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Abstract 

Background:  RNA secondary structure prediction by energy minimization is the central computational tool for the 
analysis of structural non-coding RNAs and their interactions. Sparsification has been successfully applied to improve 
the time efficiency of various structure prediction algorithms while guaranteeing the same result; however, for many 
such folding problems, space efficiency is of even greater concern, particularly for long RNA sequences. So far, space-
efficient sparsified RNA folding with fold reconstruction was solved only for simple base-pair-based pseudo-energy 
models.

Results:  Here, we revisit the problem of space-efficient free energy minimization. Whereas the space-efficient 
minimization of the free energy has been sketched before, the reconstruction of the optimum structure has not even 
been discussed. We show that this reconstruction is not possible in trivial extension of the method for simple energy 
models. Then, we present the time- and space-efficient sparsified free energy minimization algorithm SparseMFEFold 
that guarantees MFE structure prediction. In particular, this novel algorithm provides efficient fold reconstruction 
based on dynamically garbage-collected trace arrows. The complexity of our algorithm depends on two param-
eters, the number of candidates Z and the number of trace arrows T; both are bounded by n2, but are typically much 
smaller. The time complexity of RNA folding is reduced from O(n3) to O(n2 + nZ); the space complexity, from O(n2) to 
O(n+ T + Z). Our empirical results show more than 80 % space savings over RNAfold [Vienna RNA package] on the 
long RNAs from the RNA STRAND database (≥2500 bases).

Conclusions:  The presented technique is intentionally generalizable to complex prediction algorithms; due to their 
high space demands, algorithms like pseudoknot prediction and RNA–RNA-interaction prediction are expected to 
profit even stronger than “standard” MFE folding. SparseMFEFold is free software, available at http://www.bioinf.uni-
leipzig.de/~will/Software/SparseMFEFold.
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Background
The manifold catalytic and regulatory functions of non-
coding RNAs are mediated by the formation of inter-
molecular structures with other RNAs or proteins, as 
well as their intra-molecular structures [3, 5, 9]. Currently 
computational RNA structure prediction methods mainly 
focus on predicting RNA secondary structure—the set of 

base pairs that form when RNA molecules fold. There is 
evidence that RNA molecules in their natural environ-
ments tend to fold into their minimum free energy (MFE) 
secondary structure [14]. This motivates various algo-
rithms that predict MFE secondary structures of RNAs. 
Commonly, the free energy of a secondary structure is 
calculated by summing up the energies of its single fea-
tures, where these energies are empirically determined 
[8]. MFE prediction is applicable in cases of novel RNAs 
with unknown function, design applications in biotech-
nology and interacting RNAs.
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Recently, sparsification techniques were applied to 
improve time and space efficiency of various RNA fold-
ing algorithms, while guaranteeing the same result. Wex-
ler et  al.  [15] reduced the time complexity of standard 
MFE RNA folding by saving redundant recursion cases 
in the complexity-limiting step of the dynamic program-
ming (DP) algorithm. For this purpose, they introduced 
candidates, which—by and large—are understood as sub-
instances that cannot be optimally partitioned into two 
smaller sub-instances (confer the simple folding recur-
sions of Fig. 2).

The approach of Wexler et  al. which solely improves 
time efficiency, was implemented for the full free energy 
model by Dimitrieva and Bucher [4]. Beyond standard 
folding, sparsification has been studied for more complex 
folding algorithms, namely pseudoknot folding  [10] and 
RNA–RNA-interaction [13].

Backofen et  al.  [2] showed that the concept of candi-
dates can be extended to improve time and space of RNA 
folding in base-pair-based (bp-based) pseudo-energy 
models (i.e. a generalized form of base pair maximiza-
tion  [11]). The two subproblems, energy minimization 
and fold reconstruction, are commonly solved by DP and 
trace-back through the DP matrix, respectively. Instead 
of storing the entire DP matrix, Backofen et al. [2] saved 
space by storing only a single matrix row (in the case of 
MFE prediction, several rows) as well as a list of candi-
dates. For bp-based models, this suffices to solve the 
energy minimization subproblem, and at the same time 
allows efficient reconstruction of the optimal structure 
by recomputing matrix rows during trace-back. Note that 
[13] transferred Backofen et  al.’s space savings to MFE 
RNA–RNA-interaction prediction, however only without 
space-efficient fold reconstruction.

Contributions We show that the fold reconstruction 
method suggested by Backofen et  al. cannot trivially be 
transferred beyond bp-based models. Consequently, 
we present a space-saving sparse MFE prediction algo-
rithm with fold reconstruction. In preparation, we revisit 
space-efficient MFE folding without fold reconstruction. 
We describe this algorithm including multiloop penal-
ties, i.e. in the variant of Zuker and Sankoff [17], because 
multiloop penalties are essential for accurate folding and 
therefore implemented by modern RNA folding soft-
ware [7]; to the best of our knowledge, the sparsification 
of MFE prediction with multiloop penalties is elaborated 
here for the first time. Our efficient fold reconstruc-
tion algorithm keeps the additionally required memory 
to a minimum due to garbage collection. Whereas we 
describe our techniques for the most common case of 
RNA MFE folding, they are intentionally more general; in 
particular, they can be transferred to complex sparsified 

folding algorithms (e.g., [10, 13]), as well as simultaneous 
alignment and folding, which profit from sparsification 
even stronger than standard folding.

Methods
Preliminaries of RNA secondary structure prediction
An RNA sequence S = S1, . . . , Sn is represented as a 
sequence over the alphabet {A,C ,G,U}. Si,j denotes 
the subsequence Si, . . . , Sj. We refer to Si,j as region 
[i,  j]. Fix an RNA sequence S of length n. A base pair of 
S is an ordered pair i.j with 1 ≤ i < j ≤ n, such that ith 
and jth bases of S are complementary (i.e. {Si, Sj} is one 
of {A,U}, {C ,G}, or {G,U}). A secondary structure R 
for S is a set of base pairs such that for all i.j, i′.j′ ∈ R: 
{i, j} ∩ {i′, j′} = ∅. The base pairs of the secondary struc-
ture R partition the unpaired bases of sequence S into 
loops [12] (i.e., hairpin loops, internal loops and mul-
tiloops). Hairpin loops have a minimum length of m; 
consequently, j − i > m for all base pairs i.j of R. A sec-
ondary structure R is pseudoknot-free if it does not con-
tain i.j and i′.j′ such that i < i′ < j < j′. Figure 1 provides 
an example drawings of a pseudoknot-free secondary 
structure in 2D layout (Fig.  1a) and the corresponding 
linear arc diagram (Fig. 1b).

Energy models for RNA structure prediction
Computational RNA structure prediction minimizes 
the energy over the large pool of all possible structures, 
where the energy of a structure is defined by a specific 
energy model. Certain additive energy models allow effi-
cient optimization by DP—as long as the complexity of 
possible (i.e., finite energy) structures is limited, e.g. by 
ruling out pseudoknots.

The simplest energy models are base-pair-based (bp-
based); they assign pseudo-energies to base pairs and define 
the energy E of a structure R as the sum of energies Ebp(i.j) 
over all base pairs i.j ∈ R. In the most prominent example 
of a bp-based model, prediction simply looks for maxi-
mizing the number of base pairs. In terms of energy, this 
is equivalent to the model that assigns −1 to each comple-
mentary base pair and forbids non-complementary ones.

Biologically relevant RNA structure prediction requires 
loop-based energy models, where the energy of a second-
ary structure R is defined as sum of the loop energies, i.e. 
E(R) =

∑
ℓ∈loops(R) E

loop(ℓ). We denote the free energy of 
the hairpin loop closed by i.j by H(i, j); the energy of internal 
loops (subsuming stacked and bulge loops) closed by i.j with 
inner base pair k.l is I(i, j, k , l); and the free energy of multi-
loops is calculated from their numbers of inner base pairs p 
and unpaired bases q as ML(i, j, p, q) = a+ b p+ c q [8]. 
Commonly, the size of internal loops is limited to M, which 
caps the time complexity to O(n3).
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Since bp-based models are insufficient for realistic 
structure prediction—most crucially, they cannot capture 
stacked loops,—we reserve the term free energy mini-
mization for optimization in loop-based energy models. 
Nevertheless, we start our algorithmic expositions by 
reviewing the sparsification of bp-based prediction, 
which is fundamentally simpler than the loop-based case.

Time and space efficient bp‑based folding
The minimum bp-based energy of structures is efficiently 
computed by DP. Generally, matrix cells with indices (i, j), 
referred to as L(i, j), contain minimum bp-based energies 
for the region [i,  j]. Entries L(i,  j) contain the minimum 
over all possible structures, such that the final minimum 
energy is computed in L(1,  n). Lc(i, j) is the minimum 
energy of the closed substructures of [i,  j] where i.j is a 
base pair, and Lp(i, j) minimizes over the partitionable 
substructures of [i, j], which can be partitioned into two 
substructures of regions [i, k − 1] and [k, j].

where 1 ≤ i < j ≤ n, Lp(i, i) = Lc(i, i) = +∞ and 
L(i, i) = 0.

We obtain equivalent sparsified recursions after replac-
ing Lp(i, j) by L̂p(i, j)1:

L(i, j) = min

{
Lp(i, j),
Lc(i, j)

Lp(i, j) = min

{
L(i, j − 1),
mini<k<j L(i, k − 1)+ L(k , j)

Lc(i, j) = L(i + 1, j − 1)+ Ebp(i.j)

1  i.e., we replace the recursion Lp(i, j) by Eq. (ˆLp) and replace the symbol 
L
p(i, j) by L̂p(i, j) in the recursion L.

where [i, j] is an L-candidate, i.e., a candidate for recursion 
L, iff Lc(i, j) < L̂p(i, j) (see Fig. 2). If, for i < j, [i, j] is not 
an L-candidate, we call it L-partitionable. Note that here 
we consider [i, i] as neither candidates nor partitionable, 
whereas in [2] they are considered as candidates. To prove 
the correctness one has to show L̂p(i, j) = Lp(i, j); this fol-
lows the triangle inequality L(i, j) ≤ L(i, k − 1)+ L(k , j) 
(for all 1 ≤ i < k ≤ j ≤ n ) [2]. Figure 2b depicts the cor-
rectness of candidate criterion.

Backofen et  al.  [2] improved the time and space effi-
ciency of O(n3) and O(n2) in the non-sparsified version 
to O(n2 + n · ZL) and �(n+ ZL) respectively, where ZL is 
the total number of candidates; typically ZL << n2. The 
efficient implementation, which computes the matrix 
entries row by row starting with row n, is based on two 
further observations: (1) During the DP algorithm, one 
can maintain an appropriate data structure that allows 
traversing the candidates [k , j] of Eq. (ˆLp) in time lin-
ear to the number of candidates [k , j]. The data structure 
takes �(ZL) space. (2) In addition to storing Lc for all 
candidates in �(ZL) space, for computing row i, it suf-
fices to store the rows i and i + 1, the latter for accessing 
L(i + 1, j − 1), at any given time in the DP evaluation.

Figure  3a illustrates the dynamic programming algo-
rithm for minimizing the bp-based energy. To compute 
L(1, n), only matrix cells where i < j need to be computed 
(white region of matrix in Fig. 3a). These cells are filled 
in bottom-up order, where the calculation of values in 
row i requires only values of row i + 1 and stored candi-
dates (light-grey boxes). When L(1,  n) is calculated, the 
fold reconstruction is performed by trace-back; this is 

L̂p(i, j) = min

{
L(i, j − 1),

min[k ,j] is candidate, k>i L(i, k − 1)+ Lc(k , j)
(L̂p)

Fig. 1  Example of a pseudoknot-free secondary structure a in 2D-graphical layout and b as linear arc diagram. Both representations show the 
backbone connections of bases in sequence and connect pairing bases
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illustrated in Fig. 3b. For any entry (red box) the continu-
ation of the traceback can be inferred after recomputing 
the corresponding row i; this does not require access to 
any row greater than i. We will revisit this procedure and 
a more generalized case of fold reconstruction in "The 
difficulty of MFE fold reconstruction compared to bp-
based folding" section.

Preliminaries on loop‑based RNA folding
Before we explain the time and space efficient calcula-
tion of the MFE structure, we briefly review the different 
recurrences of standard loop-based MFE RNA folding.

Efficient MFE structure prediction relies on two piv-
otal properties: (1) a pseudoknot-free structure over 
region [i,  j] is either closed by i.j, or is partitionable 
at base k, i < k ≤ j, into two independent substruc-
tures over regions [i, k − 1] and [k, j]; (2) in loop-based 
energy models, the total energy of a structure com-
posed of two independent substructures is the sum of 
the energies of its substructures. Therefore a DP algo-
rithm can efficiently minimize the free energy over the 
pseudoknot-free secondary structures of a given RNA 
molecule [16, 17].

The free energy minimization algorithm of Zuker and 
Sankoff [17] calculates the MFE over all pseudoknot-
free secondary structures for all subsequences Si . . . Sj in 
matrix cells W (i, j).

where i < j, and W (i, i) = 0. Here V (i, j) is the free energy 
of the pseudoknot-free structure over the region [i,  j] 
closed by i.j, and is expressed as follows.

where i < j −m (recall that m is the minimum size of a 
hairpin loop), and V (i, j) = +∞ otherwise. We bound 
the loop size to M to keep the time complexity within 
O(n3). VM(i, j) is the energy of a multiloop over region 
[i, j] closed by i.j.

W (i, j) = min

{
V (i, j),
mini<k≤j W (i, k − 1)+W (k , j)

VM(i, j) = mini+1<k≤j−1(WM(i + 1, k − 1)

+WM(k , j − 1)+ a+ b)

a

b

Fig. 2  a Graphical representation of the sparse bp-based energy minimization recursions. A minimum energy general substructure (L lined pattern) 
over region [i, j] is a closed structure (Lc solid arcs) or it is partitionable into two substructures (L̂p dotted arcs). Sparsification restricts the minimization 
over the partitions in the second row to consider only candidates [k, j] for the second fragment. b Justification of the candidate criterion for sparse 
bp-based energy minimization according to the recursion of subfigure a Candidates are defined as regions [i, j] where Lc(i, j) < L̂p(i, j)
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where a is the penalty for multiloop initiation and b 
penalizes inner base pairs in multiloops (also referred 
to as branch penalty). WM(i, j) is the MFE of non-
empty structures over region [i,  j] that are inside a 
multiloop.

where i < j, and otherwise WM(i, j) = +∞. c is the pen-
alty for an unpaired base in a multiloop.

Results
Time and space efficient calculation of the MFE
In preparation for sparsification, we introduce the matri-
ces Wp and WM2, which are not part of the original 
equations. Wp(i, j) is the energy of the MFE structure 
in which the MFE structure can be decomposed into 
two independent subparts. WM2 represents multi-loop 
fragments with at least two inner base pairs. The term 
WM2(i + 1, j − 1)+ a+ b corresponds to the energy of 
a MFE structure for Si . . . Sj in which i.j closes a multi-
loop; in the previous section, this is denoted by VM(i, j) . 
WMp(i, j) is the energy of the MFE WM(i, j) structure in 
which the structure can be partitioned into two inde-
pendent subparts.

WM (i, j) = min





V (i, j)+ b,

WM(i + 1, j)+ c,WM(i, j − 1)+ c,

mini<k≤j WM(i, k − 1)+WM(k , j)

where i < j, W (i, i) = 0; V (i, j) = WM(i, j) = ∞ for all 
j − i ≤ m; and WM2 = ∞ for all j − i ≤ 2m+ 3.

We sparsify the recurrences by rewriting Wp(i, j) to 
Ŵ p(i, j) and WM2(i, j) to ŴM2(i, j), where

Ŵ p(i, j) = min

{
W (i, j − 1),

min[k , j] is W-candidate, k>i W (i, k − 1)+ V (k , j)

ŴM2(i, j) = min

{
WM2(i, j − 1)+ c,

min[k , j] is WM-candidate, k>i WM(i, k − 1)+ V (k , j)

a b

Fig. 3  Illustration of bp-based folding and traceback. a forward evaluation of the recursions by DP. b fold reconstruction by traceback
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together with the candidate criteria

• • [k , j] is a W-candidate iff V (k , j) < Ŵ p(k , j) and
• • [k , j] is a WM-candidate iff V (k , j)+ b < WMp(k , j).

We note that to have similar recurrences, we also 
rewrite WMp(i, j) recurrence as follows:

which merges the second case of original WMp into ŴM2 
recurrence.

Lemma 1  The sparsified version of Wp and WM2 recur-
rences are equivalent to the non-sparsified recurrences.

Proof  1.	 Choose the largest k, i < k < j , s.t.  
W (i, k − 1)+W (k , j) is minimal. We show that  
[k,j] is W-candidate. Assuming the opposite, choose  
e (e > k ), such that Wp(k , j) = W (k , e − 1)+W (e, j).  
Now Wp(i, j) = W (i, k − 1)+W (k , e − 1)+W (e, j)  
≥ W (i, e − 1)+W (e, j) , which contradicts the choice 
of k such that W (i, k − 1)+W (k , j) is minimal. 
Therefore we must have W (k , j) = V (k , j) < Ŵ p(k , j), 
and [i, j] is a W-candidate.

2.	 Choose the largest k, i < k < j, s.t. WM(i, k − 1)+

WM(k , j) is minimal. We show that [k,j] is WM-can-
didate. Assuming the opposite, choose e (e > k), such 
that WM2(k , j) = WM(k , e − 1)+WM(e, j). Now 
WM2(i, j) = WM(i, k − 1)+WM(k , e − 1)+WM 
 (e, j) ≥ WM(i, e − 1)+WM(e, j) , which contradicts 
the choice of k such that WM(i, k − 1)+WM(k , j) 
is minimal. Therefore we must have 
WM(k , j) = V (k , j)+ b < WMp(k , j), and [i, j] is a 
WM-candidate.� �

Going beyond Wexler et  al., these recursions handle 
multiloop energies correctly by introducing the matrices 
WM, WMp and ŴM2.

Analogous to [2], there is an algorithm that evaluates 
the above recursions efficiently, such that time and space 
complexity depend on Z, where Z is the total number of 
candidates (which are W- or WM-candidates.) We call 
this algorithm SparseEnergyMinimization.

Lemma 2  W (1, n) can be calculated in O(n2 + nZ) 
time and �(n+ Z) space, where Z is the total number of 
candidates.

Proof  Time SparseEnergyMinimization computes 
O(n2) entries and performs the minimizations over all 

WMp(i, j) = min

{
WM(i + 1, j)+ c,

ŴM2(i, j)

candidates in the calculations of Ŵ p and ŴM2. These 
minimizations require O(Z) steps per matrix row, result-
ing in O(nZ) additional time.

Space To calculate all Ŵ p(i, j) and ŴM2(i, j) in row i 
it suffices to compute and store the entries in the same 
matrix row and store the matrix entries at the candi-
dates of rows i′ > i. For calculating the V (i, j) in row i 
( j : i < j ≤ n), it suffices to keep row i + 1 of WMp and 
the rows i + 1 to i +M + 1 of V in memory, since the 
interior loop size is bounded by M. � �

The difficulty of MFE fold reconstruction compared 
to bp‑based folding
The MFE structure in the bp-based model is efficiently 
reconstructed using the minimum energy, the energies of 
candidates, and O (n) space by trace-back with recompu-
tation of partitionable entries, which are not stored in the 
DP-matrix. We briefly recapitulate this result of [2].

Lemma 3  The optimal structure in the bp-based model 
can be reconstructed from the candidates and the minimum 
free energy in O(n+ ZL) space and O(n2 + nZL) time.

Proofsketch  The algorithm starts similar to a regular 
trace-back from L(1, n). Recursively, it derives the optimum 
recursion cases of the current matrix entry and continues 
to trace back from the identified successive trace entries. 
For finding the successive trace entries from a current entry 
(i, j), it suffices to know the entries (i, j′) ( j′ ≤ j) of the same 
row: if [i, j] is a candidate, then the successive trace entry 
is (i + 1, j − 1); otherwise, it can be split at some k, s.t. 
entry (i, k − 1) is in the same row and [k , j] is a candidate 
(unless k = j). On demand, the entries (i, j′) can be recom-
puted from entries (i, j′′) (j′′ < j′) of this row and candidate 
entries. Note that access to non-candidates of rows i′ > i 
is never required. In particular, the algorithm utilizes that 
the candidates [i, j] of row i do not have to be recomputed, 
because candidates necessarily trace back to (i + 1, j − 1) . 
Thus, the trace-back with recomputation takes O(n · ZL) 
time and does not require additional space. � �

After executing SparseEnergyMinimization, all 
candidates are calculated and stored in memory, analo-
gously to the bp-based case. However, there is no trivial 
transfer of the bp-based trace-back algorithm of [2], 
Folding-Traceback, to the loop-based case.

The main difference between the bp-based and the 
loop-based folding algorithm is the evaluation of interior 
loops. In both cases, bp-based folding and loop-based 
folding, the energy of a closed structure, respectively 
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Lc(i, j) and V(i, j), depends only on a constant number of 
rows (resp., 1 row like in Fig. 3a or M rows like in Fig. 4a.) 
However, Folding-Traceback relies on the fact that the 
successive trace entry of candidates is known, whereas the 
MFE fold reconstruction has to infer the optimum recur-
sion case of V(i, j), even if V (i, j) < min{W (i, j),WM(i, j)}

—corresponding to the optimum co-terminus criterion of 
[2]. Thus, the efficient reconstruction of the MFE fold is 
not directly possible from the candidates alone, since in 
general the traceback requires the MFE of non-candidate 
regions. This is illustrated in Fig.  4b, where continuing 
beyond the red trace-back arrow requires an unavailable 
matrix cell, which was not stored.

Naively, this requires to recompute the (non-candidate) 
V  entries of rows i + 1 , . . . , i +M + 1, which in turn rely 
on V  and WM entries of larger rows. Consequently, the 

non-candidate entries of the whole V  matrix have to be 
recomputed. This negates the sparsification benefits. Fur-
thermore, there seems to be no simple way to overcome 
this problem. In particular, we cannot directly compute 
V(i, j) by minimizing only over candidates, since there is 
no guarantee that the inner base pair of an interior loop 
corresponds to a candidate.

Lemma 4  The minimization over inner base pairs in the 
recursion of V  cannot be restricted to candidates.

Proof  We show that there is a loop-based energy 
model (namely the Turner energy model [8]), a sequence  
S and 1 ≤ i < j ≤ n, such that V (i, j) < min{H(i, j),

WM2(i + 1, j − 1)+ a}, but there is no candidate [p, q], 
i < p < q < j, such that V (i, j) = I(i, j, p, q)+ V (p, q).

a b

c d

Fig. 4  Ideas of the space-efficient backtracking procedure and its requirements. We illustrate concepts sketching the upper-triangular V-matrix in 
different algorithm phases. The dark-grey lower triangle is unused. The stored rows i..i +M are shown as light-grey area; the light-grey boxes repre-
sent the candidates. a Evaluation phase of sparse MFE folding without space-efficient trace-back; the algorithm stores the last M+ 1 rows and the 
candidates. b Space-efficient trace-back (red arrow) in the basic algorithm fails, since trace continuations cannot be efficiently retrieved in general; 
eventually, the trace reaches a non-candidate entry (filled circle), which is not in memory. c Naive sparse MFE folding with trace-back stores all trace 
arrows (black arrows) to candidates (boxes) and non-candidates (circles). d SparseMFEFold removes arrows to candidates and applies garbage collec-
tion to fundamentally reduce the space requirements
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Consider the RNA sequence S = GCCAAAAGGGC of 
length 11. In the Turner model, the optimal recursion case 
of V (2, 10) forms the interior loop closed by (2, 10) with 
inner base pair (3,  9), because V (3, 9) = H(3, 9) = 4.3 
kcal/mol and I(2, 10, 3, 9) = −3.3 kcal/
mol. However, [3, 9] is not a candidate, since 
W (3, 9) = WM(3, 9) = H(3, 8) = 4.1 < V (3, 9), i.e. the 
MFE structure of S3,9 forms the hairpin loop closed by 
(3, 8)—not by (3, 9). � �

The lemma holds for arbitrarily large instances. This 
can be seen by, for example, looking at the family of RNA 
sequences Sk = GCkA4Gk+1C, where Xk is the k-times 
repetition of X. Furthermore, this issue is not limited to 
stacked base pairs, since there are non-stacked interior 
loops with stabilizing energy contributions, in the Turner 
energy model.

Overview of MFE folding with fold reconstruction
As discussed earlier direct transfer of Folding-
Traceback from [2] is not possible because the opti-
mum case of the V -recursion cannot be determined 
efficiently by recomputation. Therefore we suggest to 
store trace arrows from all entries that cannot be rec-
omputed efficiently. Subsequently, we discuss several 
space optimizations for this idea, such as avoiding trace 
arrows by rewriting the recursions and removing trace 
arrows as soon as they become inaccessible for the 
trace-back.

Adding trace arrows
As a first step towards efficient trace-back, we store trace 
arrows from each potential base pair i.j to its optimum 
inner base pair during the DP evaluation. Here, a trace 
arrow is simply a directed edge connecting two matrix 
entries. By storing these arrows we avoid the recomputa-
tion of all V  entries in the trace-back, by inferring their 
successive trace entries. If there is no trace arrow to an 
inner base pair and V (i, j) �= H(i, j), we can simply con-
tinue to trace from (i + 1, j − 1) in matrix WM2.

Furthermore, the case WM(i + 1, j)+ c of WMp 
accesses entries beyond the current row i. As before, we 
cannot efficiently recompute row i + 1, which could be 
resolved by recording trace arrows. Figure 4c depicts the 
naïve ad-hoc solution to the fold reconstruction problem 
by adding all trace arrows.

Avoiding trace arrows
One can avoid the trace arrows for the case 
WM(i + 1, j)+ c of WMp by rewriting the case equiva-
lently as follows:

Since WM(i, i) = +∞, we can sparsify the recurrence as 
follows:

We have already shown the equivalence of ŴM2 and 
WM2 recurrences; thus, we establish the correctness of 
this rewriting by the following lemma. This serves well 
as an example of a typical small change during sparsifica-
tion of recursions, which is nevertheless non-trivial.

Lemma 5  Replacing WMp by ŴM
p
 leaves the values of 

W , V , and WM entries unchanged.

Proof  We have to show that restricting the minimiza-
tion min i < k < j (k − i)× c + V (k , j)+ b to only  
WM-candidates is admissible; this boils down to showing 
that non-candidates in the new minimization do not change 
the minimum values in the recursions. Assume that [k , j] is 
WM-partitionable. By definition there exists a k ′ > k, where 
[k ′, j] is a WM-candidate s.t. one of the following holds.

1.	V (k , j)+ b ≥ (k ′ − k)× c + V (k ′, j)+ b

2.	V (k , j)+ b ≥ WM(k , k ′ − 1)+ V (k ′, j)+ b

Case 1. (k − i)× c + V (k , j)+ b ≥ (k − i)× c + (k ′ − k) 
 ×c + V (k ′, j)+ b ≥ (k ′ − i)× c + V (k ′, j)+ b , i.e. k ′ 
dominates k in this minimization.

Case 2. (k − i)× c +WM(k , k ′ − 1)+ V (k ′, j)+ b ≥  
WM(i, k ′ − 1)+ V (k ′, j)+ b ; since the latter is a case of 
ŴM2, k is again dominated. � �

Furthermore, we do not have to store trace arrows from 
V  entries (i, j) to candidates. In such cases, the optimum 
interior loop case, V il-cand(i, j), can be reconstructed by 
minimizing over all candidates:

If V il-cand(i, j) is the MFE, we have reconstructed the 
trace arrow, however there is one catch: recall that we 
cannot use WM2(i + 1, j − 1)+ a+ b to decide whether 

WMp(i, j) = min

{
WM(i + 1, j)+ c,

WM2(i, j)

= min

{
mini<k<j(k − i)× c +WM(k , j),

WM2(i, j)

(1)
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WM2(i + 1, j − 1)+ a+ b < min{V il-cand(i, j),H(i, j) } , 
because it is neither stored nor can be recomputed effi-
ciently. Thus, our strategy is to trace into the multiloop, 
iff no other case yields the MFE V (i, j). However, as of 
this computation, we do not know this energy for non-
candidate entries during trace-back. Therefore, we addi-
tionally keep track of this energy: each time we trace back 
from some (i, j) to a non-candidate (p, q), we recalculate 
the entry V (p, q) due to V (p, q) = V (i, j)− I(i, j, p, q).

Garbage collecting trace arrows
So far, our algorithm stores all trace arrows from V  
entries to non-candidates. However, most of those V  
entries are not on the MFE trace (rather far off from it). 
Identifying unnecessary arrows during the recursion 
evaluation, allows saving space for trace arrows, while 
still supporting MFE fold reconstruction.

Of course, during the evaluation we generally have only 
partial information about the MFE trace. Therefore, a 
safe strategy is to remove the trace arrows that are inac-
cessible from current and future accessible entries.

We define a directed graph G = (V , E), in which cells of 
the DP matrix are represented as vertices and there is a 
directed edge between two vertices V1 and V2 if there is a 
trace arrow from V1 to V2.

Definition 1  An entry V(p,  q) is accessible, iff during 
recursion evaluation, after computing row i:

• • p ≤ i +M + 1,
• • [p, q] is a candidate, or

• • there is a trace arrow from some accessible entry to 
V(p, q).

Detecting inaccessible entries in such a directed 
graph structure can be performed by garbage collection 
(GC)  [6]. Since there is no cycle in our directed graph, 
we apply a simple reference counting GC technique. 
Each arrow ta receives a counter, which keeps track of 
the arrows that point to the source of ta. After comput-
ing row i, we scan through the arrows with source in row 
i +M + 1. Arrows from non-candidates in row i +M + 1 
are removed, if their reference count is zero. In a recur-
sive procedure, we detect all arrows pointing from inac-
cessible entries, remove them and update the appropriate 
counters. Figure  4d illustrates avoided trace arrows to 
candidates and removed inaccessible trace arrows (due to 
garbage collection).

Algorithm summary
Employing the above two techniques, our algorithm 
SparseEnergyMinimization (Algorithm  1) keeps 
track of trace arrows and performs reference counting 
garbage collection (Procedure GarbageCollect). Note 
that for further space savings, the algorithm does not dis-
tinguish W - and WM-candidates; this does not affect our 
complexity bounds.

The final algorithm SparseMFEFold performs energy 
minimization and fold reconstruction. The fold recon-
struction relies on the complete results of Algorithm  1, 
i.e. the minimum free energy, the candidates, and the 
trace arrows.
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Complexity
Implementing the trace arrow data structure as a 
dynamic hash table allows access to a trace arrow by 
its origin in amortized constant time; such a hash table 
requires O(T) space, which is non-critical for the space 
bound derived below. In the following, we assume con-
stant time access.

Lemma 6  SparseEnergyMinimization  (including 
storing and garbage collection of trace arrows) calculates 
W (1, n) in O(n2 + nZ) time and �(n+ Z + T ) space, 
where Z is the total number of candidates and T is the max-
imum number of accessible trace arrows to non-candidates.

Proof  The number of trace arrows is quadratically 
limited and the criterion for storing a trace arrow is 
checked in constant time, such that the time complexity 
is not changed. The time for garbage collection of trace 
arrows is at most quadratic, because GarbageCollect 
is called at most once per matrix entry from SparseEn-
ergyMinimization. Furthermore, each time it calls 
itself it removes one trace arrow. Each trace arrow can 
be inserted and removed only once by SparseEner-
gyMinimization. The space complexity depends on 
the maximum number of trace arrows that have to be 
stored simultaneously. Without garbage collection, this 
is the number of trace arrows to non-candidates. Due to 
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the garbage collection, we reduce this to the maximum 
number of simultaneously accessible trace arrows to non-
candidates. � �

Note that since candidates correspond to V-matrix 
entries, Z is bounded by the number of matrix entries in 
V; moreover, T is bounded by this numbers since each 
entry has at most one trace arrow. Thus, SparseMFE-
Fold is guaranteed to stay in the time and space com-
plexities of the original algorithm.

Empirical results
We implemented the algorithm SparseMFEFold in 
C++ utilizing the Vienna RNA library  [7] for calculat-
ing the single loop energies. Consequently, we computed 
exactly the same energies and structures as RNAfold of 
the Vienna RNA package 2.x [7] (without dangling ends, 
i.e., option -d0.) This implementation allows us to study 
the suggested strategies empirically.

For evaluating the method, we folded all single-mole-
cule RNA sequences from the RNA STRAND v2.0 data-
base  [1] with SparseMFEFold and RNAfold from the 
Vienna RNA package. Moreover, we folded the sequences 
by SparseMFEFold without GC to assess its perfor-
mance impact. All experiments were performed on a 
Lenovo Thinkpad T431s with 12GB memory and Intel 
i5-3437U CPU. We measured run-time as user time and 
space consumption as maximum resident set size.

Time and Space Performance Dependence on Sequence 
Length Figure  5 compares the performance of our 
SparseMFEFold algorithm with RNAfold on the RNA 

STRAND sequences. For the shorter sequences (shorter 
than 1000 bases), our algorithm’s performance is on-par 
with RNAfold. However, we observe strong space savings 
(and slight time improvements) for longer RNAs.

The same plot represents the performance of our algo-
rithm without garbage collection (SparseMFEFold 
w/o GC). It is evident from Fig.  5 that both versions of 
SparseMFEFold perform similarly in terms of run time; 
thus, remarkably, GC does not cause significant time over-
head. While already SparseMFEFold w/o GC is superior 
to RNAfold in terms of space consumption, we see a major 
improvement due to garbage collection, such that—in com-
parison—SparseMFEFold’s space consumption increases 
only minimally over the range of sequence lengths.

We further used a non-linear regression model to 
find the best fitted curve of the form o+ f × ne (where 
o is the offset, f is the coefficient, n is the length of the 
sequence, and e is the exponent) explaining the empiri-
cal performance of each algorithm on our data set. 
Figure  5 represents these curves in dashed lines. We 
found the best fit for the time of RNAfold to be not 
cubic but with an exponent of about 2.4; SparseMFE-
Fold has an improved best fitted exponent of about 2.1. 
We note that in both cases the f values are of the same 
order (1.01× 10−7 vs. 6.9× 10−7, respectively) and the 
offset values are negligible (1.0× 10−2 vs. −3.35× 10−3, 
respectively). In terms of space, however, the difference 
of the performance of the two algorithms is more signifi-
cant; the best fitted curve for RNAfold has the exponent 
value of 1.98 ( f = 5.3× 10−6, and o = 3.6), while the 
best exponent for SparseMFEFold has the value of 1.44 
( f = 3.1× 10−5, and o = 4.3).
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Sparsification Strength Remarkably, our results on the 
entire RNA STRAND sequences show very little varia-
tion in sparsification strength. This observation is close 
to (negatively) answering the long standing question, 
whether there are RNA classes with particular susceptibil-
ity to sparsification. Adding to this observation, we inves-
tigated whether sparsification has more significant (or 
weaker) effect for naturally occurring RNAs compared to 
random sequences. Thus, we created di-nucleotide shuf-
fle of our pool of benchmark sequences and measured 
the performance of SparseMFEFold on these random 
sequence under the same conditions. Figure 6 summarizes 
the results of this shuffling experiment, reporting time and 
space. Evidently, no significant difference is observed.

Detailed Performance Comparison on Long RNAs 
Tables  1 and  2 summarize results from folding the 80 
longest RNA sequences from the RNA STRAND v2.0 
database [1]. This sequence set comprises of all RNAs of 
length greater or equal 2500, for which a single molecule 
fold is available. These sequences have a median length 
of 2904 and a maximum of 4381. Our comparison to 
RNAfold, currently the fastest RNA folding implementa-
tion, shows that our sparsified algorithm is significantly 
faster and uses significantly less space (Table  1). Note 
that even the median resident set size of our method is 
about six-times lower than that of RNAfold. To empiri-
cally study the effects of our optimizations in SparseM-
FEFold, we further provide number of candidates and 
trace arrows (Table  2). For the trace arrows, we report 
minimum, median, and maximum of the final number 
of trace arrows (Final), passed to the fold reconstruc-
tion algorithm; the maximum number of trace arrows 
(Maximum), determining the memory foot print; the sav-
ings due to avoiding arrows to candidates (Avoided); and 

garbage collection of inaccessible arrows (GC-Removed). 
The latter two numbers show the importance of these 
two optimizations for the entire approach; together these 
strategies reduce the (median) number of stored trace 
arrows to only about 9 % (94,443/1,038,525).

Discussion and conclusions
We identified and solved the fundamental problem of 
efficient fold reconstruction in time- and space-efficient 
sparsified MFE folding of RNAs while guaranteeing pre-
diction of the MFE structure. This problem is not pre-
sent in simple variants of RNA folding such as base pair 
maximization, but emerges only in realistic free energy 
minimization problems. Remarkably, Backofen et al. did 
not mention this problem when discussing the exten-
sion of their time and space-efficient base pair maximi-
zation algorithms to MFE prediction. Here, we provide 
an elegant and practical solution, which introduces gar-
bage collection as a novel technique to RNA folding. The 
method is presented and studied for the most-common 
case of pseudoknot-free RNA secondary structure pre-
diction using the Turner energy model.

Our algorithm, SparseMFEFold, outperforms RNAfold 
both in terms of time and space. We note that this per-
formance improvement is specifically more pronounced 
for longer sequences. Based on our experiments on RNA 
sequences of RNA STRAND database, we did not notice 
any difference in performance of our algorithm corre-
sponding to different families of structures. We further 
compared performance of our algorithm on artificial 
sequences with the same length as RNA sequences in RNA 
STRAND database. To create such artificial sequences, we 
performed di-nucleotide shuffle for each RNA STRAND 
sequence. By shuffling, we demonstrated that there is no 
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Fig. 6  Sparsification of true and shuffled RNAs. We compare the time and space consumption of SparseMFEFold for RNA STRAND instances versus 
di-nucleotide shuffled RNA STRAND instances. The dashed lines show the identity (black) and linear fit (orange), which are almost indistinguishable
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Table 1  Time and  space performance of  SparseMFEFold 
compared to RNAfold

Run-time (s) Memory: resident set size 
(kB)

RNAfold SparseMFEFold RNAfold SparseMFEFold

Minimum 16.9 15.37 31,800 5932

Median 29.7 22.89 42,828 7262

Maximum 89.9 57.36 88,548 9048

Table 2  Counts of candidates and trace arrows in SparseM-
FEFold

Number of Number of trace arrows

candidates Final Maximum Avoided GC-removed

Minimum 17,032 49,860 52,293 137,892 467,230

Median 41,215 92,967 94,443 237,717 706,365

Maximum 71,508 147,150 148,947 419,825 1,748,491

significant difference in the performance of SparseMFE-
Fold (and thus sparsification in general) between natu-
rally occurring RNA sequences and their di-nucleotide 
shuffled sequences. This suggests that there is no special 
class of RNAs with either exceptionally strong or weak 
susceptibility to sparsification; in other words, sparsifica-
tion is universally advantageous for all classes of RNAs.

Importantly, the introduced techniques are not specific 
to the presented folding scenario, but are applicable to 
many—even fundamentally more complex—variants of 
RNA folding, such as the MFE prediction of RNA–RNA-
interactions and efficient pseudoknot folding algorithms. 
Similar to the case of time-efficient sparsification, the 
presented techniques will have even stronger impact on 
complex folding algorithms. Thus, we see the strongest 
potential of our method in reducing the often prohibitive 
space requirements of such algorithms.
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