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Effects of endplate coverage and  
intervertebral height change on heterotopic 
ossification following cervical disc replacement
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Abstract 

Background:  Heterotopic ossification (HO) is a common complication after cervical disc replacement (CDR). Bio‑
mechanical factors including endplate coverage and intervertebral disc height change may be related to HO forma‑
tion. However, there is a dearth of quantitative analysis for endplate coverage, intervertebral height change and their 
combined effects on HO.

Methods:  Patients who underwent single-level or two-level CDR with Prestige-LP were retrospectively reviewed. 
Clinical outcomes were evaluated through Japanese Orthopaedic Association (JOA) score, Neck Disability Index (NDI) 
score, and visual analogue scale (VAS) score. Radiological data, including the prosthesis-endplate depth ratio, interver‑
tebral height change, posterior heterotopic ossification (PHO) and angular parameters, were collected. Logistic regres‑
sion analysis was used to identify the potential risk factors. Receiver operating characteristic curves were plotted and 
the cut-off values of each potential factors were calculated.

Results:  A total of 138 patients with 174 surgical segments were evaluated. Both the prosthesis-endplate depth ratio 
(P < 0.001) and post-operative disc height change (P < 0.001) were predictive factors for PHO formation. The area under 
the curve (AUC) of the prosthesis-endplate depth ratio, disc height change and their combined effects represented by 
the combined parameter (CP) were 0.728, 0.712 and 0.793, respectively. The risk of PHO significantly increased when 
the prosthesis-endplate depth ratio < 93.77% (P < 0.001, OR = 6.909, 95% CI 3.521–13.557), the intervertebral height 
change ≥ 1.8 mm (P < 0.001, OR = 5.303, 95% CI 2.592–10.849), or the CP representing the combined effect < 84.88 
(P < 0.001, OR = 10.879, 95% CI 5.142–23.019).

Conclusions:  Inadequate endplate coverage and excessive change of intervertebral height are both potential risk 
factors for the PHO after CDR. Endplate coverage less than 93.8% or intervertebral height change more than 1.8 mm 
would increase the risk of PHO. The combination of these two factors may exacerbate the non-uniform distribution of 
stress in the bone-implant interface and promote HO development.
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Introduction
Anterior cervical discectomy and fusion (ACDF) has been 
the standard procedure concerning surgical treatment for 
cervical myelopathy or radiculopathy for several decades. 
Although advances in implants and surgical techniques 
of ACDF have led to better outcomes and fewer compli-
cations, the fusion procedure sacrifices the segmental 
mobility and alters the biomechanical status of adjacent 
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intervertebral discs, which may accelerate adjacent seg-
mental pathology with or without symptoms [1]. Cervical 
disc replacement (CDR) is an effective option for patients 
diagnosed as cervical myelopathy or radiculopathy. Previ-
ous randomized controlled studies with long-term results 
have demonstrated that CDR has at least equivalent clini-
cal outcomes compared to ACDF, with lower incidence of 
adjacent segment disease (ASD) [2–5]. However, hetero-
topic ossification (HO), also known as paravertebral ossi-
fication or post-operative bone formation, occurred as one 
of the major complications of CDR [6–8]. HO is consid-
ered an intractable issue probably resulting in the loss of 
segmental mobility and poor neurological recovery [9, 10].

The formation of HO following CDR is multifactorial, 
including the preoperative ossification, surgical technique 
and biomechanical elements [11, 12]. The change of bio-
mechanical environment of the surgical segment caused 
by artificial disc implantation is one of the major consid-
erations of HO formation. Ganbat et  al. [13] found that 
HO formation might play a role in compensating for the 
non-uniform stress distribution of prosthesis-endplate 
interface after CDR. Biomechanical factors, including 
endplate coverage and disc height, may play roles in this 
process [14]. Prior studies suggested that insufficient end-
plate coverage could lead to the occurrence of HO [15–
17]. However, due to the fixed size of prosthesis and the 
irregular morphology of cervical endplate, the endplate 
coverage may not be always optimal during operation. 
There is a dearth of quantitative analysis for the relation-
ship between endplate coverage and HO occurrence for 
intraoperative reference. Besides, Kim et al. [18] found that 
over-distraction of surgical segment and increase in the 
segmental mobility would affect the HO formation. Inap-
propriate increment of intervertebral height would further 
increase the stress of prosthesis-endplate interface in the 
scenario of insufficient endplate coverage [19]. However, 
studies about the combined effects of endplate coverage 
and disc height change on HO formation are still scarce. 
Several retrospective studies reported that insufficient 
coverage of endplate may induce HO formation while the 
effect of intervertebral disc height change was not analysed 
[12, 15, 16, 20]. Additionally, other studies emphasized the 
effect of disc height on HO formation while the endplate 
coverage was not scrutinized [21, 22]. Therefore, this study 
aimed to investigate the effects of endplate coverage and 
intervertebral disc height change post-operatively and the 
combination of these two factors on HO formation follow-
ing CDR through quantitative analysis.

Methods
Patient population
This retrospective study included patients who under-
went 1-level and 2-level Prestige-LP CDR from January 

2010 to January 2019 with a minimum of 2  years fol-
low-up. The study protocol was approved by the Medi-
cal Ethical Committee of West China Hospital of 
Sichuan University and all patients provided written 
informed consent. Patients were included if they (1) 
were 18–65 years of age; (2) were diagnosed as 1-level or 
2-level cervical degenerative disc disease causing symp-
tomatic radiculopathy or myelopathy between C3 and 
C7; and (3) failed strict conservative therapy for at least 
12 weeks. The exclusion criteria included: (1) instability, 
irreducible kyphosis, or severe degeneration at the surgi-
cal segment; (2) prior history of cervical spine surgery; 
(3) patients diagnosed as non-degenerative cervical spine 
diseases; (4) ossification of the posterior longitudinal lig-
ament; (5) osteoporosis.

Surgical procedure
The same senior spine surgeon treated all the patients. A 
standard right-side Smith-Robinson approach was per-
formed after general anaesthesia. Complete discectomy 
and decompression were conducted at the index level 
by removing the anterior longitudinal ligament, disc tis-
sue, posterior longitudinal ligament and osteophytes, fol-
lowed by careful endplate preparation with a high-speed 
burr. Then, a rail cutter guide and bit were used to drill 
the fixation channels in the endplate, and an appropri-
ate Prestige-LP disc was inserted into the indicated level. 
Proper placement of the prosthesis was verified by C-arm 
fluoroscopy. Copious irrigation with normal saline and 
meticulous haemostasis were conducted. The same pro-
cedure was performed at the other level in 2-level cases. 
Finally, the incision was sutured layer by layer after 
inserting a drainage tube. Nonsteroidal anti-inflamma-
tory drugs were not routinely used for preventing HO in 
this cohort.

Data collection and measurement
Clinical and radiological data were collected preop-
eratively, 1  week post-operatively and at last follow-up. 
Clinical outcomes were evaluated through Japanese 
Orthopaedic Association (JOA) score, Neck Disability 
Index (NDI) functional score, and visual analogue scale 
(VAS) score.

HO and anterior bone loss (ABL) were assessed on 
the lateral X-rays at the last follow-up. Due to the 
anterior-limiting design of Prestige-LP disc, inad-
equate coverage of endplate predominantly occurred 
in the posterior endplate region. Thus, only posterior 
heterotopic ossification (PHO) was assessed in this 
study. According to the McAfee classification, Grade 
3–4 was classified as motion-restricting HO. ABL 
was defined as the reduction in subchondral verte-
bral body length during follow-up compared with the 
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post-operative lateral radiograph as previous study 
described [23]. Disc height was measured at the lat-
eral radiograph before and after surgery (Fig.  1a, b). 
The prosthesis-endplate depth ratio was calculated on 
the median sagittal plane of reconstruction computed 
tomography (CT) as dividing the length of the pros-
thesis by the immediate post-operative length of the 
endplate [15] (Fig. 1c). Cervical lordosis was the angle 
formed between the inferior endplate of C2 vertebra 
and the inferior endplate of C7 vertebra. C2–C7 range 
of motion (ROM) were measured on the flexion and 
extension radiographs using the Cobb method. Shell 
angle was defined as the angle drawn from the supe-
rior and inferior endplate of the prosthesis. Functional 
spinal unit (FSU) angulation was the angle between 
the lines of superior endplate of cranial vertebral body 
and the inferior endplate of the caudal vertebral body 
at the indicated segment. Endplate angle of the cra-
nial vertebra was recorded as the angle between the 
upper and lower endplates of the cranial vertebral 
body at index level. The changes of endplate angle 
between pre-operation and 1  week post-operatively 
were defined as the milling angle. The change in disc 
insertion angle was defined as the difference of end-
plate angle between pre-operation and last follow-up, 
representing the degree to which the inserted prosthe-
sis deviates from the natural disc position [24] (Fig. 1).

Statistical analysis
All statistical analyses were performed using SPSS Ver-
sion 25.0 software (IBM Corp., Armonk, New York, 
USA). The results were presented as mean ± standard 
deviation for continuous variables and number of cases 
for categorical variables. Comparison of parameters 
between pre- and post-operation was conducted using 
paired t test. The independent t test or the Mann–Whit-
ney U test was used to compare continuous variables 
depending on the normality of data. The Chi-square 
or Fisher’s exact test was used for categorical variables. 
Potential risk factors with P < 0.05 or those with clinical 
significance were involved in the logistic regression anal-
ysis. Receiver operating characteristic (ROC) curves of 
each variable were calculated. A 2-tailed P values < 0.05 
were considered statistically significant.

Results
Demographic data
In total, 138 patients and 174 arthroplasty levels with at 
least 2-year follow-up were involved in this retrospective 
study, including 66 male and 72 female, with a mean age 
of 43.59 (range, 26–65) years. The median follow-up time 
was 42 (range, 24–131) months. As shown in Table  1, 
PHO was detected in 73 segments and 25 motion-
restricting PHO identified (Fig. 2). Neither the depth nor 
the height of prosthesis between groups with and without 

Fig. 1  Measurement of radiological parameters. A, B Post-operative change of intervertebral disc height is calculated as (a’ + b’)/2 − (a + b)/2. 
Cervical lordosis is defined as the angle between the inferior endplate of C2 vertebra and the inferior endplate of C7 vertebra. Endplate angle of the 
cranial vertebra is the angle between the upper and lower endplates of the cranial vertebral body at index level. Shell angle is recorded as the angle 
between the superior and inferior endplate of the prosthesis. FSU angulation is the angle between the superior endplate of cranial vertebral body 
and the inferior endplate of the caudal vertebral body at the indicated segment. C Prosthesis-endplate depth ratio is calculated as (P1/E1 + P2/E2)/2. 
FSU, functional spinal unit
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PHO showed significant differences. No significant dif-
ferences were noted in the milling angle. The prosthesis-
endplate depth ratio in non-PHO group was significantly 
higher than PHO group (94.92 ± 3.26% vs. 92.13 ± 3.75%, 
P < 0.001). Significantly higher post-operative interver-
tebral height change was also observed in PHO lev-
els compared to non-PHO levels (2.56 ± 1.04  mm vs. 
1.76 ± 0.99 mm, P < 0.001). There was no significant dif-
ference in the incidence of ABL between the two groups. 
The patient-reported clinical outcomes including JOA, 
NDI and VAS showed significant improvement at last fol-
low-up and the scores were comparable between patients 
with and without PHO (Table 2).

Radiological outcomes
The angular parameters of levels with and without PHO 
were compared as shown in Table  3. No significant dif-
ferences of parameters of post-operation and changes 
during follow-up were observed. At last follow-up, C2–
C7 ROM (P = 0.035) and ROM at index level (P = 0.004) 
were significantly lower at levels with PHO compared to 
non-PHO levels.

Logistic regression analysis confirmed that both the 
prosthesis-endplate depth ratio (P < 0.001, B =  − 0.279, 
OR = 0.757, 95% confidence interval [CI] 0.678–0.844) 
and post-operative intervertebral height change 
(P < 0.001, B = 0.926, OR = 2.523, 95% confidence interval 

[CI] 1.700–3.746) were predictive factors for the occur-
rence of PHO (Table 4). According to the logistic regres-
sion coefficient, a combined parameter (CP) of two 
predictive factors was defined as the prosthesis-endplate 
depth ratio—0.926/0.279 × disc height change, repre-
senting the combined effect of endplate coverage and 
intervertebral height change. A larger CP may denote less 
biomechanical changes of surgical segment caused by 
the prosthesis implanting, with optimal endplate cover-
age and slight change of intervertebral space height. The 
area under the curve (AUC) of the prosthesis-endplate 
depth ratio, intervertebral height change and CP were 
0.728 (95% confidence interval [CI] 0.650–0.807), 0.712 
(95% confidence interval [CI] 0.635–0.789) and 0.793 
(95% confidence interval [CI] 0.724–0.863), respectively 
(Fig.  3). The cut-off values for three factors were 93.77, 
1.80, and 84.88, respectively.

The influences of prosthesis-endplate depth ratio, 
intervertebral height change and CP were further inves-
tigated by dividing the factors into lower and higher 
groups based on cut-off values. As shown in Table  5, 
the risk of PHO was significantly increased when the 
P–E depth ratio < 93.77% (P < 0.001, OR = 6.909, 95% 
confidence interval [CI] 3.521–13.557). The difference 
of post-operative ROM at the index level between the 
lower P–E depth ratio group and higher P-E depth ratio 
was statistically significant (7.77 ± 3.89° vs. 6.73 ± 3.57°, 

Table 1  Comparison of characteristics between levels with and without posterior heterotopic ossification

PHO, posterior heterotopic ossification

*Significant difference between two groups

non-PHO (n = 101) PHO (n = 73) P value

No. of patients, n 74 64 –

No. of surgical levels, n

 Single-level 59 43 0.949

Level distribution 0.516

 C3/4 7 3

 C4/5 17 18

 C5/6 62 44

 C6/7 15 8

Age, years 43.10 ± 7.94 45.23 ± 8.41 0.110

Sex (M/F) 47/54 38/35 0.472

BMI 23.43 ± 2.87 23.36 ± 2.39 0.884

Blood loss, ml 53.81 ± 28.05 53.84 ± 34.27 0.647

Follow-up, months 48.43 ± 20.62 55.97 ± 28.23 0.276

Milling angle 0.89 ± 3.52 0.83 ± 4.12 0.590

Mean depth of prosthesis, mm 15.31 15.42 0.686

Mean height of prosthesis, mm 5.61 5.63 0.980

Prosthesis-endplate depth ratio, % 94.92 ± 3.26 92.13 ± 3.75  < 0.001*

Post-operative disc height change, mm 1.76 ± 0.99 2.56 ± 1.04  < 0.001*

Anterior bone loss 62 45 0.973
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P = 0.040). The C2–C7 ROM and ROM at index level 
were significantly lower in the poor endplate coverage 
group. Significant larger change in disc insertion angle 
was observed in the higher P–E ratio group compared 
with lower P–E ratio group (1.77 ± 3.51° vs. 0.63 ± 4.29°, 
P = 0.039). The incidence of ABL did not show signifi-
cant difference between the groups. The effect of disc 
height change is presented in Table  6. The incidence 
of PHO was significantly higher in the group with disc 
height change > 1.80  mm (P < 0.001, OR = 5.303, 95% 
confidence interval [CI] 2.592–10.849). At last follow-
up, significant better lordosis of cervical spine was 

noted in the higher disc height change group compared 
with the other group (13.27 ± 8.37° vs. 9.93 ± 8.90°, 
P = 0.013). No significant difference was observed in 
the ROM and ABL. The changes of shell angle during 
follow-up showed significant difference between two 
groups (− 2.03 ± 3.77° vs. − 3.51 ± 4.16°, P = 0.019). As 
suggested in Table  7, CP < 84.88 was a significant risk 
factor for PHO (P < 0.001, OR = 10.879, 95% confidence 
interval [CI] 5.142–23.019). Similar to the comparison 
of different P-E depth ratio groups, significant differ-
ences were noted in the ROM at index level post-opera-
tively (P = 0.029), ROM of C2–C7 (P = 0.018) and ROM 

Fig. 2  Radiograph of a 50-year-old woman. A, B Preoperative lateral radiograph and MRI showed decreased intervertebral disc height and 
compression at C5/6. C Lateral radiograph at 1 week after surgery showed a recovery of intervertebral disc height and insufficient endplate 
coverage at the index level. D–F X-rays at 98 months follow-up suggested posterior heterotopic ossification with motion preservation at C5/6
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at index level (P = 0.004) between the two groups. The 
incidence of ABL was comparable in the two groups.

Discussion
In the treatment of cervical radiculopathy and myelopa-
thy, CDR is introduced to reconstruct the physiological 
motion of diseased segment. The formation of HO after 
CDR is one of the major obstacles in the development 
of non-fusion technique of cervical surgery. However, 

the detailed mechanism of HO is still controversial. The 
change of biomechanical environment is considered a 
main contributing factor. HO formation is postulated 
to be a self-defence mechanism responding to the non-
physiological biomechanics of cervical spine after CDR, 
which is influenced by the endplate coverage and disc 
height [14, 25]. The present study focused on the effects 
of endplate coverage, intervertebral height change and 
their combined effect on HO formation. Previous study 
has suggested an evidently higher incidence of HO in 
the posterior disc space and different risk factors for 
HO in the anterior and posterior disc space [26]. There-
fore, only PHO was taken into consideration in this 
study due to the anterior-limiting design of Prestige-LP 
disc. The results suggested that the occurrence of PHO 
did not affect the patient-reported outcomes. This is 
consistent with prior studies, suggesting that the satis-
factory outcomes of CDR mainly depend on adequate 
surgical decompression [10, 27, 28]. Both prosthesis-
endplate depth ratio and intervertebral height change 
were potential risk factors for the development of PHO 
after CDR. The risk of PHO significantly increased 
when the prosthesis-endplate depth ratio was less than 
93.8% or the change of intervertebral disc height after 
surgery was large than 1.80 mm.

Due to the irregularity of cervical endplate morphol-
ogy, the mismatch between the prosthesis and endplate 
is usually unavoidable [29]. Thaler et  al. [30] reported 
that 43.7% of Bryan and ProDisc-C, 60.4% of Dis-
cover, and 100% of Prestige footprints did not match 
the endplate regarding anterior–posterior diameters. 
Insufficient endplate coverage is thought to lead to the 
occurrence of HO. Tu et al. [12] retrospectively evalu-
ated the perfectness of carpentry for each arthroplasty 
level with Bryan disc, which defined the inadequate 
endplate coverage and shell kyphosis of index level as 
suboptimal group. They found that the suboptimal car-
pentry group had significantly more high-grade HO 
(≥ Grade 2) than the optimal carpentry group. Zeng 
et al. [15] reported that the inadequate width and depth 
of the Prestige-LP relative to the endplate are likely to 
induce the formation of HO. Xu et  al. [17] concluded 

Table 2  Clinical outcomes of patients with and without 
posterior heterotopic ossification

PHO, posterior heterotopic ossification; JOA, Japanese Orthopedic Association; 
NDI, neck disability index; VAS, visual analogue scale

*P < 0.05, compared with pre-operation

Patients without 
PHO (n = 74)

Patients with 
PHO (n = 64)

P value

JOA score

 Preoperative 12.12 ± 0.83 12.14 ± 0.96 0.809

 Last follow-up 16.04 ± 0.73* 15.95 ± 0.67* 0.392

NDI score

 Preoperative 22.39 ± 3.13 22.55 ± 3.51 0.755

 Last follow-up 5.64 ± 0.61* 5.66 ± 0.60* 0.649

VAS score

 Preoperative 5.89 ± 0.48 5.86 ± 0.53 0.819

 Last follow-up 1.53 ± 0.50* 1.61 ± 0.49* 0.332

Table 3  Angular parameters of levels with and without posterior 
heterotopic ossification

PHO, posterior heterotopic ossification; post-op, values at 1 week after surgery; 
FSU, functional spinal unit angle; ROM, range of motion

*Significant difference between two groups

non-PHO (n = 101) PHO (n = 73) P value

Post-op

 Cervical lordosis 13.34 ± 9.90 14.32 ± 11.21 0.541

 C2–C7 ROM 28.35 ± 11.03 29.35 ± 11.53 0.711

 Shell angle 4.99 ± 4.91 4.08 ± 5.18 0.239

 FSU angulation 2.40 ± 4.30 3.33 ± 5.23 0.217

 ROM at index level 7.10 ± 3.82 7.37 ± 3.66 0.533

Last follow-up

 Cervical lordosis 11.35 ± 8.63 12.85 ± 8.79 0.264

 C2–C7 ROM 50.79 ± 13.45 46.33 ± 13.95 0.035*

 Shell angle 2.16 ± 5.06 0.97 ± 4.97 0.125

 FSU angulation  − 0.47 ± 4.47 0.47 ± 5.06 0.200

 ROM at index level 9.12 ± 4.94 7.06 ± 4.51 0.004*

Changes during follow-
up

 Cervical lordosis  − 1.99 ± 9.03  − 1.47 ± 9.08 0.712

 Shell angle  − 2.82 ± 3.78  − 3.10 ± 4.46 0.659

 FSU angulation  − 2.87 ± 3.63  − 2.86 ± 3.63 0.988

 Insertion angle 1.37 ± 3.87 1.06 ± 4.01 0.144

Table 4  Logistic regression analysis for posterior heterotopic 
ossification

* Statistical significance

P value B OR 95% CI

Prosthesis-endplate depth 
ratio

 < 0.001*  − 0.279 0.757 0.678–0.844

Intervertebral height change  < 0.001* 0.926 2.523 1.700–3.746

Follow-up time 0.644 0.004 1.004 0.988–1.020

Age 0.205 0.029 1.029 0.984–1.076
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that HO was more prone to occur when the uncovered 
sagittal distance ≥ 2.5 mm. Another study by Guo et al. 
[16] also revealed that the HO occurrence was signifi-
cantly related with footprint matching degree using 

three-dimensional computed tomographic images. 
In this study, the poor endplate coverage group with 

Fig. 3  ROC curve of prosthesis-endplate depth ratio (A), intervertebral height change (B), and CP (C) for the prediction of posterior heterotopic 
ossification. The AUC are 0.728, 0.712, and 0.793, respectively. ROC curve, receiver operating characteristic curve; CP, combined parameter; AUC, area 
under the curve

Table 5  Radiographic parameters between poor endplate 
coverage group and good endplate coverage group

*Significant difference between two groups

P-E: prosthesis-endplate; PHO, posterior heterotopic ossification; post-op, values 
at 1 week after surgery; FSU, functional spinal unit; ROM, range of motion

P–E depth 
ratio < 93.77 
(n = 81)

P–E depth 
ratio ≥ 93.77 
(n = 93)

P value

PHO 53 20  < 0.001*

Motion-restricting PHO 21 4 0.115

Post-op

 Cervical lordosis 13.07 ± 10.31 14.35 ± 10.59 0.621

 C2–C7 ROM 28.01 ± 12.12 29.44 ± 10.38 0.229

 Shell angle 4.29 ± 5.03 4.88 ± 5.05 0.612

 FSU angulation 2.59 ± 4.59 2.96 ± 4.85 0.573

 ROM at index level 7.77 ± 3.89 6.73 ± 3.57 0.040*

Last follow-up

 Cervical lordosis 11.11 ± 8.92 12.74 ± 8.48 0.219

 C2–C7 ROM 44.94 ± 14.47 52.38 ± 12.25  < 0.001*

 Shell angle 1.50 ± 5.43 1.81 ± 4.70 0.687

 FSU angulation  − 0.11 ± 4.87  − 0.04 ± 4.64 0.928

 ROM at index level 7.31 ± 5.00 9.09 ± 4.61 0.003*

 Anterior bone loss 44 63 0.070

Changes during follow-
up

 Cervical lordosis  − 1.96 ± 9.10  − 1.61 ± 9.01 0.800

 Shell angle  − 2.79 ± 4.19  − 3.07 ± 3.98 0.649

 FSU angulation  − 2.70 ± 3.55  − 3.01 ± 3.70 0.575

 Insertion angle 0.63 ± 4.29 1.77 ± 3.51 0.039*

Table 6  Radiographic parameters between low disc height 
change group and high disc height change group

*Significant difference between two groups

PHO, posterior heterotopic ossification; post-op, values at 1 week after surgery; 
FSU, functional spinal unit; ROM, range of motion

Disc height 
change < 1.80 
(n = 67)

Disc height 
change ≥ 1.80 
(n = 107)

P value

PHO 13 60  < 0.001*

Motion-restricting 
PHO

2 23 0.196

Post-op

 Cervical lordosis 13.19 ± 10.58 14.11 ± 10.40 0.497

 ROM C2–C7 30.41 ± 12.02 27.75 ± 10.61 0.131

 Shell angle 3.71 ± 4.70 5.17 ± 5.17 0.063

 FSU angulation 2.13 ± 4.03 3.20 ± 5.08 0.145

 ROM at index 
level

7.59 ± 3.71 6.98 ± 3.77 0.316

 Last follow-up

 Cervical lordosis 9.93 ± 8.90 13.27 ± 8.37 0.013*

 ROM C2–C7 49.49 ± 14.06 48.56 ± 13.69 0.664

 Shell angle 1.68 ± 4.87 1.66 ± 5.17 0.982

 FSU angulation  − 0.66 ± 4.78 0.29 ± 4.69 0.198

 ROM at index 
level

8.61 ± 5.02 8.04 ± 4.77 0.588

 Anterior bone loss 40 67 0.701

Changes during 
follow-up

 Cervical lordosis  − 3.26 ± 9.12  − 0.84 ± 8.89 0.086

 Shell angle  − 2.03 ± 3.77  − 3.51 ± 4.16 0.019*

 FSU angulation  − 2.79 ± 3.19  − 2.91 ± 3.88 0.817

 Insertion angle 0.97 ± 3.77 1.41 ± 4.03 0.462
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prosthesis-endplate depth ratio < 93.77% suggested a 
significantly higher incidence of PHO. However, the 
motion-restricting PHO rates were not significantly 
different between the better and poor endplate cover-
age group. This is consistent with the study of Kim et al. 
[18] that endplate coverage was not significantly related 
to the ROM-limiting HO, which probably indicating a 
distinct mechanism for high-grade HO and need to be 
further investigated. They also found that the increased 
segmental ROM was related to the formation of high-
grade HO. However, a meta-analysis of 1674 patients 
found that neither HO nor the high-grade HO was 
associated with the segmental ROM [31]. Although our 
study found a significantly larger segmental ROM after 
surgery and smaller change in disc insertion angle in 
the poor endplate coverage group, we believe the minor 
differences between the two groups not reaching clini-
cal significance. Tian et al. [24] found that patients with 
progressed HO showed greater change in disc inser-
tion angle by retrospectively reviewing patients who 
underwent CDR with Bryan. The use of different types 
of implants may explain the discrepancy. A finite ele-
ment analysis found that the endplate stress was much 
higher in the models with Prestige-LP and ProDisc-C, 
compared with the model with Bryan [32]. That is, the 
biomechanics of the artificial itself also have an impact 

on HO formation and further investigations with large 
patient sample and different prosthesis are needed [16, 
26, 28].

HO formation is postulated to compensating for the 
non-uniform stress distribution, which is one of the 
mechanical elements associated with the bone remodel-
ling after CDR [13]. HO may occur when the implanted 
artificial disc fails to restore normal loading patterns in 
the surgical segment. Previous studies suggested a sig-
nificantly lower incidence of HO after CDR with Pro-
Disc Vivo disc, whose design had the potential benefits 
of matching the anatomical feature of vertebral endplate 
and reducing the violation of endplate [33, 34]. Palissery 
et al. [35] found that the use of smaller size artificial discs 
caused localized stress concentration in the implant-bony 
endplate interface while a well-fitting prosthesis contrib-
uted to a more physiological and uniform stress distribu-
tion through finite element analysis. Ganbat et  al. [13] 
developed a three-dimensional finite element model sim-
ulating a bone adaptation process after CDR and found 
that most of the HO developed on the vertebral endplates 
uncovered by the prosthesis footplate under compressive 
force. Interestingly, HO formation itself reduced the peak 
values and total values of the strain energy of the end-
plate, which is more obvious in the posterior disc region 
without footplate coverage. Since an artificial disc may 

Table 7  Radiographic parameters between low CP group and high CP group

*Significant difference between two groups

CP, combined parameter; PHO, posterior heterotopic ossification; post-op, values at 1 week after surgery; FSU, functional spinal unit; ROM, range of motion

CP < 84.88 (n = 58) CP ≥ 84.88 (n = 116) P value

PHO 45 28  < 0.001*

Motion-restricting PHO 19 6 0.069

Post-op

 Cervical lordosis 12.12 ± 9.91 14.57 ± 10.66 0.211

 ROM C2–C7 29.51 ± 11.55 28.40 ± 11.08 0.677

 Shell angle 4.70 ± 5.24 4.56 ± 4.95 0.632

 FSU angulation 3.20 ± 4.97 2.59 ± 4.60 0.424

 ROM at index level 8.07 ± 4.07 6.78 ± 3.52 0.029*

Last follow-up

 Cervical lordosis 11.92 ± 8.70 12.01 ± 8.74 0.945

 ROM C2–C7 44.83 ± 13.96 50.96 ± 13.31 0.018*

 Shell angle 1.83 ± 5.78 1.58 ± 4.66 0.759

 FSU angulation 0.69 ± 4.75  − 0.46 ± 4.70 0.134

 ROM at index level 6.89 ± 4.70 8.94 ± 4.82 0.004*

 Anterior bone loss 32 75 0.226

Changes during follow-up

 Cervical lordosis  − 0.20 ± 8.70  − 2.56 ± 9.12 0.104

 Shell angle  − 2.87 ± 3.96  − 2.98 ± 4.14 0.874

 FSU angulation  − 2.51 ± 3.61  − 3.04 ± 3.63 0.263

 Insertion angle 0.85 ± 4.64 1.43 ± 3.51 0.260



Page 9 of 11Shen et al. Journal of Orthopaedic Surgery and Research          (2021) 16:693 	

not cover the whole vertebral endplate because of surgi-
cal restriction, the prosthesis-endplate depth ratio less 
than 93.8% should be avoided according to our results.

Insufficient endplate coverage leads to non-uniform 
stress pattern in the margin of prosthesis, which may be 
exacerbated by larger intervertebral height change post-
operatively. Although increase in intervertebral height 
is conducive to the neurological decompression, inap-
propriate disc height increment may alter the segmental 
biomechanical environment and increase the stress of 
prosthesis-endplate interface [14, 19]. The present study 
showed that intervertebral disc height change was sig-
nificantly higher in the PHO group, and the most suitable 
cut-off for disc height change to predict HO is 1.80 mm. 
Wang et  al. [21] found that the degree of distraction of 
index level was significantly larger in patients with HO 
following CDR. Another study by Kim et  al. [18] also 
identified significantly higher differences in height in the 
high-grade HO group than in the low-grade HO group. 
Our findings suggested that larger disc height distraction 
was associated with better cervical lordosis at last follow-
up. The change of shell angle during follow-up in the 
large disc height change group was significantly higher, 
indicating that the formation of PHO might have been 
adapted to the change of biomechanical environment 
after CDR [14, 24]. The combined effects of endplate cov-
erage and intervertebral height were further investigated, 
and an increased AUC for predicting PHO was suggested 
in this study. We found that ROM at index level post-
operatively was significantly larger in the low CP group, 
however, limited clinical implication due to the small dif-
ferences. In addition, uneven loading force in the bone-
implant interface of cervical artificial disc was also shown 
to be related to ABL after CDR. Chen et al. [36] revealed 
that increasing the shell angle may increase the incidence 
of ABL after CDR because of the decreased loading force 
in anterior space. This study suggested that ABL seemed 
not related to the biomechanics caused by changes of 
endplate coverage and intervertebral height, which prob-
ably contributed more to the posterior biomechani-
cal environment. Therefore, detailed stress distribution 
caused by different endplate coverage and intervertebral 
height change is needed further investigation.

The limitations of the present study deserve considera-
tion. First, the retrospective nature presented inherent 
weakness. Second, the minimum of 2-year follow-up was 
relatively short and the incidence of HO might be under-
estimated. Third, although the radiological parameters 
were collected according to the previously published 
literature, it should be acknowledged that the inher-
ent potential of error in radiographic imaging may be a 
major limitation of this study. Fourth, the single institu-
tion study and prosthesis type limited the generalizability 

of the results. Thus, multicentre, prospective studies with 
long-term follow-up and various disc types are needed. 
Despite these limitations, this is the first study to focus 
on the effect of segmental biomechanics due to variations 
of endplate coverage and interverbal disc height after 
CDR on HO formation through quantitative analysis.

Conclusions
Inadequate endplate coverage and excessive change of 
intervertebral height are both critical risk factors for 
the PHO formation after CDR while have no effect on 
ABL. Endplate coverage less than 93.8% or intervertebral 
height change more than 1.8 mm would increase the risk 
of PHO. The combination of these two factors may exac-
erbate the non-uniform distribution of stress in the bone-
implant interface and promote HO formation. At least 
one of the two issues should be avoided during surgery to 
prevent the occurrence of HO.
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