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Abstract 

Motivation:   Species tree estimation from gene trees can be complicated by gene duplication and loss, and “gene 
tree parsimony” (GTP) is one approach for estimating species trees from multiple gene trees. In its standard formu-
lation, the objective is to find a species tree that minimizes the total number of gene duplications and losses with 
respect to the input set of gene trees. Although much is known about GTP, little is known about how to treat inputs 
containing some incomplete gene trees (i.e., gene trees lacking one or more of the species).

Results:  We present new theory for GTP considering whether the incompleteness is due to gene birth and death (i.e., 
true biological loss) or taxon sampling, and present dynamic programming algorithms that can be used for an exact 
but exponential time solution for small numbers of taxa, or as a heuristic for larger numbers of taxa. We also prove 
that the “standard” calculations for duplications and losses exactly solve GTP when incompleteness results from taxon 
sampling, although they can be incorrect when incompleteness results from true biological loss. The software for the 
DP algorithm is freely available as open source code at https://github.com/smirarab/DynaDup.
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Background
The estimation of species trees is often performed by 
estimating multiple sequence alignments for some col-
lection of genes, concatenating these alignments into 
one supermatrix, and then estimating a tree (often using 
maximum likelihood or a Bayesian technique) on the 
resultant supermatrix. However, this approach cannot be 
used when the species’ genomes contain multiple copies 
of some gene, which can result from gene duplication. 
Since gene duplication and loss is a common phenom-
enon, the estimation of species trees requires a different 
type of approach in this case.

The most powerful approaches for species tree estima-
tion for multi-copy gene families are likely to be methods 
such as Phyldog [1], which co-estimate gene trees and 
species trees under parametric models of gene evolu-
tion that include duplications and losses. Another type 
of approach uses initial assignments of orthology and 

paralogy to inform gene tree and species tree estimation 
[2]. However, by far the most common approach for esti-
mating species trees uses gene tree parsimony, which we 
now describe.

Gene tree parsimony (GTP) is an optimization problem 
for estimating species trees from a set of gene trees (esti-
mated from individual gene sequence alignments). In its 
most typical formulations, only gene duplication and loss 
are considered, so that GTP depends upon two param-
eters: cd (the cost for a duplication) and cl (the cost for a 
loss). The two most popular versions of GTP are MGD 
(minimize gene duplication), for which cd = 1 and cl = 0 , 
and MGDL (minimize gene duplication and loss), for 
which cd = cl = 1. The version of GTP that seeks the tree 
minimizing the total number of losses has also been stud-
ied; for this, cd = 0 and cl = 1. These variants of GTP are 
NP-hard optimization problems [3], but software such as 
DupTree [4] and iGTP [5] for GTP are in wide use.

Basic to all these problems is the ability to compute 
the number of duplications and losses implied by a spe-
cies tree and gene tree. This problem is called the “rec-
onciliation problem”, surveyed in [6], and intensively 
studied in the literature (see, for example, [3, 7–17]). The 
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mathematical formulation of the reconciliation problem 
was derived for the case where the gene tree and the spe-
cies tree have the same set of taxa, and then extended to 
be able to be used on incomplete gene trees, i.e., trees that 
can miss some taxa.

Incomplete gene trees are quite common, and can arise 
for two different reasons: (1) taxon sampling: the gene 
may be available in the species’ genome, but was not 
included for some reason in the dataset for that gene, or 
(2) gene birth/death: as a result of gene birth and death 
(true biological gene loss), the species does not have the 
gene in its genome.

Given a gene tree gt and a species tree ST, two formu-
lations for the number of losses have been defined. The 
most commonly used one computes the number of losses 
by first computing the “homeomorphic subtree” ST(gt) 
of ST induced by gt, and then computing the number 
of losses required to reconcile gt with ST(gt) (see, for 
example, [3, 8, 17]). Although this second formulation is 
in wide use (and is the basis of both iGTP [5] and Dup-
tree [4], two popular methods for “solving” GTP), we will 
show that this can be incorrect when incompleteness is 
due to true biological loss. We refer to this formulation as 
the “standard” approach because of this widespread use 
in both software and the theoretical literature on GTP. 
The other, described in [18, 19], correctly computes the 
number of losses when incompleteness is a result of true 
gene loss, as we will prove.

This paper addresses the GTP problem for the case 
where some of the input gene trees may be incomplete 
due to either sampling or true biological loss. The main 
results are as follows:

• • We formalize the duploss reconciliation problem 
when gene trees are incomplete due to taxon sam-
pling as the “optimal completion of a gene tree”, and 
we prove (Theorem  1) that the standard calculation 
correctly computes losses for this case.

• • We show by example that the standard calculation 
for losses in GTP can be incorrect when incomplete-
ness is due to true biological loss.

• • We show how to compute the number of losses 
implied by a gene tree and species tree, when incom-
pleteness is due to true biological loss.

• • We formulate variants of the GTP problem (when 
gene tree incompleteness is due to true biological 
loss) as minimum weight maximum clique prob-
lems (see Theorem 11 for one duploss variant), and 
show how to solve these problems efficiently using 
dynamic programming. We show that these opti-
mal cliques can be found in polynomial time in the 
number of vertices of the graph, because of the spe-
cial structure of the graphs. We also show that a con-

strained version of these problems, where the sub-
tree-bipartitions of the species tree are drawn from 
the subtree-bipartitions of the input gene trees, can 
be solved in time that is polynomial in the number of 
gene trees and taxa.

Basics
Notation and terminology
We now define some general terminology we will use 
throughout this paper; other terminology will be intro-
duced as needed. Throughout this paper we will assume 
that gene trees and species trees are rooted binary trees, 
with leaves drawn from the set X  of n taxa, and we allow 
the gene trees to have multiple copies of the taxa, and 
even to miss some taxa. We orient each tree so that the 
root is on top and the leaves are at the bottom; hence, we 
also say that a node v is above node w if the path from w 
to the root of the tree goes through the node v (similarly 
we say that w is below v).

We let gt denote a gene tree and ST denote a species 
tree. We let L(t) denote the set of taxa at the leaves of the 
tree t, and require that L(gt) ⊆ L(ST ). If L(gt) = L(ST ) 
we say that gt is complete, and otherwise we say that gt is 
incomplete.

Let T be a rooted binary tree. We denote the set of 
vertices of T by V(T), the set of edges of T by E(T), the 
root by r(T), the internal nodes by Vint(T ), and the set 
of taxa that appear at the leaves by L(T). Note that if T 
is a gene tree, it can be incomplete, and so it is possible 
for |L(T)| to be smaller than the number of leaves in T. 
A clade in T is a subtree of T rooted at a node in T, and 
the set of leaves of the clade is called a cluster. Given a 
node v in T, the cluster of leaves below v is denoted by 
cT (v), and the subtree of T rooted at v is denoted by Tv. 
The most recent common ancestor (MRCA) of a set A of 
leaves in T is denoted by MRCAT (A). Given a gene tree 
gt and a species tree ST, we define M : V (gt) → V (ST ) 
by M(v) = MRCAST (cgt(v)). Finally, given a node u in a 
rooted binary tree, we let r denote the right child of u and 
l denote the left child of u.

For a rooted gene tree gt and a rooted species tree ST, 
where L(gt) ⊆ L(ST ), an internal node v in gt is called a 
duplication node if M(v) = M(v′) for some child v′ of v, 
and otherwise v is a speciation node [3, 8, 17, 20].

ST(gt) is the homeomorphic subtree of ST induced 
by the taxon set of gt, and is produced as follows: ST is 
restricted to the taxon set of gt, and then nodes with in-
degree and out-degree 1 are suppressed. ST ∗(gt) is the 
tree obtained by restricting ST to the taxon set of gt, but 
not suppressing nodes of in-degree and out-degree 1.

We say that clade cl in ST is a missing clade with respect 
to gt if L(gt) ∩ L(cl) = ∅, and a maximal missing clade if 
it is not contained in any other missing clade. Maximal 
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missing clades that are descendants of M(r(gt)) are 
called the “lower” maximal missing clades, and those that 
are not descendants of M(r(gt)) are called the “upper” 
maximal missing clades. We denote by LMMC(gt,  ST) 
(or LMMC), the set of lower maximal missing clades, 
and UMMC(gt,  ST) (or UMMC), the set of upper 
maximal missing clades. Note UMMC(gt, ST ) = ∅ if 
M(r(gt)) = r(ST ).

The standard formula for computing losses
The standard formula (see, for example, [3, 8, 16, 17, 
20]) for computing the minimum number of losses of a 
(potentially incomplete) gene tree gt with respect to a 
species tree ST is denoted Lstd(gt, ST ), and is defined to 
be Lstd(gt, ST ) =

∑

u∈Vint (gt)
F(u, ST (gt)), where F(u,  T) 

is defined for internal nodes u with children l and r 
(which can be interchanged in the formula below) by:

where d(s, s′) is the number of internal nodes in T on the 
path from s to s′. When gt is complete, then ST (gt) = ST , 
and this formula follows from [18].

Optimal completion of a gene tree:

• • Input rooted binary gene tree gt and rooted binary 
species tree with L(gt) ⊆ L(ST ).

• • Output complete gene tree Tsamp(gt, ST ) that is an 
extension of gt such that Tsamp(gt, ST ) implies a min-
imum number of losses with respect to ST.

In other words, we add all the missing taxa into gt 
(each taxon added at least once, but perhaps several 
times) so as to produce a complete binary gene tree 
that has a minimum number of losses with respect to 
ST. Let Lsamp(gt, ST ) = Lstd(Tsamp(gt, ST ), ST ). Thus, 
Lsamp(gt, ST ) denotes the total number of losses needed 
for an optimal completion of gt. Similarly, we can define 
DLsamp(gt, ST ) to be the total number of duplications and 
losses needed for a completion of gt that minimizes the 
duploss score.

The following theorem shows that the standard for-
mula correctly computes the number of losses, when we 
treat incompleteness as due to taxon sampling

Theorem  1  Given a binary rooted gene tree gt and a 
binary rooted species tree ST such that L(gt) ⊆ L(ST ), the 
MRCA mapping defines a reconciliation that minimizes 
the number of duplications, the number of losses, and 

(1)

F(u,T ) =



























d(M(r),M(u))+ 1 ifM(r) �= M(u) &M(l) = M(u),

d(M(l),M(u))+ 1 ifM(l) �= M(u) &M(r) = M(u),

d(M(r),M(u))

+ d(M(l),M(u)) ifM(r) �= M(u) &M(l) �= M(u),

0 ifM(r) = M(l) = M(u).

hence also the total number of duplications and losses, 
where we treat losses as due to sampling. Furthermore, 
Lstd(gt, ST ) = Lsamp(gt, ST ), which means the standard 
formula correctly computes the number of losses when we 
treat incompleteness as due to sampling.

Proof  Consider ST(gt), the homeomorphic subtree of 
ST defined by the taxon set of gt. Since gt is complete 
with respect to ST(gt), the optimal reconciliation that 
minimizes duplications, losses, and their sum, is defined 
by M, the MRCA mapping from gt to ST, and the stand-
ard formula correctly computes the number of losses for 
this reconciliation [18]. Note that for any completion t of 
gt, Lstd(t, ST ) ≥ Lstd(gt, ST ); in other words, the num-
ber of losses cannot decrease by making gt complete. 
Similarly, the number of duplications for t with respect 
to ST cannot be less than the number of duplications of 
gt with respect to ST. We will show that we can add all 
the remaining taxa into gt to produce a complete gene 
tree t∗ such that Lstd(t∗, ST ) = Lstd(gt, ST ). Therefore, 
t∗ will be an optimal completion with respect to the 
DLsamp problem. Furthermore, this will also imply that 
Lstd(gt, ST ) = Lsamp(gt, ST ), as desired.

Recall the definition of the sets UMMC and LMMC, 
the upper and lower maximal missing clades, respec-
tively. Since gt is not complete, there must be at least 
one missing taxon, and hence at least one maximal 
missing clade. If M(r(gt)) = r(ST ) then UMMC = ∅ 
and we set gt ′ = gt. Otherwise, M(r(gt)) �= r(ST ) and 
UMMC �= ∅. Consider the path in ST from r(ST) down 
to M(r(gt)), and the m ≥ 1 subtrees that hang off that 
path before we reach M(r(gt)). Note that each of these 
subtrees is an upper maximal missing clade. Let gt ′ be 
the tree created by starting with ST and replacing the 
subtree of ST rooted at M(r(gt)) by gt. Note also that 
the number of duplications has not changed, and that 
Lstd(gt

′, ST ) = Lstd(gt, ST ).
If LMMC = ∅ we are done; otherwise, we now add the 

lower maximal missing clades to gt ′ one at a time. Let 
LMMC = {t1, t2, . . . , tp}, so that p ≥ 1. We will define a 
sequence of gene trees gt1, gt2, . . . , gtp = t∗, so that gt1 is 
the result of adding clade t1 to gt ′, and gti is the result of 
adding clade ti to gti−1 for p ≥ i ≥ 2. We will show that 
Lstd(gti, ST ) = Lstd(gt

′, ST ) for p ≥ i ≥ 1, and that the 
number of duplications in gti is the same as the number 
of duplications in gt ′. Since gtp = t∗ is a completion of gt, 
our theorem will be proven.

So consider t = t1, the first lower maximal missing 
clade, and let q be the node in ST that is the parent of 
r(t) [i.e., q = p(r(t))]. Consider the edges (x, y) in gt ′ with 
y = p(x), such that q lies in the path between M(x) and 
M(y). Subdivide each such edge (creating a new node), 
and add t to gt ′ by making its root the child of each such 
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newly created node. Note that there must be at least one 
such edge in gt ′ but there can be several such edges, and 
hence this step adds t at least once (and perhaps several 
times) to gt ′. Note that when we add t1 to gt ′, we do not 
change the image under the MRCA mapping for any 
node v that is in gt ′.

We now show that t = t1 has the same number of 
duplications as gt with respect to ST. Clearly, any node 
in t is a speciation node (since t is a subtree of ST, which 
only has speciation nodes). Now consider a node u cre-
ated by subdividing an edge (x, y), where y is the parent 
of x in gt ′. One child of u is the root of t and the other 
child has an entirely disjoint leaf set; thus u is a specia-
tion node. When we subdivide edge (x, y) we make y the 
parent of u. Therefore, M(u) �= M(y). Thus, y is a dupli-
cation node in gt1 if and only if M(z) = M(y) where z is 
the other child of y in gt ′. But then y is a duplication node 
in gt ′ if and only if y is a duplication node in gt1, since 
the MRCA mapping does not change. Hence, no node in 
gt ′ changes duplication/speciation status, and the newly 
added nodes are always speciation nodes. Therefore the 
number of duplication nodes does not change.

We now show that the number of losses does not 
change, i.e., Lstd(gt

′, ST ) = Lstd(gt1, ST ). Now con-
sider an edge (x,  y) that is subdivided through the 
addition of a node u that is made the parent of 
the subtree t1. Then x,  y,   and u all map (under M)  
to different vertices in ST (gt1). Also, a simple case 
analysis (using the standard formula) verifies that 
F(y, ST (gt ′)) = F(y, ST (gt1))+ F(u, ST (gt1)) . Since 
F(z, ST (gt ′)) = F(z, ST (gt1)) for all other vertices 
z ∈ V (gt ′), this means that the total number of losses 
does not change.

Therefore, the result of adding each lower maximal 
missing clade to gt ′ does not imply any additional losses 
nor any additional duplications, and so also the total 
number of duplications and losses does not change. Let 
t∗ = tp be the tree obtained after adding in all the missing 
maximal clades, and return t∗. The result then follows by 
induction on p. � �

Incompleteness due to gene birth and death
As we will see, while the MRCA mapping is still an opti-
mal reconciliation when gene trees are incomplete due to 
gene birth and death (implied from [18, 21]), the stand-
ard formula does not correctly compute the number of 
losses. We begin by summarizing some results that have 
already been established:

Theorem  2  (From [18, 21]:) Given a binary rooted 
gene tree gt and a binary rooted species tree ST such that  
L(gt) ⊆ L(ST ) , the MRCA mapping defines a reconcilia-
tion that minimizes the number of duplications and the 

number of losses where we treat losses as due to gene birth 
and death. The set of speciation nodes in gt are those verti-
ces v ∈ Vint(gt) that satisfy M(v) �∈ {M(l),M(r)}, where 
l and r are the two children of v and M is the MRCA map-
ping from gt to ST; all other nodes are duplication nodes. 
Furthermore, we can compute the MRCA mapping, the set 
of duplication nodes, and the set of speciation nodes, in 
O(n+ n′) time, where ST has n leaves and gt has n′ leaves.

Proof  Chauve et  al.  [18] proved that the MRCA map-
ping minimizes the losses required to reconcile gt with 
ST(gt) for complete gene trees, but the proof also applies 
to incomplete gene trees, treating incompleteness as due 
to gene birth and death. Górecki and Tiuryn [21] showed 
that the MRCA mapping minimizes the number of dupli-
cations required to reconcile gt with ST(gt), treating 
incompleteness as due to gene birth and death. There-
fore, the MRCA mapping is optimal for all three scores 
(number of duplications, number of losses, and number of 
duplications plus losses), when treating incompleteness as 
due to gene birth and death.

It is easy to see that the duplication nodes in gt are those 
nodes that have M(v) = M(l) or M(v) = M(r) (where l 
and r are the two children of v, and M is the MRCA map-
ping), and all other nodes are speciation nodes. Since the 
MRCA mapping M can be computed in O(n+ n′), where 
ST has n leaves and gt has n′ leaves, it follows that all these 
can be computed in O(n+ n′) time. � �

However, the standard calculation for the number 
of losses can be incorrect when incompleteness is due 
to true biological loss! Consider the simple example 
gt = ((a, b), c) and ST = ((a, (b, d)), c). Under the stand-
ard formula, Lstd(gt, ST ) = 0, since ST (gt) = gt . Under 
the assumption that incompleteness is due to true bio-
logical loss, the genome for d does not have the gene. 
Because d is sister to b and all the other taxa have the 
gene, the gene must have been present in the parent 
of d, and lost on the branch leading to d. Therefore, the 
standard formula for the number of losses can be incor-
rect when gene trees are incomplete due to gene birth and 
death (i.e., true biological loss).

How to calculate losses
We now show how to calculate the number of losses for 
an incomplete gene tree gt and species tree ST, treating 
incomplete gene trees as due to gene birth and death. How 
this is defined will depend upon whether one assumes, a 
priori, that the gene is present in the genome of the com-
mon ancestor of the species in ST (i.e., at the root of ST). 
This needs to be taken into account as gene birth can hap-
pen only once whereas loss can happen repeatedly. Thus, 
this section shows how to calculate the following values:
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• • L∗bd(gt, ST ), the minimum number of losses, under 
the assumption the gene is present in the common 
ancestor of the species in ST (DL∗bd(gt, ST ) is defined 
similarly for the total number of duplications and 
losses), and

• • Lbd(gt, ST ) the minimum number of losses without 
assuming the gene is present in the common ances-
tor of the species in ST (DLbd(gt, ST ) is defined simi-
larly for duplications and losses).

We now show how to compute the number of losses 
(i.e., Lbd(gt, ST ) and L∗bd(gt, ST )), using the fact that the 
MRCA mapping defines an optimal reconciliation.

Theorem 3  Let gt be a gene tree and ST a species tree such that 
L(gt) ⊆ L(ST ) . Then, Lbd(gt, ST ) =

∑

u∈Vint (gt)
F(u, ST ),  

and L∗bd(gt, ST ) = Lbd(gt, ST )+ |UMMC(gt, ST )|. Fur-
thermore, these values can be calculated in O(n+ n′) time, 
where ST has n leaves and gt has n′ leaves.

Proof  Note that we use a modification of the standard 
formula, F(u, ST), so that we do not replace ST by ST(gt) 
as was done in [18, 19].

Derivation of Lbd(gt, ST) Recall that Lbd(gt, ST ) does 
not assume that the most recent common ancestor of 
the species in ST has the gene. Since gene birth can hap-
pen only once (although loss can happen repeatedly), 
we begin by determining the location of the gene birth. 
If M(r(gt)) = r(ST ), then the gene is born before r(ST), 
and is present at the root of ST. Otherwise, it is easy to 
see that the location of the gene birth that minimizes the 
number of losses is the edge above M(r(gt)). Now con-
sider the modification of the standard formula (i.e., using 
ST instead of ST(gt)):

It is easy to see that this correctly returns the number of 
inserted subtrees, and hence the number of losses.

Derivation of L∗bd(gt, ST) By definition of 
L∗bd(gt, ST ) , the gene is assumed to be present at the 
root of the species tree ST. If M(r(gt)) = r(ST ), then 
UMMC(gt, ST ) = ∅, and the result follows. However, 
if M(r(gt)) �= r(ST ), the gene must be present on the 
path between r(ST) and M(r(gt)). Since the gene is 
not present in any leaf that is not below M(r(gt)), to 
minimize losses, the gene must be lost on every edge 
off that path, since such edges lead to subtrees that 
do not have the gene present in any leaf. Note that if 
M(r(gt)) �= r(ST ), then the number of edges that lead off 
that path is |UMMC(gt, ST )| = d(M(r(gt)), r(ST ))+ 1 . 
Since the gene must be lost on each of those edges, 

(2)Lbd(gt, ST ) =
∑

u∈Vint (gt)

F(u, ST ).

and the total number of losses is the sum of this 
value and the number of losses that occur within 
the subtree rooted at M(r(gt)), it follows that 
L∗bd(gt, ST ) = Lbd(gt, ST )+ |UMMC(gt, ST )|. Figure  1 
illustrates an example distinguishing Lbd(gt, ST ) and 
L∗bd(gt, ST ). The running time follows easily from the fact 
that the MRCA mapping can be computed in linear time 
[22]. � �

Now one of the most important questions in terms of 
estimating the optimal species tree is – given a set G of 
(possibly incomplete) gene trees, is the species tree that 
minimizes 

∑

gt∈G L∗bd(gt, ST ) or 
∑

gt∈G Lbd(gt, ST ) dif-
ferent than the one that minimizes 

∑

gt∈G Lstd(gt, ST )? If 
the same species tree optimizes both ways of calculating 
losses, then defining loss differently is not that important 
in the context of phylogenomic analyses. But this is not 
necessarily true, as we will show in the following theorem.

Theorem  4  Let G be a set of incomplete gene trees 
and  STbd , ST ∗

bd and STstd are the species trees that 
minimizes 

∑

gt∈G Lbd(gt, ST ), 
∑

gt∈G L∗bd(gt, ST ) and 
∑

gt∈G Lstd(gt, ST ), respectively. Then STstd is not neces-
sarily identical to STbd or ST ∗

bd .

Proof  We will present an input of 14 gene trees and a 
species tree ST1 that optimizes the Lstd criterion and 
that provably is not optimal for the Lbd criterion. Con-
sider the two gene tree topologies tp1 = ((a, b), c) and 
tp2 = (b, (f , (e, (d, (c, a))))) as shown in Fig.  2a, b. Let 
G be a set of 14 gene trees, with eight gene trees hav-
ing topology tp1 and the remaining six gene trees hav-
ing topology tp2. It is easy to verify that the species tree 
ST1 with topology tp2 minimizes 

∑

gt∈G Lstd(gt, ST1) . 
Here, 

∑

gt∈G Lstd(gt, ST1) = 8 ∗ 3+ 6 ∗ 0 = 24. Any 
other species tree will result into more than 24 losses, 

b ca cb

e

f

ad

g

a b
gt ST

M(r(gt))

Fig. 1  An example showing the difference between Lbd(gt , ST ) 
and L∗bd(gt , ST ). a A gene tree gt = ((b, c), a), b a species tree 
ST = ((((a, c), (b, d)), e), (f , g)). Here, M(r(gt)) �= r(ST ), and 
UMMC(gt , ST ) = {{e}, {f , g}}. Lbd(gt , ST ) is the number of losses 
required to reconcile gt with ST according to Eq. 2, and we 
get L∗bd(gt , ST ) by adding |UMMC(gt, ST)| to Lbd(gt , ST )
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and the reason is as follows. There are three tree topolo-
gies on leafset {a, b, c}: ((a, b), c), ((a, c), b) and ((b, c), a). 
Reconciling tp1 with ((a,  c),  b) or ((b,  c),  a) requires 3 
losses. Therefore, any species tree T such that T (tp1) 
is not identical to tp1 = ((a, b), c) requires 8 ∗ 3 = 24 
losses to reconcile the eight gene trees having topol-
ogy tp1 with T. Therefore, to achieve less than 24 losses, 
T (tp1) should be identical to tp1. We now calculate the 
number of losses required to reconcile tp2 with a spe-
cies tree T such that T (tp1) = ((a, b), c). Note that, 
tp2(tp1) = ((a, c), b). Reconciling ((a, c), b) with ((a, b), c) 
requires three losses. Then taking {d, e, f } into considera-
tion, it is quite easy to verify that it requires more than 
three losses to reconcile tp2 with a species tree T such 
that T (tp1) = ((a, b), c). Hence, there is no species tree T 
so that 

∑

gt∈G Lstd(gt,T ) < 24. Therefore, ST1 = tp2 min-
imizes 

∑

gt∈G Lstd(gt, ST1).
However, the species tree ST2 = (((((a, b), c), d), e), f ) 

minimizes 
∑

gt∈G Lbd(gt, ST2). Here 
∑

gt∈G Lbd(gt, ST2) =

8 ∗ 3+ 6 ∗ 6 = 60, which is less than 
∑

gt∈G Lbd(gt, ST1 = tp2) = 8 ∗ 9+ 6 ∗ 0 = 72.
Therefore, STstd is not necessarily same as STbd. Then 

the fact that STstd is not necessarily identical to ST ∗
bd 

immediately follows. � �

Algorithms to find species trees
Here we address the problem of finding a species tree 
that has a minimum total number of duplications and 
losses, treating incompleteness as due to true biologi-
cal loss. Prior results on GTP include a branch-and-
bound algorithm in [23] based on techniques from 
[18], a randomized hill-climbing heuristic presented 
in  [4], a probabilistic and computationally expensive 
method for co-estimating gene and species trees [1], and 
dynamic programming based solutions by Hallett and 
Lagergren  [15], Bayzid et  al.  [20] and Chang et  al.  [24]. 
However, none of these studies takes the reasons of 

incompleteness into account, and we have already shown 
that the standard calculation for losses can be incorrect 
when incompleteness is due to true biological loss.

In this section, we derive a different approach for the 
GTP problems, treating incomplete gene trees as due 
to true biological loss (i.e., minimizing Lbd(gt, ST ) or 
L∗bd(gt, ST )). The techniques we propose can be used to 
solve GTP exactly for small datasets, or approximately 
(though without any guaranteed error bounds) on larger 
datasets. The approach we take here is based on [20] 
(see also [15, 25, 26], which use very similar techniques). 
Bayzid et al. [20] provided a graph-theoretic formulation 
for MGDLstd, whereby an optimal solution to MGDLstd 
corresponded to finding a minimum weight maximum 
clique inside a graph called the “Compatibility Graph”. 
The nodes of the compatibility graph correspond to “sub-
tree-bipartitions”, a concept Bayzid et al. [20] introduced 
and we will also use. Bayzid et al. [20] showed how to find 
a minimum weight max clique using a dynamic program-
ming approach. We will use the same graph-theoretic for-
mulation as in [20], but modify the weights appropriately, 
to show that the optimal solution to MGDL∗bd still cor-
responds to a minimum weight max clique. The DP algo-
rithm in [20] can then be used directly to find the optimal 
solution to MGDL∗bd. To achieve this, we first derive an 
efficient formula for Lbd(gt, ST ) (and L∗bd(gt, ST ), similar 
to the one derived in [17] for Lstd(gt, ST ), but somewhat 
more involved.

We will let Dgt,ST denote the set of duplication nodes 
in gt with respect to ST and Sgt,ST denote the set of spe-
ciation nodes in gt with respect to ST. When gt and ST 
are known, we may write these as D and S. The calcula-
tion for the number of losses depends on how we inter-
pret incompleteness in gene trees. Therefore, rather than 
having a single optimization problem like MGDL, we 
have variants of this problem depending on how we treat 
incompleteness. As shown in Theorem 1, the term MGDL 
in the literature refers to MGDLstd, which (by Theorem 1) 
is identical to MGDLsamp. Here, we consider the optimi-
zation problems MGDL∗bd, where we treat incomplete-
ness as due to gene birth and death. And therefore, we 
also consider MGDLbd, MGL∗bd, and MGLbd.

Basic material
Subtree‑bipartitions
Let T be a rooted binary tree and u an internal node in 
T. The subtree-bipartition of u, denoted by SBPT (u), is 
the unordered pair (cT (l)|cT (r)), where l and r are the 
two children of u. Note that subtree-bipartitions are not 
defined for leaf nodes. The set of subtree-bipartitions of a 
tree T is denoted by SBPT = {SBPT (u) : u ∈ Vint(T )} . 
Furthermore, any pair A and B of disjoint subsets of X  
also define a subtree-bipartition (though we may refer 

c adefb
b

c b a

a
Fig. 2  Gene tree topologies used in Theorem 4 to prove that the 
species tree which is optimal under the Lstd criterion is not necessarily 
optimal under the Lbd criterion. a Gene tree topology tp1 and b gene 
tree topology tp2
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to these as candidate subtree-bipartitions to emphasize 
this).

Subtree-bipartition domination Let BPi = (Pi1 |Pi2) and 
BPj = (Pj1 |Pj2) be two subtree-bipartitions. We say that 
BPi is dominated by BPj (and conversely that BPj domi-
nates BPi) if either of the following two conditions holds: 
(1) Pi1 ⊆ Pj1 and Pi2 ⊆ Pj2 , or (2) Pi1 ⊆ Pj2 and Pi2 ⊆ Pj1 . 
We say that subtree-bipartition (A|B) is dominated by a 
species tree T if one of T’s subtree-bipartitions dominates 
(A|B). Bayzid et al. showed that an internal node u in a 
gene tree gt is a duplication node with respect to a spe-
cies tree ST if SBPgt(u) is dominated by ST [20]. Finally, 
for a set G of gene trees on taxon set X  and for any can-
didate subtree-bipartition (A|B), we let Wdom(A|B) be the 
total number of subtree-bipartitions in G that are domi-
nated by (A|B).

Subtree-bipartition containment and compat-
ibility We say that BPi contains BPj if Pj1 ∪ Pj2 ⊆ Pi1 
or Pj1 ∪ Pj2 ⊆ Pi2, and that BPi and BPj are disjoint if 
[Pi1 ∪ Pi2 ] ∩ [Pj1 ∪ Pj2 ] = ∅. We say that two subtree 
bipartitions are compatible if they are disjoint or one con-
tains the other.

The compatibility graph CG(G) Let G be a set of rooted 
binary gene trees on the set X  of n taxa. The compat-
ibility graph CG(G) has a vertex for a subtree-bipartition 
defined on X , and there is an edge between two verti-
ces if and only if the associated subtree-bipartitions are 
compatible.

Deep coalescence and the MDC problem 
Deep coalescence (also called incomplete lineage sorting, 
or ILS) refers to the failure of alleles to coalesce (look-
ing backwards in time) into a common ancestral allele 
until deeper than the most recent speciation events [27]. 
One of the measures for incongruence between a gene 
tree and a species tree under ILS is XL(gt,  ST), the 
number of extra lineages defined for the pair ST and 
gt [27]. For a gene tree gt and a species tree ST such that 
L(gt) ⊆ L(ST ), the number of extra lineages (summing 
over all edges) is defined to be

where XL(gt, e′) is the number of extra lineages on e′.
Minimize deep coalescence (MDC) is an optimization 

problem for estimating species trees in the presence of 
ILS. MDC problem can be defined as follows.

Problem          Minimize deep coalescence (MDC)
INPUT             A set G of gene trees.
OUTPUT          �A species tree ST such that 

∑

gt∈G XL(gt, ST ) 
is minimized.

XL(gt, ST ) =
∑

e′∈E(ST∗(gt))

XL(gt, e′),

This problem is also NP-hard  [17], and software for the 
problem exists in Phylonet [28] and iGTP [5], among oth-
ers. We now describe theoretical material leading to the 
algorithmic approach in Phylonet [26].

Definition 5  (From [26]) For B ⊆ X  and gene tree gt, 
we set kB(gt) to be the number of B-maximal clusters in 
gt, where a B-maximal cluster is a cluster Y ⊆ L(gt) such 
that Y ⊆ B but no other cluster of gt containing Y is a 
subset of B.

Definition 6  We define Wxl(x, gt) for x either a sub-
tree-bipartition or a subset of X , as follows. If x ⊆ X , 
then we set Wxl(x, gt) = 0 if x ∩ L(gt) = ∅ and otherwise 
Wxl(x, gt) = kx(gt)− 1. If x is a subtree-bipartition, then 
we let B = p ∪ q for x = (p|q), and we set Wxl(x, gt) = 0 
if B ∩ L(gt) = ∅, and otherwise Wxl(x, gt) = kB(gt)− 1 . 
For a set G of gene trees and ST a species tree, we set 
W0 =

∑

gt∈G

∑

x∈X Wxl({x}, gt).

Yu et al. [26] showed that for any edge e in ST, where B 
is the cluster below e, then kB(gt) is the number of lineages 
going through edge e, and so kB(gt)− 1 is the number 
of extra lineages going through e. They defined weights 
on potential species tree clusters B by Wmdc(B, gt) = 0 if 
B ∩ L(gt) = ∅ and otherwise Wmdc(B, gt) = kB(gt)− 1 
(i.e., Wmdc is defined for clusters while Wxl is defined for 
subtree-bipartitions), and extended this to a set G of gene 
trees by W ′

mdc(B) =
∑

gt∈G Wmdc(B, gt), and then to a set 
C of clusters by W ′′

mdc(C) =
∑

B∈C W ′
mdc(B). From this, 

it follows easily that a set C of n− 1 compatible clusters 
minimizing W ′′

mdc(C) defines a rooted binary species tree 
with a minimum MDC score.

Deriving Lbd(gt, ST) and L∗
bd
(gt, ST)

Theorem 7  [From [17]] Let gt be a rooted binary gene 
tree, ST a rooted binary species tree and D the set of dupli-
cation nodes in gt with respect to ST. Then

We now derive formulas for Lbd(gt, ST ) and L∗bd(gt, ST ) ; 
to obtain formulas for DLbd(gt, ST ) and DL∗bd(gt, ST ), 
simply add |Dgt,ST |. Recall that in the definition of F(u, T) 
given in Eq. 1, losses are associated with internal nodes, 
and the total number of losses is defined as the sum of 
losses associated to each internal node. However, the def-
inition of the number of losses corresponding to a node 
can be rewritten in terms of edges, as we now show. Let 
D(s, s′) be the number of edges in the path in ST between 
s and s′. Therefore, D(s, s′) can be defined as follows.

Lstd(gt, ST ) = XL(gt, ST (gt))+ 2|D| + |V (gt)| − |V (ST (gt))|.
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Then, for a vertex u in gt with children r and l, we can 
rewrite Eq. 1 as follows:

It is easy to see that in all three branches of the equa-
tion above, the two terms of the sum correspond to the 
edges connecting u to its two children l and r. (The sec-
ond term in the first branch and both terms in the third 
branch are 0, but we wrote them in terms of the function 
D(.,  .) for convenience.) Let p(x) be the parent of x in a 
tree T. Therefore, we can associate gene losses to edges 
e = (x, p(x)) instead of nodes, as follows:

We use the subscript ST in edgelossST (e) to emphasize the 
fact that the distance is taken within the tree ST and not 
within ST(gt). Therefore,

Lemma 8  For all gene trees gt and species trees ST with 
L(gt) ⊆ L(ST ),

and for a set G of gene trees,

Finally, equalities concerning DLbd(gt, ST ) and 
DLbd(G, ST ) can be obtained from these equalities by add-
ing |Dgt,ST | and |DG,ST |, where |DG,ST | =

∑

gt∈G |Dgt,ST |.

Proof  We partition all the non-root nodes in gt into two 
sets: CD (children of duplications), consisting of those nodes 

D(s, s′) =

{

d(s, s′)+ 1 if d(s, s′) ≥ 1,
d(s, s′) if d(s, s′) = 0.

F(u, ST ) =























































D(M(r),M(u))+ D(M(l),M(u)),

ifM(r) �= M(u) = M(l).

D(M(r),M(u))+ D(M(l),M(u)),

ifM(l) �= M(u) = M(r).

(D(M(r),M(u))− 1)+ (D(M(l),M(u))− 1),

ifM(u) �∈ {M(l),M(r)}.

D(M(r),M(u))+ D(M(l),M(u)),

ifM(r) = M(u) = M(l).

MD(e) = D(M(x),M(p(x)), and

edgelossST (e) =

{

MD(e) if p(x) ∈ Dgt,ST ,
MD(e)− 1 otherwise.

∑

u∈Vint (gt)

F(u, ST ) =
∑

e∈E(gt)

edgelossST (e).

(3)Lbd(gt, ST ) =
∑

e∈E(gt)

MD(e)− |E(gt)| + 2|D|,

(4)

Lbd(G, ST ) =
∑

gt∈G

Lbd(gt, ST )

=
∑

gt∈G

∑

e∈E(gt)

MD(e)

−
∑

gt∈G

|E(gt)| + 2
∑

gt∈G

|Dgt,ST |.

whose parents are duplication nodes, and CS (children of 
speciations), consisting of those nodes whose parents are 
speciation nodes. Note that every edge (x, p(x)) ∈ E(gt) can 
be associated with the set containing x. Therefore,

Since each internal node has two children, clearly the 
number of vertices x for which p(x) is a speciation node 
is twice the number |S| of speciation nodes; therefore 
Lbd(gt, ST ) =

∑

e∈E(gt)
MD(e)− 2|S|. Since each inter-

nal node is a speciation node or a duplication node, it fol-
lows that 2(|D| + |S|) = |E(gt)|, and the result follows. �

Let L(gt, e) be the number of lineages that go through 
edge e ∈ E(ST ); thus, XL(gt, e) = L(gt, e)− 1, and so

Lemma 9  For any gene tree gt and species tree ST, 
∑

e∈E(gt)MD(e) =
∑

e′∈E(ST∗(gt)) L(gt, e
′), and (by Eq. 6)

Thus, for a set G of gene trees and species tree ST,

Proof  We establish the first equality, since the remaining 
ones follow directly from it. Consider the lists of edges 
in paths in ST from M(x) to M(p(x)), as x ranges over 
the internal vertices in gt. It is easy to see that the num-
ber of occurrences of an edge e′ ∈ E(ST ∗(gt)) in these 
lists is L(gt, e′) (the number of lineages through e′). Also, 
the edges e ∈ E(ST )− E(ST ∗(gt)) will not be present in 
these lists, since these are the edges incident on the miss-
ing clades in ST with respect to gt. Therefore, the sum of 
the lengths of these lists is equal to 

∑

e∈E(gt)MD(e) and 
also equal to 

∑

e∈ST∗(gt) L(gt, e). � �

(5)

Lbd(gt, ST ) =
∑

e∈E(gt)

edgelossST (e)

=
∑

x∈CD

MD(x, p(x))

+
∑

x∈CS

(MD(x, p(x))− 1)

=
∑

e∈E(gt)

MD(e)− |CS|.

(6)XL(gt, ST ) =
∑

e′∈E(ST∗(gt))

L(gt, e′)− |E(ST ∗(gt))|.

(7)XL(gt, ST ) =
∑

e∈E(gt)

MD(e)− |E(ST ∗(gt))|.

XL(G, ST ) =
∑

gt∈G

XL(gt, ST )

=
∑

gt∈G

∑

e∈E(gt)

MD(e)−
∑

gt∈G

|E(ST ∗(gt))|.
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Theorem  10  For all gene trees gt, sets G of gene trees,  
and species trees ST, Lbd(gt, ST ) = XL(gt, ST )+ 2|D|+  
|E(ST ∗(gt))| − |E(gt)| , and

Proof  Follows from Lemmas 8 and 9.�  �

Corollary 1  For all gene trees gt and species trees ST, 

Proof  The equalities concerning L∗bd follow from Theo-
rems 3 and  10. The equalities concerning DL∗bd follow by 
adding |Dgt,ST |. � �

Assigning weights to subtree‑bipartitions
To use the graph-theoretic formulation of MGDL∗bd, we 
have to assign weights to each node in the compatibility 
graph, CG(G), where G is the input set of gene trees, so 
that a minimum weight clique of n− 1 vertices defines an 
optimal solution to MGDL∗bd(G). We will define weights 
Wxl(v),Wdom(v),WEC(v), and WMMC(v) to each subtree-
bipartition (i.e., node in the compatibility graph), and set

We then prove (see Theorem 11) that a set of n− 1 com-
patible subtree-bipartitions that has minimum total 
weight defines a species tree that optimizes MGDL∗bd. 
Note that weights Wxl(v) and Wdom(v) have already been 
defined. Hence, all that remains is to define WEC(v) and 
WMMC(v), and then to prove Theorem 11.

Calculating WEC(v) and |E(ST ∗(gt))|: We now show 
how to define weight WEC(v, gt) for every vertex v in the 
compatibility graph CG(G) so that for all species trees 
ST, |E(ST ∗(gt))| is the sum of the vertex weights for the 
n− 1 clique C in CG(G) corresponding to ST. To count 
the number of edges in E(ST ∗(gt)), we need to exclude 
those edges from E(ST) that are incident on a clade that is 
missing in gt. For a vertex v associated with the subtree-
bipartition (p|q), we define WEC(v, gt) as follows (swap-
ping p and q as needed):

(8)

Lbd(G, ST ) = XL(G, ST )+ 2
∑

gt∈G

|Dgt,ST |

+
∑

gt∈G

(|E(ST ∗(gt))| − |E(gt)|).

L∗bd(gt, ST ) = Lbd(gt, ST )+ |UMMC(gt, ST )|

=XL(gt, ST )+ 2|Dgt,ST | + |E(ST ∗(gt))| − |E(gt)|

+ |UMMC(gt, ST )|.

DL∗bd(gt, ST ) = Lbd(gt, ST )+ |UMMC(gt, ST )| + |Dgt,ST |

=XL(gt, ST )+ 3|Dgt,ST | + |E(ST ∗(gt))| − |E(gt)|

+ |UMMC(gt, ST )|

WMGDL
∗
bd
(v) = Wxl(v)− 3Wdom(v)+WEC (v)+WMMC (v).

Then, |E(ST ∗(gt))| =
∑

u∈SBPST
WEC(u, gt). We set 

WEC(v) =
∑

gt∈G WEC(v, gt). Then, for any species tree 
ST and set G of gene trees,

where C is the clique in CG(G) that corresponds to ST.
Calculating WMMC(v) and |UMMC(gt,  ST)| We now 

show how to assign the weight WMMC(v, gt) to each ver-
tex v of the compatibility graph so that for all species 
trees ST, |UMMC(gt, ST)| is the sum of the weights over 
all the vertices of the clique C in CG(G) corresponding to 
ST. Recall that UMMC(gt, ST) is the set of upper maxi-
mal missing clades in ST. For a vertex v associated with 
the subtree-bipartition (p|q), we define WMMC(v, gt) as 
follows (swapping p and q as needed):

Then |UMMC(gt, ST )| =
∑

u∈SBPST
WMMC(u, gt). 

Finally, we set WMMC(v) =
∑

gt∈G WMMC(v, gt). Then, 
for any species tree ST and set G of gene trees,

where C is the clique in CG(G) that corresponds to ST.
We can extend the MGDL∗bd techniques to allow for 

losses and duplications to have different costs, as fol-
lows. Let cd be the cost of a duplication and assume the 
cost of a loss (cl) is 1. (Note that, our techniques work 
for any arbitrary cd and cl.) Let |DG,ST | =

∑k
i |Dgti ,ST | , 

and set DL∗bd(G, ST , cd) = cd ∗ |DG,ST | + L∗bd(G, ST ). 
Let MGDL∗bd(G, cd) be the problem that takes 
a set G of gene trees and duplication cost cd as 
input, and finds the species tree that minimizes 
the weighted duploss score DL∗bd(G, ST , cd). Let 
W

cd

MGDL
∗
bd

(v) = Wxl(v)− (cd + 2)Wdom(v)+WEC (v)+WMMC (v)   . 
If cd = 1, we omit the superscript cd and write 
WMGDL∗bd

(v).

Theorem  11  Let G = {gt1, gt2, . . . , gtk} be a set of 
binary rooted gene trees on set X  of n species, and 
set the weights on the vertices in the compatibility 
graph using Wcd

MGDL∗bd
(v). (a) A set of subtree-bipar-

titions in an (n− 1)-clique of minimum weight in 

(9)

WEC (v, gt) =







0 if p ∩ L(gt) = ∅ and q ∩ L(gt) ∈ {L(gt),∅}

1 if p ∩ L(gt) = ∅ and ∅ �= q ∩ L(gt) � L(gt)

2 otherwise.

(10)
∑

gt∈G

|E(ST ∗(gt))| =
∑

v∈C

WEC(v),

(11)

WMMC (v, gt)

=

{

1 if p ∩ L(gt) = ∅ and q ∩ L(gt) = L(gt)(or vice − versa)

0 otherwise.

(12)
∑

gt∈G

|UMMC(gt, ST )| =
∑

v∈C

WMMC(v),
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CG(G) defines a binary species tree ST that minimizes 
DL∗bd(G, ST , cd). Furthermore, the weighted duploss 
score of ST is given by W0 +W

cd
MGDL∗bd

(C)+ cd(N − k) , 
where N =

∑k
i=1 ni. (b) If we reset the weights to be 

WMGL∗bd
(v) = WMGDL∗bd

(v)+Wdom(v), then a set of sub-
tree-bipartitions in an (n− 1)-clique of minimum weight 
in CG(G) defines a binary species tree ST that minimizes 
L∗bd(G, ST ).

Proof  We prove (a), since (b) follows directly from 
(a). Let C be a clique of size n− 1 in CG(G) and ST the 
associated species tree. Let SBPdom(gt, ST ) be the set 
of subtree-bipartitions in gt that are dominated by a 
subtree-bipartition in ST. Note that |SBPdom(gt, ST )| 
is the number of speciation nodes in gt with respect to 
ST [20]. Therefore, the total number of speciation nodes 
in G is 

∑k
i=1 |SBPdom(gti, ST )| =

∑

v∈Vint (ST )Wdom(v) . 
Also, 

∑

v∈C Wxl(v) =
∑k

i=1 XL(gti, ST ), and 
∑k

i=1 |Dgti ,ST | =
∑k

i=1(ni − 1)−
∑

v∈C Wdom(v), where 
ni is the number of leaves in gti. Finally, since all gene 
trees are rooted binary trees, |E(gti)| = 2ni − 2 and 
|Vint(gti)| = ni − 1. Recall that W0 is the number of extra 
lineages contributed by the leaf set of the species tree 
(Definition 6). Therefore,

  (by Eqs. 10 and 12.)  

Note that W0 does not depend on the topology of the 
species tree. Hence, the (n− 1)-clique C with minimum 
weight defines a tree ST that minimizes DL∗bd(G, ST , cd). 
The proof for (b) follows trivially. � �

Dynamic programming algorithm
Let SBP be a set of subtree-bipartitions, with SBP equal 
to all possible subtree-bipartitions if an exact solution is 
desired, and otherwise a proper subset if a faster algorithm 
is desired or necessary. We present the DP algorithm for 
the MGDL∗bd(G, cd) problem. We compute score(A) in 
order, from the smallest cluster to the largest cluster X .

DL∗bd(G, ST , cd)

=

k
∑

i=1

(cd ∗ |Dgti ,ST | + L∗bd(gti , ST ))

=

k
∑

i=1

[XL(gti , ST )+ (cd + 2)|Dgti ,ST | + |UMMC(gti , ST )|

+ |E(ST ∗(gti))| − |E(gti)|](by Cor. 1)

= W0 +
∑

v∈C

Wxl(v)+

k
∑

i=1

(cd + 2)(ni − 1)− (cd + 2)
∑

v∈C

Wdom(v)

+
∑

v∈C

WMMC (v) +
∑

v∈C

WEC (v)−

k
∑

i=1

(2ni − 2)

=W0 +W
cd
MGDL∗bd

(C)+ cd(N − k).

Algorithm MGDL∗
bd(G, cd)

if |A| = 1 then score(A) = WXL(A)
else

score(A) =max{score(A1)+score(A−A1) +
W cd

MGDL∗
bd
(A1|A−A1) : (A1|A−A1) ∈

SBP}

If there is no (A1|A− A1) ∈ SBP, we set score(A) to 
−∞, signifying that A cannot be further resolved. At the 
end of the algorithm, if SBP includes at least one clique 
of size n− 1, we have computed score(X ) as well as suffi-
cient information to construct the optimal set of compat-
ible clusters and hence the optimal species tree (subject to 
the constraint that all the subtree bipartitions in the out-
put tree are in SBP). If subtree bipartitions in SBP are 
not sufficient for building a fully resolved tree on X  , then 
score(X ) will be −∞, and our algorithm returns FAIL.

The optimal number of duplications and losses is given 
by score(X )+ cd(N − k), by Theorem  11. If SBP con-
tains all possible subtree-bipartitions, we have an exact 
but exponential time algorithm. However, if SBP con-
tains only those subtree-bipartitions from the input gene 
trees, then the algorithm finds the optimal constrained 
species tree in time that is polynomial in the number of 
gene trees and taxa.

Theorem 12  Let G be a set of rooted binary gene trees, 
SBP a set of subtree-bipartitions which contains only 
the subtree-bipartitions, or a subset of the subtree-bipar-
titions from the input gene trees. The dynamic program-
ming (DP) algorithm finds the species tree ST minimiz-
ing the weighted duploss score, treating incomplete gene 
trees as resulting from gene birth and death, subject to 
the constraint that SBPST ⊆ SBP in O(n|SBP|2) time. 
Therefore, if SBP is all possible subtree-bipartitions, we 
have an exact but exponential time algorithm. However, 
if SBP contains only those subtree-bipartitions from the 
input gene trees, then the DP algorithm finds the optimal 
constrained species tree in O(d2n3k2)  time, where n is the 
number of species, k is the number of gene trees, and d the 
maximum number of times that any taxon appears in any 
gene tree.

Proof  The proof of correctness is given above. The run-
ning time analysis for an arbitrary SBP follows the same 
argument as given in [20], since Wxl(v) and Wdom(v) can 
be computed in O(1) time after the preprocessing (as 
described in [20]). Finally, suppose Q is the set of sub-
tree bipartitions from the input gene trees, and we use 
Q as the constraint set. Note that |Q| is O(dkn) (every 
internal node in every gene tree corresponds to subtree 
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bipartition, and there are at most a total of dkn internal 
nodes across all the gene trees). Hence, when the con-
straint set is just the set Q of subtree bipartitions from 
the input set of gene trees, then the algorithm runs in 
O(n|Q|2) = O(d2k2n3) time.�  �

Extensions
It is trivial to extend the theory for MGDL∗bd and MGL∗bd 
to MGDLbd and MGLbd, as we now show. Recall that 
the only difference between L∗bd(gt, ST ) and Lbd(gt, ST ) 
is whether the gene is assumed to be present at the 
ancestral species: in Lbd(gt, ST ) it is not assumed to 
be present there, but in Lbd(gt, ST ) it is. Therefore, 
Lbd(gt, ST ) = L∗bd(gt, ST )− |UMMC(gt, ST )| and 
that DLbd(gt, ST ) = DL∗bd(gt, ST )− |UMMC(gt, ST )| . 
Therefore, to extend the algorithmic approach 
to solve MGLbd and MGDLbd, we define 
WMGLbd (v, gt) = WMGL∗bd

(v, gt)−WMMC(v, gt) and 
WMGDLbd (v, gt) = WMGDL∗bd

(v, gt)−WMMC(v, gt), and 
then seek a minimum weight maximum clique in the 
compatibility graph with these modified weights.

Conclusion
The calculation of reconciliation costs between gene trees 
and species trees is a standard step in many bioinformat-
ics analyses, including the estimation of species trees 
from a set of gene trees. This paper showed that different 
interpretations of incompleteness (i.e., species missing 
from genes) can impact the way that these reconcilia-
tion costs should be calculated, and need to be taken into 
account when using Gene Tree Parsimony to construct 
species trees from gene trees.

To address this issue, we presented a dynamic pro-
gramming algorithm that provably finds an optimal spe-
cies tree given a set of gene trees under the (weighted) 
GDL model within a constrained search space, treating 
incompleteness as due to true biological loss. This tech-
nique can be used on any input on which other gene tree 
parsimony is used. The use of dynamic programming 
to find provably optimal solutions within a constrained 
search space is also how ASTRAL (a coalescent-based 
species tree estimation method) [29–31] and FastRFS (a 
supertree method) [32] achieve good performance. For 
those methods, the constraints are based on bipartitions 
rather than subtree bipartitions, but the dynamic pro-
gramming algorithm is nearly identical to the one we use 
here. As noted in [32], although setting the constraint 
set to just the bipartitions in the input source trees 
produced good results, expanding the set to include 
bipartitions from computed supertrees improved the 
topological accuracy of the resultant FastRFS super-
tree, without greatly increasing the running time. This 

suggests that expanding the subtree bipartition set to 
include estimated species trees based on GDL would 
be similarly beneficial for the dynamic programming 
method we present in this paper. In addition, changing 
the technique for defining subtree bipartitions is neces-
sary when all the gene trees are incomplete, since in that 
case none of the gene trees can contribute any valid sub-
tree bipartitions.

The results and the methods presented here are based 
on the assumption that the gene trees are discordant 
due to gene duplication and loss. However, these meth-
ods can be applied to both orthologous genes (in which 
case the gene trees could be single copy) and gene fami-
lies that by definition will include both paralogs and 
orthologs. In cases where the genes are expected to be 
orthologs, all discordance between gene trees and species 
trees should be due to processes other than duplication 
and loss (e.g., incomplete lineage sorting), which could 
make approaches that attempt to minimize the total GDL 
cost potentially less accurate. Nevertheless, it is also pos-
sible that these GDL-based methods could be reasonably 
accurate under conditions where ILS rather than GDL is 
operating, and so these methods should be explored in 
that context.

Another natural source of discordance is gene tree esti-
mation error, which is likely to occur with most biologi-
cal datasets (see discussion in [33]). Therefore, the most 
accurate estimations of the number of duplications and 
losses (or weighted versions of these numbers) will only 
be obtained when the estimated gene trees and species 
trees are highly accurate, so that every attempt should be 
made to estimate these trees carefully. Gene trees, espe-
cially of multi-copy genes spanning large numbers of 
species, can be extremely large (i.e., greater than 100,000 
leaves), and thus present enormous analytical and com-
putational challenges (e.g., multiple sequence alignment 
and likelihood-based tree estimation are both difficult for 
datasets with more than about 1000 sequences, let alone 
100,000) [34, 35]. Since completely accurate gene trees 
are not likely to be reliably obtained, these reconciliation 
methods and associated species tree estimation methods 
should be modified to take gene tree uncertainty into 
account. Methods such as NOTUNG [36] and ProfileNJ 
[37] are examples of methods that do this, but more work 
is needed.
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