95% Cl) 644 648 100.0% 1.32 [0.69, 2.53] Total events 21 16 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0% Test for overall effect: Z = 0.85 (P = 0.41) Total (95% Cl) 644 648 100.0% 1.32 [0.69, 2.53] Total events 21 16 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0% Test for overall effect: Z = 0.85 (P = 0.40) Test for subarouno differences: Chi ² = 0.06. df = 1 (P = 0.81), l ² = 0% Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee arthroplasty. <i>M</i> - <i>H</i> Mantel- Haenszel test	Young 2016	0	49	1	50	9.2%	0.33 [0.01, 8.38]	
Subtotal (95% CI) 322 324 36.3% 1.18 [0.39, 3.57] Total events 6 5 Heterogeneity: Chi ² = 1.15, df = 4 (P = 0.89); l ² = 0% 5 Test for overall effect: Z = 0.30 (P = 0.77) 0 minor complication 0 100 Not estimable Dossett 2012 4 41 3 441 16.3% 1.37 [0.29, 6.54] Dossett 2014 3 44 3 441 1.00 [0.06, 16.55] 1 McEwen 2020 1 41 1 61% 1.00 [0.08, 16.55] 1 Young 2016 3 49 3 50 17.5% 1.02 [0.20, 5.33] 1 Young 2020 4 47 1 48 5.7% 4.37 [0.47, 40.66] 1 Subtotal (95% CI) 322 324 63.7% 1.40 [0.63, 3.13] 1 1 Total events 15 11 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.85); l ² = 0% 1.32 [0.69, 2.53] 0.001 0.1 10 1000 Test for overall effect: Z = 0.85 (P = 0.40) 1 16 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0	Young 2020	2	47	2	48	11.9%	1.02 [0.14, 7.57]	
Total events 6 5 Heterogeneity: Chi ² = 1.15, df = 4 (P = 0.89); l ² = 0% Test for overall effect: Z = 0.30 (P = 0.77) minor complication Not estimable Calliess 2016 0 100 Not estimable Dossett 2012 4 41 3 44 17.5% Dossett 2014 3 44 3 16 McEwen 2020 1 41 1 44 65.7% Young 2016 3 49 3 50 17.5% 1.00 [0.06, 16.55] Young 2016 3 49 3 50 17.5% 1.02 [0.20, 5.33] Young 2020 4 47 1 48 5.7% 4.37 [0.47, 40.66] Subtotal (95% CI) 322 324 63.7% 1.40 [0.63, 3.13] Total events 15 11 11 11 Heterogeneity: Chi ² = 1.36, df = 4 (P = 0.85); l ² = 0% 1.32 [0.69, 2.53] 0.001 0.1 1.00 Total events 21 16 16 10.00 1.32 [0.69, 2.53] 0.001 0.1 1.00 1.001 Mechanical Alignmen	Subtotal (95% CI)		322		324	36.3%	1.18 [0.39, 3.57]	\bullet
Heterogeneity: $Chi^2 = 1.15$, $df = 4$ (P = 0.89); $ ^2 = 0\%$ Test for overall effect: $Z = 0.30$ (P = 0.77) minor complication Calliess 2016 0 100 0 100 Not estimable Dossett 2012 4 411 3 41 16.9% 1.37 [0.29, 6.54] Dossett 2014 3 44 3 44 17.5% 1.00 [0.19, 5.25] McEwen 2020 1 41 1 41 6.1% 1.00 [0.06, 16.55] Young 2016 3 49 3 50 17.5% 1.02 [0.20, 5.33] Young 2020 4 477 1 48 5.7% 4.37 [0.47, 40.66] Subtoal (95% CI) 322 324 63.7% 1.40 [0.63, 3.13] Total events 15 11 Heterogeneity: $Chi^2 = 1.36$, $df = 4$ (P = 0.85); $ ^2 = 0\%$ Test for overall effect: $Z = 0.83$ (P = 0.41) Total (95% CI) 644 648 100.0% 1.32 [0.69, 2.53] Total events 21 16 Heterogeneity: $Chi^2 = 2.53$, $df = 9$ (P = 0.98); $ ^2 = 0\%$ Test for overall effect: $Z = 0.85$ (P = 0.40) Test for suborou differences: $Chi^2 = 0.06$, $df = 1$ (P = 0.81), $ ^2 = 0\%$ Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee arthroplasty. <i>M-H</i> Mantel-Haenszel test	Total events	6		5				
Test for overall effect: $Z = 0.30$ (P = 0.77) minor complication Calliess 2016 0 100 0 Not estimable Dossett 2012 4 41 3 41 16.9% 1.37 [0.29, 6.54] Dossett 2014 3 44 3 44 17.5% 1.00 [0.19, 5.25] McEwen 2020 1 41 1 41 6.1% 1.00 [0.06, 16.55] Young 2016 3 49 3 50 17.5% 1.02 [0.20, 5.33] Young 2020 4 47 1 48 5.7% 4.37 [0.47, 40.66] Subtotal (95% CI) 322 324 63.7% 1.40 [0.63, 3.13] Total events 15 11 Heterogeneity: Chi ² = 1.36, df = 4 (P = 0.85); l ² = 0% 16 Test for overall effect: Z = 0.83 (P = 0.41) 10 1.32 [0.69, 2.53] Total events 21 16 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0% 100 Test for subarous differences: Chi ² = 0.06, df = 1 (P = 0.81). l ² = 0% 100 Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee	Heterogeneity: Chi ² =	1.15, df = 4 (P = 0	.89); l ² =	0%				
minor complication Calliess 2016 0 100 0 100 Not estimable Dossett 2012 4 41 3 41 16.9% 1.37 [0.29, 6.54] Dossett 2014 3 44 3 44 17.5% 1.00 [0.19, 5.25] McEwen 2020 1 41 1 41 6.1% 1.00 [0.06, 16.56] Young 2016 3 49 3 50 17.5% 1.02 [0.20, 5.33] Young 2020 4 47 1 48 5.7% 4.37 [0.47, 40.66] Subtotal (95% CI) 322 324 63.7% 1.40 [0.63, 3.13] Total events 15 11 Heterogeneity: Chi ² = 1.36, df = 4 (P = 0.85); l ² = 0% 16 Test for overall effect: Z = 0.83 (P = 0.41) 10 100 Test for overall effect: Z = 0.85 (P = 0.40) 100 1000 Test for overall effect: Z = 0.85 (P = 0.64) 1000 1000 Test for subcroup differences: Chi ² = 0.06. df = 1 (P = 0.81). l ² = 0% 1000 1000 Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total kne	Test for overall effect:	Z = 0.30 (P = 0.77	7)					
Calliess 2016 0 100 Not estimable Dossett 2012 4 41 3 41 16.9% 1.37 [0.29, 6.54] Dossett 2014 3 44 3 44 17.5% 1.00 [0.19, 5.25] McEwen 2020 1 41 1 41 6.1% 1.00 [0.06, 16.55] Young 2016 3 49 3 50 17.5% 1.02 [0.20, 5.33] Young 2020 4 47 1 48 5.7% 4.37 [0.47, 40.66] Subtotal (95% CI) 322 324 63.7% 1.40 [0.63, 3.13] Total events 15 11 Heterogeneity: Chi ² = 1.36, df = 4 (P = 0.85); l ² = 0.0% 72 = 0.93 (P = 0.41) Test for overall effect: Z = 0.83 (P = 0.41) 16 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0.0% 100.01 0.1 10 1000 Test for suboroun differences: Chi ² = 0.06. df = 1 (P = 0.81). l ² = 0.% 90.001 0.1 10 1000 Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee arthroplasty. <i>M-H</i> Mantel– Haenszel test 10 <th1< td=""><td>minor complication</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>	minor complication							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Calliess 2016	0	100	0	100		Not estimable	
Dossett 2014 3 44 3 44 17.5% 1.00 [0.19, 5.25] McEwen 2020 1 41 1 41 6.1% 1.00 [0.06, 16.55] Young 2016 3 49 3 50 17.5% 1.02 [0.20, 5.33] Young 2020 4 47 1 48 5.7% 4.37 [0.47, 40.66] Subtoal (95% CI) 322 324 63.7% 1.40 [0.63, 3.13] Total events 15 11 Heterogeneity: Chi ² = 1.36, df = 4 (P = 0.85); l ² = 0% 16 Test for overall effect: Z = 0.83 (P = 0.41) 16 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0% 10 Test for overall effect: Z = 0.85 (P = 0.40) 10 Test for suborouo differences: Chi ² = 0.06. df = 1 (P = 0.81). l ² = 0% 0.001 0.1 1 1000 Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee arthroplasty. <i>M-H</i> Mantel-Haenszel test 10 1000	Dossett 2012	4	41	3	41	16.9%	1.37 [0.29, 6.54]	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dossett 2014	3	44	3	44	17.5%	1.00 [0.19, 5.25]	
Young 2016 3 49 3 50 17.5% 1.02 [0.20, 5.33] Young 2020 4 47 1 48 5.7% 4.37 [0.47, 40.66] Subtotal (95% CI) 322 324 63.7% 1.40 [0.63, 3.13] Total events 15 11 Heterogeneity: Chi ² = 1.36, df = 4 (P = 0.85); l ² = 0% Test for overall effect: Z = 0.83 (P = 0.41) Total (95% CI) 644 648 100.0% 1.32 [0.69, 2.53] Total events 21 16 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0% 0.001 0.1 10 1000 Test for overall effect: Z = 0.85 (P = 0.40) Test for suboroup differences: Chi ² = 0.06, df = 1 (P = 0.81). l ² = 0% Mechanical Alignment Minematic Alignment Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee arthroplasty. <i>M-H</i> Mantel– Haenszel test U Minematic alignment in total knee arthroplasty. <i>M-H</i> Mantel–	McEwen 2020	1	41	1	41	6.1%	1.00 [0.06, 16.55]	
Young 2020 4 47 1 48 5.7% 4.37 [0.47, 40.66] Subtotal (95% Cl) 322 324 63.7% 1.40 [0.63, 3.13] Total events 15 11 Heterogeneity: Chi ² = 1.36, df = 4 (P = 0.85); l ² = 0% Test for overall effect: Z = 0.83 (P = 0.41) Total (95% Cl) 644 648 100.0% 1.32 [0.69, 2.53] Total events 21 16 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0% 10 1000 Test for overall effect: Z = 0.85 (P = 0.40) 1000 1000 Test for suboroup differences: Chi ² = 0.06. df = 1 (P = 0.81). l ² = 0% Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee arthroplasty. <i>M-H</i> Mantel-Haenszel test	Young 2016	3	49	3	50	17.5%	1.02 [0.20, 5.33]	_
Subtotal (95% Cl) 322 324 63.7% 1.40 [0.63, 3.13] Total events 15 11 Heterogeneity: Chi ² = 1.36, df = 4 (P = 0.85); l ² = 0% Test for overall effect: Z = 0.83 (P = 0.41) Total events 21 16 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0% 1000 Test for overall effect: Z = 0.85 (P = 0.40) 1000 Test for suboroup differences: Chi ² = 0.66. df = 1 (P = 0.81). l ² = 0% 1000 Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee arthroplasty. <i>M-H</i> Mantel-Haenszel test Heterogeneity: Chi ² = 0.65 (P = 0.40)	Young 2020	4	47	1	48	5.7%	4.37 [0.47, 40.66]	
Total events1511Heterogeneity: $Chi^2 = 1.36$, $df = 4$ (P = 0.85); $i^2 = 0\%$ Test for overall effect: Z = 0.83 (P = 0.41)Total (95% CI)644648100.0%1.32 [0.69, 2.53]Total events2116Heterogeneity: $Chi^2 = 2.53$, $df = 9$ (P = 0.98); $i^2 = 0\%$ 0.0010.11Test for overall effect: Z = 0.85 (P = 0.40)Mechanical Alignment1000Test for suboroup differences: $Chi^2 = 0.06$. $df = 1$ (P = 0.81). $i^2 = 0\%$ Mechanical AlignmentMechanical AlignmentFig. 10Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee arthroplasty. $M-H$ Mantel-Haenszel test	Subtotal (95% CI)		322		324	63.7%	1.40 [0.63, 3.13]	•
Heterogeneity: Chi ² = 1.36, df = 4 (P = 0.85); l ² = 0% Test for overall effect: Z = 0.83 (P = 0.41) Total (95% CI) 644 648 100.0% 1.32 [0.69, 2.53] Total events 21 16 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0% Test for overall effect: Z = 0.85 (P = 0.40) Test for suboroup differences: Chi ² = 0.06. df = 1 (P = 0.81). l ² = 0% Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee arthroplasty. <i>M</i> - <i>H</i> Mantel- Haenszel test	Total events	15		11				
Test for overall effect: $Z = 0.83 (P = 0.41)$ Total (95% CI)644648100.0%1.32 [0.69, 2.53]Total events2116Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0%0.0010.11Test for overall effect: $Z = 0.85 (P = 0.40)$ 0.0010.11Test for suboroub differences: Chi ² = 0.06. df = 1 (P = 0.81). l ² = 0%Mechanical Alignment1000Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee arthroplasty. <i>M-H</i> Mantel-Haenszel testHeat State	Heterogeneity: Chi ² =	1.36, df = 4 (P = 0	.85); l ² =	0%				
Total (95% CI) 644 648 100.0% 1.32 [0.69, 2.53] Total events 21 16 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0% 0.001 0.1 1 10 1000 Test for overall effect: Z = 0.85 (P = 0.40) Mechanical Alignment Kinematic Alignment Test for suboroup differences: Chi ² = 0.06. df = 1 (P = 0.81). l ² = 0% Mechanical Alignment N—H Mantel– Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee arthroplasty. M–H Mantel– Haenszel test	Test for overall effect:	Z = 0.83 (P = 0.47	I)					
Total events 21 16 Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0% - <td>Total (95% CI)</td> <td></td> <td>644</td> <td></td> <td>648</td> <td>100.0%</td> <td>1.32 [0.69, 2.53]</td> <td>•</td>	Total (95% CI)		644		648	100.0%	1.32 [0.69, 2.53]	•
Heterogeneity: Chi ² = 2.53, df = 9 (P = 0.98); l ² = 0% Image: test for overall effect: Z = 0.85 (P = 0.40) Test for subarous differences: Chi ² = 0.06. df = 1 (P = 0.81). l ² = 0% Mechanical Alignment Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee arthroplasty. M–H Mantel– Haenszel test	Total events	21		16				
Test for overall effect: Z = 0.85 (P = 0.40) 0.01 I I I II III III IIIIIIIIIIIIIIIIII	Heterogeneity: Chi ² =	2.53, df = 9 (P = 0	.98); l² =	0%				
Test for subaroup differences: Chi² = 0.06. df = 1 (P = 0.81). l² = 0% Mechanical Alignment Kitematic Alignment Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee arthroplasty. M–H Mantel– Haenszel test Haenszel test	Test for overall effect:	Z = 0.85 (P = 0.40))					U.UU1 U.1 1 10 1000
Fig. 10 Forest plot of complications rate between kinematic alignment and mechanical alignment in total knee arthroplasty. M–H Mantel– Haenszel test	Test for subaroup diffe	erences: Chi ² = 0.0)6. df = 1	(P = 0.81). I ² = 0%				wechanical Alghment Kinematic Alghment
Haenszel test	Fig. 10 Forest plot c	of complications	rate be	tween kinemati	: alignm	nent and	mechanical alignn	nent in total knee arthroplasty. <i>M–H</i> Mantel–
	Haenszel test				<u>9</u>		<u>-</u> <u>-</u>	

applied in TKA, and the functional results of the KA group seem to be better than those of MA [37]. In this updated meta-analysis, we found better knee function results in the KA techniques in KSS (knee), KSS (combined), and WOMAC scores. These results are similar to those of several previous studies. For instance, a previous meta-analysis that included 529 participants compared the WOMAC score between the two groups and indicated that the KA groups acquired a better outcome score [22]. Similarly, Gao et al. combined 11 papers in a meta-analysis and revealed that the KA technique resulted in a better KSS than MA [21]. In a recent RCT, Matsumoto et al. compared 60 patients who underwent TKA and indicated that the KA group could perform the functional activities in mentioned in the KSS better [29]. The reasons for functional outcome improvement in the KA group may be attributed to the restoration of the knee to its pre-arthritis state, as much as possible. It usually requires less loosening of the ligaments and soft tissues [19], which helps preserve the surrounding soft tissues and the original knee joint line [38]. In addition, our updated meta-analysis showed that the KA group was associated with a greater flexion ROM than the MA group, which was consistent with the results in some previous studies [21, 39, 40]. For instance, Gao et al. compared 287 participants in the KA technique group and 287 participants in the MA technique group and found that the KA group had a higher ROM of flexion [21]. However, another study by Luo et al. [22] demonstrated no significant difference in the ROM between the two techniques. This may be due to differences in the data acquisition and analysis. Since we only pooled the data from RCTs, while studies including RCTs, prospective cohort studies (PCSs), and retrospective cohort studies (RCSs) were all enrolled in their study.

Despite the clinical advantages of the KA technique, it also has some shortcomings of KA for TKA. Our updated meta-analysis implicated a remarkable difference between the KA and MA groups in mMPTA but not in mLDFA. This indicated that the tibia component of KA was more varus than that of MA. A consistent result was obtained in a previous meta-analysis performed by Luo et al., where the mMPTA differed between the two groups [22]. Meanwhile, many studies have shown that the increase in varus tilt in the knee after KA can significantly increase contact stresses and wear of the knee compartment, which will cause implant loosening [41-43]. In contrast, another study indicated that the implant survival rate of the prosthesis remained at an adequate level between the two groups [44]. Moreover, our metaanalysis and previous meta-analysis showed that the rates of complications were similar between the two groups [21, 22, 39]. Thus, the increased risk of surgical failure for KA in TKA may not last. However, this follow-up time

is still relatively short, and it is essential to perform a longer follow-up study to elucidate implant survival with KA [28]. In terms of perioperative results, we found that the KA technique had a longer walk distance before discharge than the MA technique [22]. This may also explain why patients with KA for TKA may have better satisfaction than those with MA. However, the perioperative outcomes might be affected by some uncontrollable factors, including the surgical scheme and surgical skill.

Previous studies have shown that it is challenging to avoid heterogeneity in meta-analyses, which may affect the stability of the analysis results [45]. Therefore, we performed a sensitivity analysis to assess whether any individual study would affect the pooled results. By dropping each study and recalculating the combined estimate on the remaining analyses, we found that the most combined results were consistent and without apparent fluctuation. For instance, after omitting the study performed by Dosset et al. [20], the I^2 of ROM (flexion) from dropped 51% to 31%, and the pooled result demonstrated that the KA technique still had a higher ROM of flexion than MA. Hence, these sensitivity analysis results further confirmed the stability of our results.

Despite an effort to make a comprehensive analysis, some inherent limitations of this study should be addressed. First, although we performed a sensitivity analysis, there was still significant heterogeneity in some outcomes, such as HKA. Previous meta-analyses also have this problem [21, 46], which may be attributed to the different surgical techniques, prosthesis types, rehabilitation training, and genetic heterogeneity of the population [46]. Second, the present study only retrieved English articles, which might bias the analysis results to some extent. Third, the follow-up time of the included studies varied, including mainly short, and medium-term RCTs, and there were few studies with long-term followup clinical outcomes. Finally, although we have enrolled the latest RCTs, the number of eligible studies and sample size were still small. Thus, a comparable long-term follow-up time, large sample size, and high-quality RCTs will be needed to further our results.

Conclusion

In conclusion, our study showed that KA in TKA had better functional results than MA in terms of WOMAC scores and KSS (knee and combined). However, KA and MA TKA achieved similar radiological parameters and complication rates.

Abbreviations

OA: Osteoarthritis; TKA: Total knee arthroplasty; KA: Kinematic alignment; MA: Mechanical alignment; HKA: Hip-knee-ankle angle; RCTs: Randomized control trials; KSS: Knee Society Score; KOOS: Knee Injury and Osteoarthritis Outcome

Score; WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index; OKS: Oxford Knee Score; EQ-5D: EuroQoL 5-dimension questionnaire; FJS: Forgotten Joint Score; ROM: Range of motion; FKA: Femoral knee angle; mMPTA: Mechanical medial proximal tibial angle; mLDFA: Mechanical lateral distal femoral angle; JLOA: Joint line orientation angle; TS: Tibial slope; FFA: Femoral flexion–extension angle; OT: Operative time; CHb: Change in hemoglobin; WL: Wound length; WD: Walking distance; HS: Hospital stay; MD: Mean difference; CI: Confidence interval; OR: Odds ratio.

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s13018-022-03097-2.

Additional file 1: Fig. S1. The funnel plot for the symmetrical may indicate a low publication bias.

Additional file 2: Fig. S2. The sensitivity analysis results of JLOA, FFA, and TS. A. JLOA, B. FFA, C. TS.

Acknowledgements

We would like to thank the researchers and study participants for their contributions.

Authors' contributions

BL, CF, and CT designed the study and conducted literature search, systematic review of the literature, and statistical analysis. All authors read and approved the final manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (81902745).

Availability of data and materials

All data and material generated or analyzed during this study are included in this published article.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

¹Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China. ²Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, Zhengzhou 450003, China. ³Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.

Received: 23 January 2022 Accepted: 23 March 2022 Published online: 04 April 2022

References

- 1. Sharma L. Osteoarthritis of the knee. N Engl J Med. 2021;384(1):51-9.
- Dantas LO, Salvini TF, McAlindon TE. Knee osteoarthritis: key treatments and implications for physical therapy. Braz J Phys Ther. 2021;25(2):135–46.

- Aletto C, Zara A, Notarfrancesco D, Maffulli N. Computer assisted total knee arthroplasty: 2.5 years follow-up of 200 cases. Surg J R Coll Surg Edinb Irel. 2021;19(6):e394–401.
- Rossi SMP, Ivone A, Ghiara M, et al. A ligament tensor-guided extramedullary alignment technique for distal femoral cut in total knee replacement: results at a minimum 3 years follow-up. Arch Orthop Trauma Surg. 2021;141(12):2295–302.
- Benazzo F, Jannelli E, Ivone A, et al. Knee arthroplasty system with medialized keel: seven-year follow-up of a pioneer cohort. Knee. 2020;27(3):624–32.
- Losina E, Thornhill TS, Rome BN, Wright J, Katz JN. The dramatic increase in total knee replacement utilization rates in the United States cannot be fully explained by growth in population size and the obesity epidemic. J Bone Joint Surg Am. 2012;94(3):201–7.
- Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am. 2005;87(7):1487–97.
- 8. Schiraldi M, Bonzanini G, Chirillo D, de Tullio V. Mechanical and kinematic alignment in total knee arthroplasty. Ann Transl Med. 2016;4(7):130.
- Kim DK, Seo MC, Song SJ, Kim KI. Are Korean patients different from other ethnic groups in total knee arthroplasty? Knee Surg Relat Res. 2015;27(4):199–206.
- Ensini A, Catani F, Leardini A, Romagnoli M, Giannini S. Alignments and clinical results in conventional and navigated total knee arthroplasty. Clin Orthop Relat Res. 2007;457:156–62.
- Mannion AF, Kämpfen S, Munzinger U, Kramers-de QI. The role of patient expectations in predicting outcome after total knee arthroplasty. Arthritis Res Ther. 2009;11(5):R139.
- Shetty GM, Mullaji A, Khalifa AA, Ray A, Nikumbha V. The effect of sagittal knee deformity on preoperative measurement of coronal mechanical alignment during total knee arthroplasty. Knee Surg Relat Res. 2017;29(2):110–4.
- Baker PN, van der Meulen JH, Lewsey J, Gregg PJ. The role of pain and function in determining patient satisfaction after total knee replacement. Data from the National Joint Registry for England and Wales. J Bone Joint Surg Br. 2007;89(7):893–900.
- Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res. 2010;468(1):57–63.
- Hirschmann MT, Testa E, Amsler F, Friederich NF. The unhappy total knee arthroplasty (TKA) patient: higher WOMAC and lower KSS in depressed patients prior and after TKA. Knee Surg Sports Traumatol Arthrosc. 2013;21(10):2405–11.
- Howell SM, Howell SJ, Kuznik KT, Cohen J, Hull ML. Does a kinematically aligned total knee arthroplasty restore function without failure regardless of alignment category? Clin Orthop Relat Res. 2013;471(3):1000–7.
- Slevin O, Hirschmann A, Schiapparelli FF, Amsler F, Huegli RW, Hirschmann MT. Neutral alignment leads to higher knee society scores after total knee arthroplasty in preoperatively non-varus patients: a prospective clinical study using 3D-CT. Knee Surg Sports Traumatol Arthrosc. 2018;26(6):1602–9.
- Howell SM, Papadopoulos S, Kuznik KT, Hull ML. Accurate alignment and high function after kinematically aligned TKA performed with generic instruments. Knee Surg Sports Traumatol Arthrosc. 2013;21(10):2271–80.
- Dossett HG, Swartz GJ, Estrada NA, LeFevre GW, Kwasman BG. Kinematically versus mechanically aligned total knee arthroplasty. Orthopedics. 2012;35(2):e160–9.
- Dossett HG, Estrada NA, Swartz GJ, LeFevre GW, Kwasman BG. A randomized controlled trial of kinematically and mechanically aligned total knee replacements: two-year clinical results. Bone Joint J. 2014;96-b(7):907–13.
- Gao ZX, Long NJ, Zhang SY, Yu W, Dai YX, Xiao C. Comparison of kinematic alignment and mechanical alignment in total knee arthroplasty: a meta-analysis of randomized controlled clinical trials. Orthop Surg. 2020;12(6):1567–78.
- Luo Z, Zhou K, Peng L, Shang Q, Pei F, Zhou Z. Similar results with kinematic and mechanical alignment applied in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2020;28(6):1720–35.
- 23. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

- Young SW, Walker ML, Bayan A, Briant-Evans T, Pavlou P, Farrington B. The Chitranjan S. Ranawat Award: no difference in 2-year functional outcomes using kinematic versus mechanical alignment in TKA: a randomized controlled clinical trial. Clin Orthop Relat Res. 2017;475(1):9–20.
- Young SW, Sullivan NPT, Walker ML, Holland S, Bayan A, Farrington B. No difference in 5-year clinical or radiographic outcomes between kinematic and mechanical alignment in TKA: a randomized controlled trial. Clin Orthop Relat Res. 2020;478(6):1271–9.
- Yeo JH, Seon JK, Lee DH, Song EK. No difference in outcomes and gait analysis between mechanical and kinematic knee alignment methods using robotic total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2019;27(4):1142–7.
- Waterson HB, Clement ND, Eyres KS, Mandalia VI, Toms AD. The early outcome of kinematic versus mechanical alignment in total knee arthroplasty: a prospective randomized control trial. Bone Joint J. 2016;98-b(10):1360–8.
- McEwen PJ, Dlaska CE, Jovanovic IA, Doma K, Brandon BJ. Computerassisted kinematic and mechanical axis total knee arthroplasty: a prospective randomized controlled trial of bilateral simultaneous surgery. J Arthroplasty. 2020;35(2):443–50.
- Matsumoto T, Takayama K, Ishida K, et al. Intraoperative soft tissue balance/kinematics and clinical evaluation of modified kinematically versus mechanically aligned total knee arthroplasty. J Knee Surg. 2020;33(8):777–84.
- Matsumoto T, Takayama K, Ishida K, Hayashi S, Hashimoto S, Kuroda R. Radiological and clinical comparison of kinematically versus mechanically aligned total knee arthroplasty. Bone Joint J. 2017;99-b(5):640–6.
- MacDessi SJ, Griffiths-Jones W, Chen DB, et al. Restoring the constitutional alignment with a restrictive kinematic protocol improves quantitative soft-tissue balance in total knee arthroplasty: a randomized controlled trial. Bone Joint J. 2020;102-b(1):117–24.
- Laende EK, Richardson CG, Dunbar MJ. A randomized controlled trial of tibial component migration with kinematic alignment using patient-specific instrumentation versus mechanical alignment using computer-assisted surgery in total knee arthroplasty. Bone Joint J. 2019;101-b(8):929–40.
- Calliess T, Bauer K, Stukenborg-Colsman C, Windhagen H, Budde S, Ettinger M. PSI kinematic versus non-PSI mechanical alignment in total knee arthroplasty: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc. 2017;25(6):1743–8.
- Belvedere C, Tamarri S, Ensini A, Caravaggi P, Leardini A. Better joint motion and muscle activity are achieved using kinematic alignment than neutral mechanical alignment in total knee replacement. Gait Posture. 2015;42:S19–20.
- 35. Kaneda K, Niki Y, Kuroyanagi Y, et al. Kinematically aligned total knee arthroplasty using medial pivot knee prosthesis enhances medial pivot motion: a comparative kinematic study with mechanically aligned total knee arthroplasty. Arthroplasty Today. 2022;13:24–8.
- Jacobs CA, Christensen CP, Karthikeyan T. Patient and intraoperative factors influencing satisfaction two to five years after primary total knee arthroplasty. J Arthroplasty. 2014;29(8):1576–9.
- Mugnai R, Digennaro V, Ensini A, Leardini A, Catani F. Can TKA design affect the clinical outcome? Comparison between two guided-motion systems. Knee Surg Sports Traumatol Arthrosc. 2014;22(3):581–9.
- Howell SM, Papadopoulos S, Kuznik K, Ghaly LR, Hull ML. Does varus alignment adversely affect implant survival and function six years after kinematically aligned total knee arthroplasty? Int Orthop. 2015;39(11):2117–24.
- Yoon JR, Han SB, Jee MK, Shin YS. Comparison of kinematic and mechanical alignment techniques in primary total knee arthroplasty: a meta-analysis. Medicine. 2017;96(39):e8157.
- Li Y, Wang S, Wang Y, Yang M. Does kinematic alignment improve shortterm functional outcomes after total knee arthroplasty compared with mechanical alignment? A systematic review and meta-analysis. J Knee Surg. 2018;31(1):78–86.
- Howell SM, Chen J, Hull ML. Variability of the location of the tibial tubercle affects the rotational alignment of the tibial component in kinematically aligned total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2013;21(10):2288–95.

- Srivastava A, Lee GY, Steklov N, Colwell CW Jr, Ezzet KA, D'Lima DD. Effect of tibial component varus on wear in total knee arthroplasty. Knee. 2012;19(5):560–3.
- 43. Park A, Duncan ST, Nunley RM, Keeney JA, Barrack RL, Nam D. Relationship of the posterior femoral axis of the "kinematically aligned" total knee arthroplasty to the posterior condylar, transepicondylar, and anteroposterior femoral axes. Knee. 2014;21(6):1120–3.
- Howell SM, Shelton TJ, Hull ML. Implant survival and function ten years after kinematically aligned total knee arthroplasty. J Arthroplasty. 2018;33(12):3678–84.
- Li SJ, Jiang L, Fu X, et al. Pallidal index as biomarker of manganese brain accumulation and associated with manganese levels in blood: a metaanalysis. PLoS ONE. 2014;9(4):e93900.
- Xu J, Cao JY, Luong JK, Negus JJ. Kinematic versus mechanical alignment for primary total knee replacement: a systematic review and meta-analysis. J Orthop. 2019;16(2):151–7.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

