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Abstract 

This paper generalizes previous studies on genome rearrangement under biological constraints, using double cut 
and join (DCJ). We propose a model for weighted DCJ, along with a family of optimization problems called ϕ-MCPS 
(Minimum Cost Parsimonious Scenario), that are based on labeled graphs. We show how to compute solutions to general 
instances of ϕ-MCPS, given an algorithm to compute ϕ-MCPS on a circular genome with exactly one occurrence of 
each gene. These general instances can have an arbitrary number of circular and linear chromosomes, and arbitrary 
gene content. The practicality of the framework is displayed by presenting polynomial-time algorithms that general-
ize the results of Bulteau, Fertin, and Tannier on the Sorting by wDCJs and indels in intergenes problem, and that generalize 
previous results on the Minimum Local Parsimonious Scenario problem.
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Introduction
Context
The practical study of genome rearrangement scenar-
ios has been limited by a lack of mathematical models 
capable of incorporating biological constraints, since 
foundational models focused on minimum length sce-
narios transforming one genome into another. In the 
modern age, where the collection of fully assembled and 
annotated genomes is ever-increasing, there is the need 
for the development of more elaborate mathematical 
models that consider the data from multiple biological 
experiments.

One way to incorporate biological information into 
the inference of evolutionary scenarios is to consider 
models that weight rearrangements according to their 
likelihood of occurring; a breakpoint may be more likely 
to occur in some intergenic regions than others. To this 
end, the study of length-weighted reversals was started 
in the late nineties by Blanchette et al.  [1]. Baudet et al. 
present a summary of work done in this area, along with 

work on reversals centered around the origin of repli-
cation  [2]. Recently, Tannier has published a series of 
papers focused on weighting intergenic regions by their 
length in nucleotides. In [3], Biller et al. pointed out that, 
according to the Nadeau–Taylor model of uniform ran-
dom breakage [4, 5], a breakpoint is more likely to occur 
in a longer intergenic region. Subsequent papers by Fertin 
et al. [6], and Bulteau et al. [7] present algorithmic results 
for models that take into account the length of intergenic 
regions. Using Hi-C data [8], Veron et al. along with our 
own study, have pointed out the importance of weight-
ing pairs of breakpoints according to how close they tend 
to be in physical space [9, 10]. In order to use this physi-
cal constraint, we partitioned intergenic regions into co-
localized areas, and developed algorithms for computing 
distances that minimize the number of rearrangements 
that operate on breakpoints between different areas [11, 
12].

Much of this work is based on the mathematically 
clean model for genome rearrangement called Double 
Cut and Join, or DCJ  [13, 14]. Genomes are partitioned 
into n orthologous syntenic blocks that we will simply 
call genes. Each gene is represented by two extremities, 
and each chromosome is represented by an ordering of 
these extremities. Those extremities that are adjacent in 
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this ordering are paired, and transformations of these 
pairs occur by swapping extremities of two pairs. DCJ 
can naturally be interpreted as a graph edit model with 
the use of the breakpoint graph, where there is an edge 
between gene extremities a and b for each adjacent pair. 
A DCJ operation replaces an edge pair 

{

{a, b}, {c, d}
}

 of 
the graph by 

{

{a, c}, {b, d}
}

 or 
{

{a, d}, {b, c}
}

 . This edge 
edit operation on a graph is called a 2-break.

This paper establishes a general framework for weight-
ing rearrangements. The results are based on the problem 
of transforming one labeled graph into another through 
a scenario of operations, each weighted by an arbitrary 
function ϕ . The problem, called ϕ -Minimum Cost Par-
simonious Scenario (or ϕ-MCPS), asks for a scenario 
with a minimum number of 2-breaks, such that the sum 
of the costs for the operations is minimized.

Applications of our framework
While our framework is general, we use it to render two 
previous studies more practical. The first study is our 
work relating the likelihood of rearrangement break-
points to the physical proximity in the nucleus [11]. This 
work is based on the hypothesis that two breakpoints 
could be confused when they are physically close. The 
model in this study labels the breakpoint graph edges 
(corresponding to intergenic regions) with fixed “colors”, 
and the cost of a DCJ has a weight of one if the labels 
are different and a weight of zero if they are the same. 
Using that cost function, we colored intergenic regions 
by grouping them according to their physical proxim-
ity, as inferred by Hi-C data. Although this technique 
of grouping proved to make biological sense  [10, 12], it 
is far from ideal since much of the information given by 
the Hi-C data is lost in the labeling, and it is not immedi-
ately clear how to best compute the grouping. Our results 
here bypass the complexity of grouping by allowing each 
DCJ to be weighted by the values taken directly from the 
Hi-C contact maps. We give an algorithm for ϕ-MCPS 
on a breakpoint graph with an arbitrary ϕ and fixed edge 
labels, that runs in O(n5) time in the worst case but has 
better parameterized complexity in practice (see Exam-
ple  1). We give in “Practical matters” section other rea-
sons why the running times for this algorithm should 
remain practical.

The second study that we improve is that of Bulteau 
et  al.  [7]. Their biological constraint is based on the 
number of nucleotides in the intergenic regions con-
taining breakpoints; they compute parsimonious sce-
narios that minimize the number of nucleotides inserted 
and deleted in intergenic regions. Their algorithm is 
restricted to instances where the breakpoint graph has 
only cycles (and no paths—sometimes referred to as co-
tailed genomes). Using their O(n log n) algorithm, our 

framework gives an O(n3) algorithm on any breakpoint 
graph (see Example 3).

This is an example of how our framework simpli-
fies algorithm design on weighted DCJs. For a weight 
function adhering to our general criteria of “Cost-con-
strained 2-breaks” section, future algorithm designers 
now need only to concentrate on developing an efficient 
algorithm that works on a single cycle of a breakpoint 
graph. Thanks to Theorem 3, they will get a polynomial 
time algorithm that works on a general instance for free. 
“α-approximation for φ-MCPS” section shows that the 
same is true for approximation algorithms.

This paper is based on general results we obtain on 
weighted transformations of edge-labeled multi-graphs. 
The permitted transformations can change the connec-
tivity of the graph through a 2-break, or change the edge 
labels, or both. This model not only proves to be power-
ful enough to subsume the previously mentioned results, 
but also offers other advantages. It is flexible enough so 
that DCJ costs can be based on the labels of edges in 
the breakpoint graph, or on the labels of the vertices, 
or a combination of both. Also, since single-gene inser-
tions and deletions can be represented as “ghost” adja-
cencies  [15], all of this paper applies to genomes where 
genes could be missing in one genome or the other. Most 
results can be applied to genomes with duplicate genes 
(as depicted in Fig. 1).

Our model and general results
The foundation of this paper is a model for cost-con-
straining scenarios of degree preserving graph trans-
formations, called 2-breaks, that are also known as 
edge swaps, switches, rewirings, or flips  [16]. A 2-break 
transforms a graph by replacing two edges {u, v} and 
{q, s} by {u, q} and {v, s} . These transformations have 
been studied not only in a restricted setting for genome 

Fig. 1  Eulerian 2-edge-color multi-graphs for genomes 
A =

(

{3t , 1t}, {1h , 2h}, {2t , 3h}
)

 , 
(

{4t}, {4h , 1t}, {1h}
)

 , 
B =

(

{1h , 2h}, {2t , 1t}
)

 , 
(

{3t , 2h}, {2t , 1h}, {1t , 3h}
)

 , and 
A
′ =

(

{3t , 2h}, {2t , 1t}, {1h , 2h}, {2t , 3h}
)

 , 
(

{4t}, {4h , 1t}, {1h}
)

 . Edges 
adjacent to a special vertex ◦ represent the endpoints of linear 
chromosomes (e.g. black edges {1h , ◦} and {4t , ◦} ). Extra edges are 
added for the missing genes (e.g. the black edge {2t , 2h} and the 
gray edge {4h , 4t} ), called ghost adjacencies in [15]. In the genomes 
A and A′ , gene 1 is repeated twice, and the operation transforming 
A into A′ is an insertion of a gene 2, corresponding to the 2-break 
G(A, B) → G(A

′ , B) . A DCJ scenario transforming A′ into the linear 
genome B includes a deletion of a gene 4
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rearrangement [14, 17] and sorting strings by mathemati-
cal transpositions  [18, 19], but also in the more general 
settings of generating random networks [16] and network 
design [20, 21].

Our results are about the transformation of an arbi-
trary multi-graph G into another one H having the same 
degree sequence. We find it convenient to reason in a 
setting, where we are given an Eulerian 2-edge-colored 
multi-graph with black and gray edges, the black edges 
being from G and the gray from H. We transform the 
connectivity of the black edges into the connectivity of 
the gray edges using a sequence of 2-breaks. Therefore, 
whenever we use the word graph, path (respectively 
cycle), we are referring to an Eulerian 2-edge-colored 
multi-graph, a path (respectively cycle) that alternates 
between black and gray edges. Naturally, a cycle decom-
position of a graph is a partition of the edges of an Eule-
rian 2-edge-colored multi-graph into a set of alternating 
cycles. A breakpoint graph is a graph with a vertex for 
each gene extremity—each incident to exactly one gray 
and one black edge—along with one chromosome end-
point vertex ◦ that could have degree as high as 2n (see 
Fig.  2). “DCJ scenarios for genomes and breakpoint 
graphs” section introduces the breakpoint graph in detail, 
and defines the Double Cut and Join (DCJ) model.

Our model for weighting 2-breaks is primarily based on 
a graph labeling, a set O of valid operations, and a weight 
function ϕ : O → R+ . Roughly speaking, a labeled input 
graph can be transformed through a series of operations 
in O , where an operation can change the connectivity of 
the black edges of the graph, and/or change the labels of 
the edges. Any weight function ϕ defines an optimization 
problem ϕ-MCPS, which asks for a scenario that mini-
mizes the total weight of the operations. This model sub-
sumes many previously studied weighted DCJ models, 
as described in “Examples of the cost-constrained DCJ 
problems in the literature” section.

The spine of our results is built from successive theo-
rems that speak to the decomposability into subproblems 
of a ϕ-MCPS instance. Lemma  3 shows that a parsimo-
nious scenario of 2-breaks transforming the black edges 
into the gray implies a Maximum Alternating Edge-
disjoint Cycle Decomposition (or MAECD)  [22]. 
Theorem 1 says that an optimal solution to ϕ-MCPS can 

be found using solutions to the MAECD problem, so that 
if ϕ-MCPS can be solved on a simple alternating cycle, 
then it can be solved on any instance. Theorem  2 says 
that an optimal solution to ϕ-MCPS on a simple alternat-
ing cycle can be found using a solution to the ϕ-MCPS 
problem on what we call a circle, that is, an alternating 
cycle that does not visit the same vertex twice (see Fig. 4).

Under the common genome model, where each gene 
occurs exactly once in each genome, a relationship exists 
between parsimonious DCJ scenarios and solutions to 
MAECD on a breakpoint graph  [14, 23]. We exploit 
this link in “ϕ-MCPS for a breakpoint graph” section. 
Theorem  3 ties everything together; an amortized anal-
ysis shows that, given an O(rt) algorithm for computing  
ϕ-MCPS on a circle with r edges, ϕ-MCPS can be calcu-
lated on a breakpoint graph in O(nt+1

) time.
Under a more general genome model, that allows for 

changes in copy numbers of genes (e.g. insertions, dele-
tions, and duplications), the spine of our results still 
holds due to the convenient representation of missing 
genes as ghost adjacencies in an Eulerian 2-edge-colored 
multi-graph  [15] (see Fig.  1). All of our results hold for 
pairs of genomes with non-duplicated genes, but unequal 
gene content. Indeed, a breakpoint graph (i.e. graph with 
limited degree for most nodes) can still represent the pair 
of genomes in this case.

Caprara proved that MAECD is NP-Hard for Eulerian 
2-edge-colored multi-graphs where each vertex is inci-
dent to at most two gray and two black edges (which is 
the case when there are two copies of each gene)  [22]. 
We present a simple integer linear program (or ILP) 
that solves ϕ-MCPS for these types of graphs, given a 
method to solve ϕ-MCPS on a circle. This ILP is likely to 
be unwieldy in general, since the number of variables is 
exponential in the number of simple alternating cycles. In 
the case of breakpoint graphs on specific genomes, this 
may not always be intractable, as the number of duplicate 
genes may be limited. See “Practical matters” section for 
a discussion of these practical matters.

DCJ scenarios for genomes and breakpoint graphs
A genome consists of chromosomes that are linear or cir-
cular orders of genes separated by potential breakpoint 
regions. In Fig. 2 the tail of an arrow represents the tail 

Fig. 2  Two genomes with their respective sets of adjacencies 
{

{1t}, {1h , 2t}, {2h , 3h}, {3t}
}

 and 
{

{1t}, {1h , 2h}, {2t , 3h}, {3t}
}

 . A DCJ 
{1h , 2t}, {2h , 3h} → {1h , 2h}, {2t , 3h} transforms A into B. The transformation G(A, B) → G(B, B) is a 2-break and G(B, B) is a terminal graph
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extremity, and the head of an arrow represents the head 
extremity of a gene. We can represent a genome by a set 
of adjacencies between the gene extremities. An adja-
cency is either internal: an unordered pair of the extremi-
ties that are adjacent on a chromosome, or external: a 
single extremity adjacent to one of the two ends of a lin-
ear chromosome. In what follows we will suppose that 
two genomes A and B are partitioned into n genes each 
occurring exactly once in each genome, and our goal will 
be to transform A into B using a sequence of DCJs.

Definition 1  (double cut and join) A DCJ cuts one 
or two breakpoint regions and joins the resulting ends 
of the chromosomes back in one of the four following 
ways: {a, b}, {c, d} → {a, c}, {b, d} ; {a, b}, {c} → {a, c}, {b} ; 
{a, b} → {a}, {b} ; and {a}, {b} → {a, b}.

We represent the pairs of the genomes with a help of a 
breakpoint graph [13, 17].

Definition 2  (breakpoint graph) G(A,  B) for genomes 
A and B is a 2-edge-colored Eulerian undirected multi-
graph. V consists of 2n gene extremities and an addi-
tional vertex ◦ . For every internal adjacency {a, b} ∈ A 
(respectively {a, b} ∈ B ) there is a black (respectively 
gray) edge {a, b} in G(A,  B) and for every external adja-
cency {a} ∈ A (respectively {a} ∈ B ) there is a black 
(respectively gray) edge {a, ◦} in G(A,  B). There is a 
number of black and gray loops {◦, ◦} ensuring that 
db(G(A,B), ◦) = dg (G(A,B), ◦) = 2n.

2‑Break scenarios for 2‑edge‑colored graphs
In this paper a graph is an Eulerian 2-edge-colored undi-
rected multi-graph with edges colored black or gray as 
in Fig. 1. A graph with equal multi-sets of black and gray 
edges is called terminal, and our goal is to transform a 
given graph into a terminal one using 2-breaks.

Definition 3  (2-break scenario) A 2-break replaces 
two black edges {x1, x2} and {x3, x4} by either {x1, x3} 
and {x2, x4} or {x1, x4} and {x2, x3} . A 2-break scenario 
of length m is a sequence of m 2-breaks transforming a 
graph into a terminal one.

Definition 4  (Eulerian graph and alternating cycle) G is 
Eulerian if every vertex has equal black and gray degrees. 
A cycle is alternating if it is Eulerian. All use of the word 
cycle in this paper will be synonymous with alternating 
cycle.

Define a Maximum Alternating Edge-disjoint 
Cycle Decomposition (MAECD) of a graph G as a 

decomposition of G into a maximum number of edge-
disjoint alternating cycles. Denote the size of a MAECD 
of G by c(G) and the number of its black edges by e(G). 
We make a distinction between simple cycles and circles 
(see Fig. 4 to see a simple cycle that is not a circle).

Definition 5  (simple cycle and circle) A graph G is a sim-
ple cycle if the size of a MAECD, c(G) = 1 . If in addition to 
that the black and gray degrees degb(G, v) and degg (G, v) 
are equal to 1 for every vertex v, then G is called a circle.

Parsimonious 2‑break scenarios
The problem of finding a minimum length (or parsimo-
nious) 2-break scenario was treated in several unrelated 
settings using different terminology. Lemma  1 proven in 
“Proofs” section was treated in [20] where the authors also 
showed that finding a minimum length 2-break scenario 
is NP-hard due to the NP-hardness of finding a MAECD 
of a graph and provided a 7/4-approximation algorithm 
for finding this length. A variant of the problem for Eule-
rian digraphs where all the gray edges are loops was solved 
in [24].

Lemma 1  (Bienstock and Günlük in  [20]) The mini-
mum length of a 2-break scenario on a graph G is 
d2b(G) = e(G)− c(G).

Since finding a MAECD for a breakpoint graph is easy, 
Lemma  1 leads to a linear time algorithm for finding a 
parsimonious DCJ scenario [13]. The algorithm is based 
on Lemma 2 proven in “Proofs” section.

Lemma 2  (Yancopoulos et  al. in [13]) The minimum 
length of a DCJ scenario transforming genome A into B is 
equal to d2b(G(A,B)) = e(G(A,B))− c(G(A,B)).

Decomposition of a 2‑break scenario
In this section we will show how a 2-break scenario ρ of 
length m can be partitioned into subscenarios ρ1, . . . , ρk 
and G can be decomposed into edge-disjoint Eulerian 
subgraphs H1, . . . ,Hk where ρi is a scenario for Hi , 
and k ≥ e(G)−m . We will use this decomposition in  
“ϕ-MCPS for a graph” section to show that ϕ-MCPS on 
a graph can be solved by solving ϕ-MCPS on its simple 
cycles. For a graph G and a 2-break scenario ρ we define 
a directed 1-edge-colored edge-labeled graph D(G, ρ) , 
akin to the trajectory graph introduced by Shao et al. [25]. 
Denote the sequence of the first l 2-breaks of ρ by ρl and 
the graph obtained from G after these 2-breaks by Gl . 
Define D(G, ρ0) in the following way: for each black edge 
e of G we have two new vertices connected by a directed 



Page 5 of 14Simonaitis et al. Algorithms Mol Biol           (2019) 14:15 

edge labeled by e (see Fig.  3). For the l-th 2-break of ρ , 
{x1, x2}, {x3, x4} → {x1, x3}, {x2, x4} , merge the endpoints 
of the edges labeled {x1, x2} and {x3, x4} in D(G, ρl−1) . 
Proceed by adding two new vertices to D(G, ρl−1) and 
two edges labeled {x1, x3} and {x2, x4} from the merged 
vertex to the newly added ones to obtain D(G, ρl) . Con-
tinue until D(G, ρm) is obtained, where m is the length of 
ρ , and denote it by D(G, ρ).

Shao et  al.  [25] characterize the connected compo-
nents of a trajectory graph for a parsimonious scenario. 
Using similar techniques we prove the following lemma 
in “Proofs” section.

Lemma 3  If D(G, ρ) has k connected components then 
ρ can be partitioned into k subscenarios ρi and G can 
be partitioned into k edge-disjoint Eulerian subgraphs 
Hi in such a way that ρi is a scenario for Hi for every 
i ∈ {1, . . . , k} . If ρ is parsimonious, then k = c(G) and 
C(ρ) = {H1, . . . ,Hk} is a MAECD of G.

Cost‑constrained 2‑breaks
In this section we outline our model for assigning costs to 
2-breaks. We associate labels to both vertices and edges 
of a graph, and then describe a set O of valid operations 
of 2-breaks on labeled edges and edge-label changes. Our 
cost function is defined on O . This model generalizes the 
labeled DCJ problems of [7, 11].

We will use letters u, v, q,  s to denote vertices, letters 
a, b, c, d to denote vertex labels and x, y, z,  t to denote 
edge labels. Given an alphabet of vertex labels �V  and 
one of edge labels �E , fix a subset O containing a set of 
tuples

•	
(

({a, b}, x); ({a, b}, y)
)

 (called edge-label changes) and
•	

(

({a, b}, x), ({c, d}, y); ({a, c}, z), ({b, d}, t)
)

 (called 
2-breaks on labels)

for a, b, c, d ∈ �V  and x, y, z, t ∈ �E.
Take a graph G = (V ,E) , and its labeling � = (�V , �E) 

with �V : V → �V  and �E : E → �E . If O contains an 
edge-label change 

(

({a, b}, x); ({a, b}, y)
)

 and (G, �) con-
tains an edge {u, v} labeled x with vertices u and v labeled 

a and b, then the label of this edge can be changed into y. 
We call such a transformation of (G, �) an O-change and 
denote it ({u, v}, x) → ({u, v}, y).

If O contains a 2-break on labels 
(

({a, b}, x), ({c, d}, y); ({a, c}, z), ({b, d}, t)
)

 and (G, �) con-
tains two edges {u, v} and {q, s} labeled x and y respec-
tively with vertices u, v and q, s labeled a, b and c, d, then 
a 2-break {u, v}, {q, s} → {u, q}, {v, s} can be performed on 
G with the labels of the new edges being z and t. We call 
such a transformation of (G, �) an O-break and denote it 
({u, v}, x), ({q, s}, y) → ({u, q}, z), ({v, t}, t).

An O-scenario ρO for (G, �) is a sequence of O-changes 
and O-breaks transforming (G, �) into (G, �) such that G 
is terminal and its multi-sets of black and gray labeled 
edges are equal. The number of O-breaks in ρO will be 
called the 2-break-length of the scenario. If a ρO exists 
for (G, �) , then dOb(G, �) denotes the minimum 2-break-
length of an O-scenario.

An O-scenario does not necessarily exist for a 
given (G, �) , however if it exists, then the inequality 
dOb(G, �) ≥ d2b(G) holds, where d2b(G) is the minimum 
length of a 2-break scenario on a graph G. In this paper 
we deal with the sets O that have the necessary opera-
tions to parsimoniously transform (G, �) into (G, �) . We 
call these sets p-sufficient.

Definition 6  (p-sufficient O for (G, �) ) A set O is par-
simonious-sufficient or p-sufficient for (G, �) if we have 
dOb(G, �) = d2b(G).

The cost function that we consider is ϕ : O → R+ . 
The cost of an O-scenario is the sum of the costs of its 
constituent operations. If O is p-sufficient for (G, �) , 
then MCPSϕ(G, �) is the minimum cost of an O-sce-
nario of the 2-break-length equal to d2b(G) , otherwise 
MCPSϕ(G, �) is ∞ . We consider the following problem:

Problem  1  (ϕ-Minimum Cost Parsimonious Sce-
nario or ϕ-MCPS)

INPUT: A graph G, and its labeling �.

OUTPUT: MCPSϕ(G, �).

Fig. 3  A 2-break {a, b}, {d, c} → {a, d}, {b, c} transforming a graph G into a terminal one is depicted on the left. A directed graph D(G, ρ) is obtained 
from D(G, ρ0) on the right for this scenario ρ of length 1. The endpoints of the edges labeled {a, b} and {d, c} are merged and two new edges 
labeled {a, d} and {b, c} are introduced. D(G, ρ) has 2 connected components that correspond to the 2 simple cycles of G.
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Examples of the cost‑constrained DCJ problems 
in the literature

Example 1  (Minimum Local Parsimonious Sce-
nario) In  [11] we supposed the adjacencies of genome 
A to be partitioned into spatial regions represented by 
different colors. We then developed a polynomial time 
algorithm for finding a parsimonious DCJ scenario mini-
mizing the number of rearrangements whose breakpoints 
appear in different regions. The problem as was stated 
in  [11] differs slightly from ϕ-MCPS, since in that study 
we do not have colors for the adjacencies of genome B. 
We can bridge this gap as follows.

Edge labels �E = �c ∪ {τ } are the colors represent-
ing the different spatial regions of a genome plus 
an additional terminal label τ . There is a single ver-
tex label �V = {a} . O contains 2-breaks on labels 
(

({a, a}, x), ({a, a}, y); ({a, a}, x), ({a, a}, y)
)

 for x, y ∈ �c , 
and edge-label changes 

(

({a, a}, x); ({a, a}, τ )
)

 for x ∈ �c . 
The cost ϕc of a 2-break on labels in O is 0 if the 2 labels 
being replaced are equal and 1 otherwise. The cost of a 
edge-label change is 0.

In [11] we presented an O(n4) time algorithm solving ϕc-
MCPS for a labeled breakpoint graph with the gray edges 
labeled by τ . In [12] we demonstrated that finding a mini-
mum cost O scenario for such a breakpoint graph, when 
the parsimonious criteria is disregarded, is NP-hard. We 
proposed an algorithm that is exponential in the number 
of colors but not in the number of genes.

In “ϕf‑MCPS for a circle with fixed labels” section we use the 
same O , fix a symmetric function � : �2 → R+ , and define 
ϕf

(

({a, a}, x), ({a, a}, y); ({a, a}, x), ({a, a}, y)
)

= �(x, y)   . 
This drastically enhances the model introduced in  [11] as 
now rearrangements whose breakpoints appear in the same 
region can have non-zero costs. In “ϕ-MCPS for a break-
point graph” section we provide an O(n5) time algorithm 
solving the generalized problem of ϕf -MCPS for a labeled 
breakpoint graph.

Example 2  (DCJ weighted by Hi-C) In  [10] we 
weighted each DCJ by the value taken directly from the 
Hi-C contact map. In this model every intergenic region 
of genome A gets assigned an interval corresponding to 
its genomic coordinates on a chromosome. The weight of 
a DCJ acting on two intergenic regions is then equal to 
the average Hi-C value for their corresponding intervals. 
In  [10] we presented an algorithm greedily maximizing 
the weight of a parsimonious scenario and found that the 

obtained weight is significantly higher than the weight of 
a random parsimonious scenario.

Edge labels are the genomic intervals corresponding to 
the intergenic regions of a genome A plus an additional 
terminal label. There is a single vertex label �V = {a} . 
O stays as in Example  1. �HiC(x, y) on two genomic 
intervals is their average Hi-C value. The problem that 
maximizes Hi-C values can be easily transformed into 
a minimization problem by setting the cost of a 2-break 
on labels 

(

({a, a}, x), ({a, a}, y); ({a, a}, x), ({a, a}, y)
)

 to 
�max −�HiC(x, y) , where �max is the maximum �HiC(x, y) 
over all x, y.

In  [10] the optimality of the proposed greedy algorithm 
was not discussed, but our work presented in “ϕ f‑MCPS 
for a circle with fixed labels” section of this paper pro-
vides us with a polynomial time algorithm for solving this 
problem exactly.

Example 3  (Sorting by wDCJs and indels in 
intergenes) Bulteau et  al.   [7] introduced a problem 
where adjacencies of genomes are labeled with their 
genetic length (number of nucleotides). A wDCJ is a DCJ 
that preserves the sum of the genetic lengths of the adja-
cencies and an indel δ increases or decreases the genetic 
length of an adjacency by δ . The cost of a wDCJ is 0 and 
the cost of an indel δ is |δ| . A scenario of wDCJs and indels 
for (G, �) is said to be valid if its wDCJ-length is d2b(G) . 
The paper presents an O(n log n) algorithm for finding 
a minimum cost scenario among the valid ones, for the 
genomes with circular chromosomes and n genes.

Translating this into our formalism yields the following 
ϕ-MCPS problem. Edge labels are the natural numbers, 
there is a single vertex label, and O contains 2-breaks on 
labels (({a, a},w1), ({a, a},w2); ({a, a},w3), ({a, a},w4)

)

 for 
wi ∈ �E satisfying w1 + w2 = w3 + w4 . O also contains 
edge-label changes 

(

({a, a},w1); ({a, a},w2)
)

 for wi ∈ � . 
O is p-sufficient for any (G, �) since G can be first trans-
formed into a terminal graph using any parsimonious 
2-break scenario and then its labels can be adjusted. The 
cost ϕl of a 2-break on labels is 0 and the cost ϕl of a edge-
label change 

(

({a, a},w1); ({a, a},w2)
)

 is |w1 − w2|.

In [7] the authors presented an O(r log r) time algorithm 
for solving ϕl-MCPS on a circle with r vertices. Combin-
ing this algorithm with our results from “ϕ-MCPS for 
a breakpoint graph” section gives an algorithm solving  
ϕl-MCPS in O(n3) time for a labeled breakpoint graph. 
The ILP defined in “ϕ-MCPS for a graph” section solves  
ϕl-MCPS for any labeled graph.
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Example 4  (wDCJ-dist) Fertin et  al.  [6] treated a 
problem wDCJ-dist where wDCJs without indels are 
allowed, and the sums of the genetic lengths of the adja-
cencies of two genomes are equal.

In this case we keep the same �E ,�V  and O as in Exam-
ple  3 except that the edge-label changes are excluded 
from O . A labeled graph is said to be balanced if the sums 
of the labels of black and gray edges are equal. wDCJ-
dist is the problem of finding dOb for a balanced graph 
whose connected components are circles. The authors 
show that wDCJ-dist is strongly NP-complete. However 
they also prove that dOb(O, �) = d2b(O) for a balanced 
circle O and that O is p-sufficient for a graph whose con-
nected components are balanced circles.

Example 5  Although ignored in the previous exam-
ples, the weighting of operations based on only the ver-
tices is also possible under our framework. For example, 
take �E = {τ } , �V = N , O containing 2-breaks on labels 
(({a, b}, τ ), ({c, d}, τ ); ({a, c}, τ ), ({b, d}, τ )

)

 and any cost 
function ϕv : O → R+ . The costs of the 2-breaks on 
labels in O could be a function of the genomic coordi-
nates of the participating gene extremities.

Note that the set O is implicit, rather than explicit. In 
Example  3, O would be too large to represent explicitly 
since every pair of genetic lengths for every pair of edges 
would exist. For all practical uses that we know of to date, 
membership in O can be computed in constant time.

ϕ‑MCPS for a graph

Theorem 1  Denote the ϕ-cost of a MAECD as the sum 
of the MCPSϕ on its cycles. MCPSϕ for a graph is equal to 
the minimum ϕ-cost of its MAECD.

Proof  For a cycle S of a labeled graph (G, �) , �S denotes 
the labeling of S according to � . We suppose that 
min(∅) = ∞ and prove the following:

MCPSϕ(G, �)

= min

{

∑

S∈C

MCPSϕ(S, �
S
) | C is aMAECD of G

}

.

Suppose that there exists a MAECD C of G consist-
ing of the simple cycles for which O is p-sufficient. For 
every S ∈ C take an O-scenario ρS

O
 of cost MCPSϕ(S, �

S
) 

and 2-break-length d2b(S) . By performing these sce-
narios one after another we obtain an O-scenario ρO 
for (G, �) of 2-break-length 

∑

S∈C d2b(S) = d2b(G) 
and of cost 

∑

S∈C MCPSϕ(S, �
S
) . This means that 

MCPSϕ(G, �) ≤
∑

S∈C MCPSϕ(S, �
S
).

On the other hand, suppose that O is p-sufficient for 
(G, �) and take an O-scenario ρO for (G, �) of length 
d2b(G) . For ρ , a 2-break scenario obtained from ρO when 
the labels are neglected, a decomposition C(ρ) corre-
sponding to ρ is a MAECD of G due to Lemma 3. A sub-
sequence ρS

O
 of ρO , consisting of the operations acting 

on the edges of a cycle S ∈ C(ρ) , is an O-scenario for 
(S, �S) of 2-break-length d2b(S) . A sequence of opera-
tions ρ̂O obtained by performing the subsequences ρS

O
 

one after another for each S ∈ C(ρ) is an O-scenario for 
(G, �) . By construction the 2-break-length of ρ̂O is equal 
to the 2-break-length of ρO . The costs of ρO and ρ̂O are 
also equal, as they consist of exactly the same opera-
tions that are performed in different orders, thus the cost 
of ρO is greater or equal to 

∑

S∈C(ρ)MCPSϕ(S, �
S
) ≥

min
{
∑

S∈C MCPSϕ(S, �
S
)

∣

∣ C is aMAECD of G
}

 .�  �

Take the set S of simple labeled cycles of (G, �) . If one can 
solve ϕ-MCPS for every S ∈ S , then Theorem 1 provides 
a straightforward way to solve ϕ-MCPS for (G, �) as a set 
packing problem. First compute c(G) by solving the ILP 
in the left column. Then proceed by solving the other ILP 
to compute MCPSϕ(G, �).

There exists an algorithm efficiently listing all the sim-
ple cycles of an undirected 1-edge-colored graph  [26], 
however we are unaware of a similar result for the 
2-edge-colored graphs. Computing c(G) is an APX-hard 
problem [27] and the size of S may be exponential in the 
size of G, which might make these ILPs intractable in 
general. For graphs representing genomes with duplicate 
genes, the number of simple cycles can grow exponen-
tially as a function of the number of duplicate genes. For 
breakpoint graphs, however, the number grows quadrati-
cally and c(G) can be found in linear time.

Maximize
∑

S∈S xS
Subject to

∑

S:e∈SxS ≤ 1 for each edge e of G
and xS ∈ {0, 1} for simple cycle S ∈ S .

Minimize
∑

S∈S xSMCPSϕ(S, �
S
)

Subject to
∑

S:e∈S xS ≤ 1 for each edge e of G,
∑

S∈S xS = c(G)

and xS ∈ {0, 1} for simple cycle S ∈ S .
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ϕ‑MCPS for a simple cycle
The decomposition theorem of “ϕ-MCPS for a graph” 
section reduces the computation of ϕ-MCPS on a graph 
to the computation of ϕ-MCPS on a simple alternating 
cycle. In this section we further decompose the problem 
into simpler versions of cycles, called circles, which are 
alternating cycles that contain a vertex only once.

Denote deg2(G) for a graph G as the number of verti-
ces with black and gray degree equal to two. It is easy to 
check that degb(S, v) = degg (S, v) ≤ 2 for any vertex v of 
a simple cycle S. If deg2(S) = 0 , then S is a circle. See the 
first column of Fig. 4 for examples of simple cycles that 
are not circles.

Take a simple labeled cycle (S, �) and denote S0 as 
{(S, �)} . Choose a vertex v of degree two in S and replace 
it by two vertices v1, v2 /∈ V  labeled by the same label as v. 
If v is incident to a gray loop, then split it into two vertices 
v1 and v2 , as depicted on the top row of Fig. 4, to obtain a 
set S1 consisting of a single simple cycle. Otherwise split it 
into two vertices, as depicted on the bottom row of Fig. 4, 
to obtain a set S1 consisting of two simple cycles.

Simple labeled cycles in S1 share the same set of vertices 
of degree two. Choose such a vertex and split it simulta-
neously in all the cycles in S1 as previously to obtain a set 
S2 of at most 4 simple labeled cycles sharing the same set 
of vertices and the same multi-set of labeled black edges. 
Continue this procedure until the set circ(S, �) = Sdeg2(S) 
of the labeled circles is obtained.

Theorem 2  MCPSϕ for a simple cycle (S, �) is equal to 
the minimum of the MCPSϕ among the circles in circ(S, �).

Proof  First we prove that MCPSϕ(S, �) = min{MCPSϕ

(H ,µ)| (H ,µ) ∈ S1} . Labeled graphs in S1 are obtained 
by splitting a vertex v of degree 2 into vertices v1 and v2 . 
For a labeled graph (H ,µ) on vertices V ∪ {v1, v2} \ {v} 
denote rg (H ,µ) as the labeled graph obtained from (H ,µ) 
by reversing the split, that is, by merging the vertices v1 
and v2 into v.

Choose (Ŝ, �̂) ∈ S1 . By construction rg (Ŝ, �̂) = (S, �) . 
Denote rv(v1) = rv(v2) = v , and rv(u) = u for u ∈ V  . 
For an edge f of (Ŝ, �̂) joining vertices q and s, the edge 
re(f ) = {rv(q), rv(s)} is present in (S, �) and has the same 
label as f. re defines a bijection between the labeled edges 
of (S, �) and (Ŝ, �̂) and thus between O operations on these 
graphs. This means that an operation in O transforming 
(Ŝ, �̂) into some (Ŝ′, �̂′) transforms (S, �) into rg (Ŝ′, �̂′) , and 
an operation in O transforming (S, �) into some (S′, �′) 
transforms (Ŝ, �̂) into (Ŝ′, �̂′) such that rg (Ŝ′, �̂′) = (S′, �′).

Thus for an O-scenario of (Ŝ, �̂) there exists an O-scenario 
of the same ϕ cost and the same 2-break-length for (S, �) . 
On the other hand, an O-scenario for (S, �) provides us 
with a sequence ρ of O operations of the same ϕ cost and 
the same 2-break-length transforming (Ŝ, �̂) into (S, �) for 
which rg (S, �) is a terminal graph.

If S1 is of size 1, then there is a single choice for (S, �) (see 
the right upper corner of Fig. 4) and it is itself terminal. 
If S1 is of size 2, then there are two options for (S, �) (see 
the right bottom corner of Fig. 4). Either (S, �) is already 
terminal, or the sequence ρ of O operations transforming 
(Ŝ, �̂) into (S, �) transforms the second graph in S1 into a 
terminal one.

Now we prove that MCPSϕ(S, �) = min{MCPSϕ(O, �)|

(O, �) ∈ circ(S, �)} , which is clearly true for deg2(S) = 0 . 
Suppose this to be true for deg2(S) < t . We prove it 
for deg2(S) = t by induction. For (Ŝ, �̂) ∈ S1 one has 
deg2(Ŝ) = t − 1 , so using the inductive hypothesis we 
have that MCPSϕ(Ŝ, �̂) is equal to min{MCPSϕ(O, �)|

(O, �) ∈ circ(Ŝ, �̂)} . We have already proven that 
MCPSϕ(S, �) = min{MCPSϕ(H ,µ)| (H ,µ) ∈ S1} , and 
by construction we know that circ(S, �) = ∪(H ,µ)∈S1

circ(H ,µ) . These combine to imply that the theorem is 
true for deg2(S) = t .�  �

Fig. 4  Two simple cycles having a vertex v of degree two are depicted in the first column. Their sets of corresponding circles obtained by splitting 
v into v1 and v2 are depicted in the second column. This set is of size 1 for the upper simple cycle containing the gray loop {v , v} , and of size 2 for the 
lower simple cycle. An O-scenario for a simple cycle yields a scenario of the same cost and length transforming the graphs in the second column to 
those that become terminal once v1 and v2 are merged. One possible outcome of such a scenario is presented in the third column
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ϕ‑MCPS for a breakpoint graph
In this section we suppose that there exists an algorithm 
for computing MCPSϕ on a labeled circle (e.g. the algo-
rithm of “ϕ f -MCPS for a circle with fixed labels” section). 
Using this algorithm as a subroutine we will construct an 
algorithm for finding MCPSϕ for a labeled breakpoint 
graph. This is a generalization of the work first presented 
in [11].

Take genomes A and B partitioned into n genes where 
each gene occurs exactly once in each genome, and a labe-
ling � of a breakpoint graph G(A, B). For all the vertices 
v  = ◦ we have degg (G(A,B), v) = degb(G(A,B), v) = 1 . 
Thus, if there is a circle in G(A,  B) containing an edge 
then this circle is the only simple cycle containing this 
edge. This means that every MAECD of G(A, B) includes 
all of its circles. These set aside we are left with G(A,B)′ , 
which is a union of alternating paths starting and ending 
at ◦ with end edges of the same color. If this color is black 
we call the path AA, and BB otherwise.

We proceed by constructing a complete weighted 
bipartite graph H having the AA and BB paths of G(A,B)′ 
as vertices. Every simple cycle of G(A,B)′ is a union of 
an AA path and a BB path. To each edge joining these 
paths in H we assign weight equal to MCPSϕ for a union 
of these paths. A MAECD of G(A,B)′ corresponds to a 
maximum matching of H and every such matching corre-
sponds to a MAECD of G(A,B)′ . Denote �′ as the labeling 
of G(A,B)′ according to � . Using Theorem  1 we obtain 
that MCPSϕ(G(A,B)′, �′) is equal to the minimum weight 
of a maximum matching of H. There is an equal number 
p of AA and BB paths. Let P denote the total number of 
edges in G(A,B)′ . Using this notation we obtain the fol-
lowing lemma proven in “Proofs” section.

Lemma 4  For a function f and an O(f(r)) time algorithm 
for ϕ-MCPS on a labeled circle on r vertices, there exists 
an O(p2f (P)+ p3 + f (n)) time algorithm for ϕ-MCPS on 
a labeled breakpoint graph. If f (r) = O(rt) for some con-
stant t ≥ 1 , then ϕ-MCPS on a labeled breakpoint graph 
can be solved in O(pPt + p3 + nt) time.

Both p and P are O(n), thus Lemma 4 leads to the fol-
lowing theorem.

Theorem  3  Given a constant t ≥ 2 and an O(rt) time 
algorithm for ϕ-MCPS on a labeled circle on r vertices, 
ϕ-MCPS on a labeled breakpoint graph can be solved in 
O(nt+1

) time.

Corollary 1  Using the O(r4) algorithm from “ϕ f -MCPS 
for a circle with fixed labels” section we obtain an O(n5) 
algorithm for solving ϕf -MCPS on a labeled breakpoint 
graph with fixed labels.

Corollary 2  Using the O(r log r) algorithm from  [7] for 
the Sorting by wDCJs and indels in intergenes 
problem on a circle (see Example 3), we obtain an O(n3) 
algorithm for solving the problem on a breakpoint graph.

α‑approximation for ϕ‑MCPS
Theorems  1 and  2 demonstrate how ϕ-MCPS for any 
labeled graph can be solved if one is able to solve ϕ-
MCPS for a labeled circle. This is exploited in Theorem 3 
to solve ϕ-MCPS for a breakpoint graph. Analogous 
results proven in “Proofs” section hold if instead of an 
exact algorithm one has an α-approximation for ϕ-MCPS 
for a labeled circle.

Lemma 5  For a constant t ≥ 2 and an O(rt) time α
-approximation algorithm for ϕ-MCPS on a labeled circle 
on r vertices, there exists an O(nt+1

) time α-approxima-
tion algorithm for ϕ-MCPS on a labeled breakpoint graph.

ϕf‑MCPS for a circle with fixed labels
Here we define ϕf -MCPS, a particular instance of a ϕ
-MCPS problem, and solve it for a circle. ϕf -MCPS general-
izes our previous work presented in Examples 1 and 2. For 
a set �V = {a} of vertex labels and a set �E = � ∪ {τ } of 
edge labels, define a set O consisting of 2-breaks on labels 
(

({a, a}, x), ({a, a}, y); ({a, a}, x), ({a, a}, y)
)

 for x, y ∈ � , and 
edge-label changes 

(

({a, a}, x); ({a, a}, τ )
)

 for x ∈ � . Fix a 
symmetric function � : �2 → R+ and define a ϕf  cost of a 
2-break on labels 

(

({a, a}, x), ({a, a}, y); ({a, a}, x), ({a, a}, y)
)

 
to be �(x, y) and a ϕf  cost of an edge-label change 
(

({a, a}, x); ({a, a}, τ )
)

 to be 0. We will provide a polynomial 
time algorithm for ϕf -MCPS on a labeled circle with the gray 
edges labeled by a terminal label τ.

Without loss of generality we can suppose that all of 
the black edges of a circle have different labels; if two 
edges are labeled with the same label x, then we simply 
replace one of these labels with a new label x̂ and set 
�̂(x̂, y) = �(x, y) and �̂(y, z) = �(y, z) for y, z ∈ �.

For a labeled circle having r black edges, define a set V� of 
r vertices corresponding to their labels. For an O-scenario 
ρO we define a 1-edge-colored undirected graph T (ρO) 
with vertices V� and an edge {x, y} for every O-break in ρO 
replacing the black edges labeled with x and y (see Fig. 5). 
The cost of an edge {x, y} is defined to be �(x, y) and the 
cost of a graph T (ρO) is the sum of the costs of its edges. 
The costs of ρO and T (ρO) are equal by construction.

Fix a circular embedding of V� respecting the order of 
the black edges on the labeled circle (see Fig. 5). A graph 
with vertices V� is said to be planar on the circle if none 
of its edges cross in this embedding. We prove Lemma 6 
in “Proofs” section linking planar trees and parsimonious 
scenarios.
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Lemma 6  If ρO is a minimum 2-break-length O-sce-
nario for a labeled circle (O, �) , then T (ρO) is a planar 
tree on (O, �) . In addition to that, for a planar tree T  on 
(O, �) there exists an O-scenario ρO such that T (ρO) = T .

Farnoud and Milenkovic in  [19] provide a dynamic 
programming algorithm for finding a minimum cost pla-
nar tree on a circle. In “Proofs” section their proof for a 
following lemma is given which, together with Lemma 6, 
leads to Theorem 4.

Lemma 7  (Farnoud and Milenkovic in [19]) A mini-
mum cost planar tree on a circle can be found in O(r4) 
time, where r is the number of vertices of a tree.

Theorem  4  ϕf -MCPS for a labeled circle on r vertices 
can be solved in O(r4) time.

Conclusions and future directions
Practical matters
Our algorithm for ϕf -MCPS on a breakpoint graph with 
fixed labels has a running time of O(n5) in the worst case. 
Note that the running time is dominated, however, by 
the maximum bipartite matching step in “ϕ-MCPS for a 
breakpoint graph” section. The size of the bipartite graph 
is determined by the number of AA and BB paths which 
is bounded by the maximum number of chromosomes m 

for the two species. Thus using Lemma 4 we know that 
the algorithm scales like O(mn4) on biological data. For 
the same reason our algorithm for Sorting by wDCJs 
and indels in intergenes   [7] on a breakpoint graph 
scales like O(m2n log n+m3

) instead of O(n3) on biologi-
cal data. Further, n is the number of syntenic blocks—and 
not literally the genes as we call them. Our analyses of 
Drosophila genomes yield no AA and BB paths, and less 
than 100 blocks [10]. Our analysis of Human and Mouse 
genomes yields between 250 and 800 syntenic blocks, 
depending on the parameters given to OrthoCluster [28].

For graphs with higher degree nodes, like those graphs 
that represent genomes with duplicated genes, the num-
ber of simple cycles can grow rapidly. Although this rela-
tionship is beyond the scope of this work, we expect that 
fixed parameter algorithms could be developed to handle 
biological data in the future.

Future direction
Our cost framework is liberal, and in our examples we 
have explored only a small portion of its capacities. Edges 
can be labeled by more complex objects such as vectors 
or trees. The cost can be a function of a combination of 
the edge and vertex labels. We hope that a closer study 
of the graph D(G, ρ) from “Decomposition of a 2-break 
scenario” section will lead to polynomial time algorithms 
for ϕ-MCPS on circles for a large family of cost functions. 
Once the set of scenarios for a circle is better understood, 

Fig. 5  On the top: 4 steps of a parsimonious O-scenario for a circle are depicted together with each T  corresponding to the scenario at that point 
colored in blue. Vertices of T  are superimposed on the corresponding edges of a circle providing their circular embedding. All of the T  are planar 
trees. On the bottom: for a given planar tree T  (dashed blue) we provide a scenario ρO such that T (ρO) = T
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one could address the problems of counting and sam-
pling the ϕ-MCPS scenarios.

While all of our results apply to genomes with inser-
tions or deletions of single genes, further study is 
required in order to increase efficiency on genomes with 
duplicate genes.

Our assumption of “minimum evolution” may not 
always be true as an actual evolutionary scenario might 
be non-parsimonious  [29]. The Minimum Cost Sce-
nario (MCS) problem of finding a minimum cost sce-
nario among all the possible scenarios has already been 
studied for a couple of fairly simple cost functions [6, 12] 
and proven to be NP-hard in both of these cases. How-
ever, as we have shown in [12], computationally tractable 
algorithms can still be implemented for certain NP-hard 
MCS problems. An intermediate problem between 
MCPS and MCS could be the one of finding a minimum 
cost scenario among the scenarios of a prescribed length.

Proofs
Lemma 1

Lemma  (Bienstock and Günlük in  [20]) The mini-
mum length of a 2-break scenario on a graph G is 
d2b(G) = e(G)− c(G).

Proof  A 2-break can increase the size of a MAECD by 
at most 1 and the size of a MAECD of a terminal graph 
is e(G). This leads to an inequality d2b(G) ≥ e(G)− c(G).

In this paragraph the length of a cycle will be its number 
of black edges. For any cycle c of length l > 1 there is a 
2-break transforming c into a union of length 1 and length 
l − 1 cycles. This way we obtain a scenario of length l − 1 
for c, and can transform every cycle of a MAECD of G 
independently, obtaining a 2-break scenario of length 
e(G)− c(G) . Thus, d2b(G) ≤ e(G)− c(G) .�  �

Lemma 2

Lemma  (Yancopoulos et  al. in [13]) The minimum 
length of a DCJ scenario transforming genome A into B is 
equal to d2b(G(A,B)) = e(G(A,B))− c(G(A,B)).

Proof  G(A, B) is constructed in such a way that for every 
DCJ A → A′ the transformation G(A,B) → G(A′,B) is 
a 2-break. Notably, a DCJ {a, b} → {a}, {b} results in a 
transformation {a, b}, {◦, ◦} → {a, ◦}, {b, ◦} , as the con-
struction of a breakpoint graph guarantees that there are 
enough black loops {◦, ◦} to realize such a 2-break. For 
any 2-break G(A,B) → G′ with G′ �= G(A,B) there exists 

a DCJ A → A′ such that G(A′,B) = G′ . Since G(B, B) is 
terminal, it follows that the minimum length of a sce-
nario transforming A into B is d2b(G(A,B)) and we con-
clude using Lemma 1.�  �

Lemma 3

Lemma  If D(G, ρ) has k connected components then 
ρ can be partitioned into k subscenarios ρi and G can 
be partitioned into k edge-disjoint Eulerian subgraphs 
Hi in such a way that ρi is a scenario for Hi for every 
i ∈ {1, . . . , k} . If ρ is parsimonious, then k = c(G) and 
C(ρ) = {H1, . . . ,Hk} is a MAECD of G.

Proof  Take a connected component C of D(G, ρ) . It has 
an equal number of vertices of indegree 0 and vertices of 
outdegree 0. Its edges incident to the vertices of indegree 
0 are labeled with the black edges of G and its edges inci-
dent to the vertices of outdegree 0 are labeled with the 
gray edges of G. Together these labels define a subgraph 
H of G that we will prove to be Eulerian.

Define Cl to be a subgraph of D(G, ρl) consisting of its 
connected components containing the vertices of indegree 
0 of C. This way Cm = C . Define Hl to be a subgraph of Gl 
containing the gray edges of H and the black edges of Gl 
labeling the edges of Cl incident to the vertices of outde-
gree 0. This way H0 = H and Hm is a terminal graph.

We prove that H is Eulerian by induction. Hm is Eulerian 
as it is terminal. Suppose that Hl is Eulerian. By construc-
tion the two edges of Gl replaced by the l-th 2-break of ρ 
either both belong to Hl−1 or both are outside of Hl−1 . In 
the first case, Hl is obtained from Hl−1 via a 2-break and 
as Hl is Eulerian this means that Hl−1 is also Eulerian. In 
the second case, Hl = Hl−1 , thus the latter stays Eulerian. 
Thus H = H0 is Eulerian and we obtain a subsequence of 
ρ that is a scenario for H.

D(G, ρ0) has e(G) connected components. The l-th 
2-break of ρ merges two vertices of D(G, ρl−1) , thus 
reduces the number of the connected components by at 
most 1. This means that the number k of the connected 
components of D(G, ρ) is greater or equal to e(G)−m.

If ρ is parsimonious, then its length m is e(G)− c(G) using 
Lemma  1. This means that k ≥ c(G) and G can be parti-
tioned into k edge-disjoint Eulerian subgraphs. Due to the 
maximality of c(G), we have that k = c(G) and all of the 
obtained edge-disjoint Eulerian subgraphs of G are simple 
cycles.�  �
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Lemma 4

Lemma  For a function f and an O(f(r)) time algorithm 
for ϕ-MCPS on a labeled circle on r vertices, there exists 
an O(p2f (P)+ p3 + f (n)) time algorithm for ϕ-MCPS on 
a labeled breakpoint graph. If f (r) = O(rt) for some con-
stant t ≥ 1 , then ϕ-MCPS on a labeled breakpoint graph 
can be solved in O(pPt + p3 + nt) time.

Proof  The p2 edges of a bipartite graph H can be 
weighted in O(p2f (P)) time due to Theorem  2 and the 
fact that the simple cycles of G(A, B) have at most 1 ver-
tex of degree 2. A minimum weight maximum match-
ing of H can be found in O(p3) time using the Hungar-
ian algorithm. Finally, MCPSϕ for the labeled circles in 
G(A,  B) can be computed in O(f(n)) time. Combining 
these results we obtain an O(p2f (P)+ p3 + f (n)) time 
algorithm for computing MCPSϕ(G(A,B), �).

Now suppose that f (r) = O(rt) for some constant t ≥ 1 . 
Let a1, . . . , ap and b1, . . . , bp denote the number of edges 
in AA and BB paths with 

∑p
i=0 ai = PA , 

∑p
j=0 bj = PB and 

P = PA + PB.

MCPSϕ for a union of an AA path and a BB path having 
a and b edges respectively can be obtained by computing 
MCPSϕ for at most two circles on a+ b vertices due to 
Theorem 2. This can be done in less than c(a+ b)t steps 
for some constant c using the O(rt) time algorithm for 
computing MCPSϕ for a circle. MCPSϕ for every pair of 
AA and BB paths of G(A,B)′ can be computed in a num-
ber of steps bounded by:

p
∑

i=0

p
∑

j=0

c(ai + bj)
t

= c

p
∑

i=0

p
∑

j=0

t
∑

l=0

(

t

l

)

alib
t−l
j c

t
∑

l=0

(

t

l

)

p
∑

i=.For0

p
∑

j=0

alib
t−l
j

= c

p
∑

j=0

p
∑

i=0

btj + c

p
∑

i=0

p
∑

j=0

ati + c

t−1
∑

l=1

(

t

l

)

p
∑

i=0

ali

p
∑

j=0

bt−l
j

= cp

p
∑

j=0

btj + cp

p
∑

i=0

ati + c

t−1
∑

l=1

(

t

l

)

p
∑

i=0

ali

p
∑

j=0

bt−l
j

≤ cp(

p
∑

j=0

bj)
t + cp(

p
∑

i=0

ai)
t + c

t−1
∑

l=1

(

t

l

)

(

p
∑

i=0

ai)
l(

p
∑

j=0

bj)
t−l

≤ c(pPt
B + pPt

A)+ pc

t−1
∑

l=1

(

t

l

)

Pt−l
B Pl

A

= cp(PB + PA)
t = cpPt

Thus, the weighting of H can be performed in O(pPt
) 

time. This provides us with an O(pPt + p3 + nt) time 
algorithm for computing MCPSϕ(G(A,B), �) . � �

Lemma 5

Lemma  For a constant t ≥ 2 and an O(rt) time α
-approximation algorithm for ϕ-MCPS on a labeled circle 
on r vertices, there exists an O(nt+1

) time α-approxima-
tion algorithm for ϕ-MCPS on a labeled breakpoint graph.

Proof  In Theorem  2, MCPSϕ on a simple cycle is 
expressed as the minimum of the MCPSϕ for a set of cor-
responding circles. In Theorem 1, MCPSϕ on a graph is 
expressed as the minimum of the sums of the MCPSϕ 
for the simple cycles. We prove an auxiliary proposition 
establishing the following:

1.	 An α-approximation for MCPSϕ on a simple cycle 
can be obtained by taking the minimum of the α
-approximations for the corresponding circles.

2.	 An α-approximation for MCPSϕ on a graph can be 
obtained by taking the minimum of the sums of the α
-approximations for MCPSϕ on the simple cycles.

Proposition  Take k ∈ N and two sets of positive num-
bers {q∗1 , . . . , q

∗
k } and {q1, . . . , qk} with qi ≤ αq∗i  for every 

i. The following inequalities hold:

1.	 min{qi|i ∈ {1, . . . , k}} ≤ αmin{q∗i |i ∈ {1, . . . , k}}

2.	
∑k

i=0 qi ≤ α
∑k

i=0 q
∗
i

Proof  Take u and v such that q∗u = min{q∗i |i ∈ {1, . . . , k}} 
and qv = min{qi|i ∈ {1, . . . , k}} . By construc-
tion qv ≤ qu ≤ αq∗u which proves the first inequal-
ity. For the second inequality it suffice to observe that 
∑k

i=0 qi ≤
∑k

i=0 αq
∗
i = α

∑k
i=0 q

∗
i . � �

A simple cycle of a breakpoint graph has at most one ver-
tex of degree 2. This means that it has at most two cor-
responding circles (see Theorem 6). Taking the minimum 
of the α-approximations for MCPSϕ on these circles pro-
vides us with an α-approximation for the simple cycle 
due to Theorem  6 and the first part of the proposition 
above. This way we obtain an α-approximation algorithm 
for ϕ-MCPS on a simple cycle of a breakpoint graph that 
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runs in O(rt) time where r is the number of the vertices in 
the simple cycle.

We can reuse the structure of a bipartite graph H pre-
sented in “ϕ-MCPS for a breakpoint graph” section with 
the weights of the edges now being the α-approximations 
for the MCPSϕ on the corresponding simple cycles. Fol-
lowing the same reasoning as in “ϕ-MCPS for a break-
point graph” section, we know that the minimum cost 
maximum matching of H leads to a MAECD of a break-
point graph minimizing the sum of the α-approximations 
for the MCPSϕ on its simple cycles. Combining Theo-
rem 1, both parts of the proposition above, and the proof 
of Lemma 4, we obtain an O(nt+1

) time α-approximation 
algorithm for ϕ-MCPS on a breakpoint graph. � �

Lemma 6

Lemma  If ρO is a minimum 2-break-length O-scenario 
for a labeled circle (O, �) , then T (ρO) is a planar tree on 
(O, �) . In addition to that, for a planar tree T  on (O, �) 
there exists an O-scenario ρO such that T (ρO) = T .

Proof  We prove the first statement by induction. It is 
trivially true if O has 2 vertices. We suppose it to be true 
for all the circles having less than 2l vertices and prove 
it for a circle having 2l vertices. Fix a minimum 2-break-
length scenario ρO . Its length is l − 1 due to Lemma  1. 
The first O-break of ρO transforms (O, �) into two ver-
tex disjoint labeled circles (O1, �1) and (O2, �2) both hav-
ing less vertices than O. The rest of the scenario ρO can 
be partitioned into ρ1

O
 acting on the edges of O1 and ρ2

O
 

acting on the edges of O2 . As ρO is a minimum 2-break-
length scenario, ρ1

O
 and ρ2

O
 must also be minimum 

2-break-length scenarios. By the inductive hypothesis, 
T (ρ

1
O
) and T (ρ

2
O
) are planar trees on (O1, �1) and (O2, �2) 

respectively. T (ρO) can be easily obtained from T (ρ
1
O
) 

and T (ρ
2
O
) by taking the union of their edges and add-

ing an edge corresponding to the first 2-break of ρO . This 
way we obtain a planar tree T (ρO) on (O, �) proving the 
first statement of the lemma.

Now define the distance of an edge {x, y} in T  as the mini-
mum number of vertices between x and y in the fixed cir-
cular embedding of T  . For example, in the rightmost tree 
on the top of Fig. 5 the distance of the edge {w, z} is one, 
because t is in between w and z, while the distance of the 
edge {x, y} is 0. An edge is said to be short if its distance is 
0. We prove an auxiliary proposition.

Proposition  A planar tree T  on (O, �) has a short edge 
incident to a leaf.

Proof  Choose a leaf x in T  incident to an edge of the 
minimum distance d. If d  = 0 , then in between the leaf 
and the vertex that it is adjacent to, there are d other 
vertices. Since T  is planar on (O, �) , it is easy to see that 
there is at least one other leaf among these d vertices, 
which contradicts the minimality of x.�  �

Now take a short edge {x, y} incident to a leaf 
x in T  . Take the black edges {u, v} and {q, s} in 
(O, �) labeled with x and y respectively and sepa-
rated by a gray edge {v, q} . Perform an O-break 
({v,u}, x), ({q, s}, y) → ({v, q}, x), ({u, s}, y) . resulting in 
two labeled circles. One of them is a terminal graph 
having two edges {v, q} with the black one labeled with 
x. Remove the edge {x, y} from T  . This way we have 
reduced the size of the problem. The number of the 
vertices in the circle was reduced by two and the num-
ber of the edges in the tree was reduced by 1. We iterate 
this procedure to construct a required scenario. See the 
bottom part of Fig. 5 for an example.�  �

Lemma 7

Lemma  (Farnoud and Milenkovic in [19]) A minimum 
cost planar tree on a circle can be found in O(r4) time, 
where r is the number of vertices of a tree.

Proof  Farnoud and Milenkovic pose the problem of 
sorting permutations by cost-constrained mathemati-
cal transpositions (a sorting scenario is called a decom-
position)  [19]. They define a cost function on the set of 
transpositions and treat the problem, called MIN-COST-
MLD, of finding a minimum cost decomposition among 
the minimum length transposition decompositions of a 
permutation. They reduce this problem to finding a min-
imum cost planar tree on a circle, and propose the fol-
lowing O(r4) time dynamic programming algorithm for a 
tree having r vertices.

Enumerate the vertices 1 to r while respecting their order 
on the circle. Define cost(i,  j) as the minimum cost of a 
planar tree on the vertices {i, . . . , j} for 1 ≤ i < j ≤ r and 
set cost(i, i) = 0 for 1 ≤ i ≤ r.

Take a planar tree T  on the vertices {1, . . . , r} . If 
deg(1) = 1 and 1 is on the edge {1, q} , then the cost of 
T  is equal to �(1, q) plus the costs of the subgraphs of 
T  induced by the vertices {2, . . . , q} and {q + 1, . . . , r} . If 
deg(1) > 1 , then take q = max({u|{1,u} belongs to T }) 
and s = max({u| there is a path in T  joining 1 and u but 
not visiting q}) . The cost of T  is equal to �(1, q) plus 
the costs of the subgraphs of T  induced by the vertices 
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{1, . . . , s} , {s + 1, . . . , q} and {q, . . . , r} . This observation 
provides us with the following equality:

for 1 ≤ i < j ≤ r , that leads to an O(r4) time dynamic 
programming algorithm for finding cost(1, r). � �
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