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Abstract
Background  Breast radiotherapy (RT) induces diffuse myocardial changes, which may increase the incidence of 
heart failure with preserved ejection fraction. This study aimed to evaluate the early signs of diffuse fibrosis after RT 
and their evolution during a six-year follow-up.

Methods  Thirty patients with early-stage left-sided breast cancer were studied with echocardiography and 
electrocardiography (ECG) at baseline, after RT, and at three-year and six-year follow-up visits. Echocardiography 
analysis included an off-line analysis of integrated backscatter (IBS). ECG was analysed for fragmented QRS (fQRS). 
In addition, cardiac magnetic resonance (CMR) imaging was performed at the six-year control. The left ventricle 
16-segment model was used in cardiac imaging, and respective local radiation doses were analysed.

Results  Regional myocardial reflectivity in inferoseptal segments increased by 2.02 (4.53) dB (p = 0.026) and the 
percentage of leads with fQRS increased from 9.2 to 16.4% (p = 0.002) during the follow-up. In CMR imaging, abnormal 
extracellular volume (ECV) and T1 mapping values were found with anteroseptal and apical localization in a median 
of 3.5 (1.00–5.75) and 3 (1.25–4.00) segments, respectively. A higher left ventricle radiation dose was associated with 
an increased likelihood of having changes simultaneously in CMR and echocardiography (OR 1.26, 95% Cl. 1.00–1.59, 
p = 0.047).

Conclusions  After radiotherapy, progressive changes in markers of diffuse myocardial fibrosis were observed in a 
multimodal manner in ECG and echocardiography. Changes in echocardiography and abnormal values in CMR were 
localized in the septal and apical regions, and multiple changes were associated with higher radiation doses.

Keywords  Adjuvant Radiotherapy, Breast neoplasms, Cardiac Electrophysiology, Cardiotoxicity, Echocardiography, 
Endomyocardial Fibrosis, Multiparametric magnetic resonance imaging
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Background
Radiotherapy (RT) remains an essential part of cancer 
therapy despite remarkable advances in medical cancer 
treatment. Refinements in RT treatment protocols have 
reduced adverse effects on healthy tissue, but some direct 
radiation and scattering unavoidably affects nearby tis-
sue. Breast RT induces slowly evolving fibrotic changes in 
cardiac structures, causing excess late cardiac morbidity 
and mortality [1, 2].

The risk of heart failure with preserved ejection 
fraction (HFpEF) is increased 16-fold in breast can-
cer patients with prior RT compared to nonirradiated 
matched controls[3] Myocardial diffuse fibrosis and 
changes in diastology are found in patients with prior 
chest RT[1, 4] However, there is little knowledge about 
the evolution of diffuse fibrosis in patients treated with 
RT. In this study, the evolution and distribution of dif-
fuse myocardial fibrosis were evaluated prospectively in 
a multimodal manner, including CMR imaging, echocar-
diography, and electrocardiography (ECG).

Methods
Patient selection
This single-centre prospective study included thirty eli-
gible early-stage female left-sided breast cancer patients. 
The inclusion and exclusion criteria have been described 
previously in detail[5] In addition, a clinical contraindica-
tion for the CMR study was an exclusion criterion. The 
study was conducted from June 2011 to April 2019 at 
the Heart Hospital and Department of Oncology, Tam-
pere University Hospital, Finland. The CMR studies were 
performed at the Heart Imaging Center, Helsinki Univer-
sity Hospital, at the end of the six-year follow-up period. 
The study complied with the Helsinki Declaration, and 

the local ethics committee approved the study proto-
col (R10160 and R11149). All participants signed an 
informed consent form before study enrolment.

Radiotherapy
After surgery, all patients received adjuvant conformal 
3D RT with modern RT techniques (3D-CRT). The treat-
ment was delivered according to the institutional clinical 
guidelines. All patients underwent 3D computed tomo-
graphic treatment planning and were scanned under 
free breathing, as the voluntary deep-inspiration breath-
hold technique (DIBH) was not implemented as clinical 
practice in our unit then. The radiation dose was either 
50 Gy in 2 Gy fractions with an additional boost of 16 Gy 
in 2 Gy fractions to the tumor bed if clinically indicated 
or 42.56  Gy in 2.66  Gy fractions (hypofractionation). A 
mean heart dose constraint of 5 Gy was used in the treat-
ment planning.

The full details of treatment planning and contour-
ing of the primary heart structures have been described 
previously [6]. A dedicated clinical oncologist (MM) 
performed the left ventricle myocardial segment con-
touring with the 16-segment model, adapting the method 
described by Tang et al. as shown in Fig. 1 [7].

Cardiac examinations
Cardiac examinations were performed 6 ± 8 days prior 
to RT, within three days of completion of the RT, and 
three (2.5–3.3 years) and six years (5.7–6.2 years) after 
RT. Echocardiography was performed using a 1–5 MHz 
matrix-array X5-1 transducer. Baseline to three-year con-
trol examinations were performed with a Philips iE33 
ultrasound machine (Bothell, WA, USA). Due to the 
clinical update of equipment, the six-year control was 

Fig. 1  Radiotherapy fields in computed tomography treatment planning. Left ventricle segments are presented. Continuous color scale illustrates radia-
tion doses received in the axial (A) and short-axis (B) views. Gy, gray
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performed using a Philips Epiq7 ultrasound machine 
(Bothell, WA, USA). The off-line analysis of integrated 
backscatter (IBS) was performed using Philips Qlab ver-
sion 13 (Bothell, WA, USA). The IBS analysis is explained 
in Additional file 1: Figure S1. A change from baseline 
to the six-year control was used in the final analysis. An 
increase of ≥ 100% in reflectivity was assessed to be a sig-
nificant change.

A 12-lead ECG was recorded at each study visit. A vis-
ible notch in any part of the QRS complex in several con-
secutive beats was defined as a fragmented QRS (fQRS) 
(Additional file 2: Figure S2). Each ECG was analysed by 
the same investigator (ST). All ECGs exhibited a normal 
sinus rhythm, and all the analysed QRS complexes had a 
duration less than 120 ms.

All study subjects underwent CMR imaging using a 
3T Magnetom Skyrafit system (Siemens, Erlangen, Ger-
many). Cine-images were acquired using a balanced 
steady-state gradient echo (TrueFISP) sequence. All stud-
ies included standard long and short axis images. T1- and 
T2-mapping sequences were included in the standard 
protocol using a shortened Modified Look-Locker Inver-
sion-recovery (ShMOLLI) sequence (Additional file 3: 
Figure S3). Pre- and 12  min post-gadolinium injection 
T1-mapping sequences were obtained to enable ECV 
measurements. All studies were analysed using Medis 
Suite Qmass, QStrain, T1 mapping, and T2/T2* mapping 

cardiac imaging programs (Medis Medical Imaging Sys-
tems, Leiden, The Netherlands).

Statistical analysis
The data are presented as the means with standard devia-
tions (SD) for variables with normal distributions, as 
medians with quartiles (Q1–Q3) for nonnormally dis-
tributed variables, or as numbers with percentages for 
categorical variables. The differences between groups 
were tested with the independent samples t-test or 
Mann–Whitney U test where appropriate. The differ-
ences in the measurements were tested with the paired 
samples t-test, Friedman’s test, Cochran’s Q test, or the 
Wilcoxon signed-rank test. Correlations were estimated 
using Spearman’s rank correlation coefficients. Multivari-
able linear regression analyses were performed to model 
the changes in fQRS, T1, ECV, and IBS values, adjusting 
the models with body mass index (BMI), hypertension, 
current smoking status, and mean left ventricle radia-
tion dose. Binary logistic regression analysis was used to 
explain changes for groups formed based on the extent 
of abnormal imaging values. The analysis was performed 
with IBM SPSS Statistics software, version 27.0 for Win-
dows (Armonk, NY, USA). All p-values are two-sided. All 
p-values less than 0.05 were considered significant.

Results
General characteristics
The baseline patient characteristics are shown in Table 1. 
All patients received RT as planned and completed the 
six-year follow-up uneventfully.

Radiation doses
The mean heart radiation dose in the study population 
was 2.85  Gy (1.71–3.87  Gy). The mean heart dose was 
< 2  Gy in nine patients (30.0%), 2–4  Gy in 14 (46.7%), 
and > 4  Gy in seven (23.3%). The radiation doses varied 
remarkably between different left ventricle segments; 
please see Additional file 4: Table S1. The highest doses 
were in the apical and anterior segments, whereas the 
basal and inferior segments had the lowest doses. Fig-
ure  2 illustrates the distribution of radiation dose 
between the left ventricle segments.

CMR
At six years, CMR-assessed left ventricle end-diastolic 
and end-systolic volumes, ejection fraction, and mass 
were within normal range: 73.53 (15.75) mL/m2, 22.87 
(7.31) mL/m2, 69.13 (7.04) %, and 48.53 (8.86) g/m2, 
respectively. In Table  2, regional values are presented. 
No significant late gadolinium enhancement (LGE) was 
observed in any of the patients. The incidence of abnor-
mal segmental findings is presented in Fig.  3. For seg-
mental values, please see Additional file 5: Table S2.

Table 1  Baseline characteristics
Mean SD

Age (years) 62.1 6.74

BMI (kg/m2) 26.58 4.23

Systolic blood pressure (mmHg)a 151 19

Diastolic blood pressure (mmHg)a 83 11

n %
Smoking
Current 3 10

Previous 5 16.7

Concurrent diagnosis
Hypertensionb 11 36.7

Hypercholesterolemia 1 3.3

Hypothyreosis 5 16.7

No concurrent other diagnoses 16 53.3

Baseline medication
β-blocker 3 10

ACE-inhibitors/ARBs 8 26.7

Diuretics 6 20

Statins 1 3.3

Aspirin 2 6.7

Hormonal therapy
Use of aromatase inhibitor 5 16.7

Use of tamoxifen 1 3.3
BMI, body mass index; ACE-inhibitors, angiotensin-converting enzyme 
inhibitors; ARBs, angiotensin receptor blockers. a measured at the first visit, b 
defined as the medication-requiring state.
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T1 mapping. The global median T1 was 1235 ms (1199–
1273 ms). The incidence of abnormal T1 values (> 1300 
ms) varied between segments, being most frequent in the 
apical and anteroseptal segments. Twenty-seven patients 
(90%) had at least one segment with abnormal T1 values 
(range 1–12). The median for number of abnormal seg-
ments was 3.00 (1.25–4.00), corresponding to 18.75% 
(7.81–25.00%) of the segments. In the multivariable anal-
ysis, hypertension predicted higher T1 values in apical 
segments (β = 0.461, p = 0.017).
T2 mapping. The global median T2 was 35.54 ms (34.61–
38.23 ms). Only two patients (6.67%) had abnormal val-
ues (> 60 ms) in any of the segments. One patient had 
abnormal values in two apical segments, the other in five 
basal segments.
ECV mapping. The global ECV was 28.0% (26–30.2%). 
The incidence of abnormal ECV values (> 30%) varied 
between different segments, being most frequent in the 
apical and septal segments. In total, twenty-four patients 
(80%) had abnormal ECV values in at least one of the seg-
ments (range 1–13). The median number of abnormal 
segments was 3.50 (1.00–5.75), corresponding to 21.88% 

(6.25–35.94%) of the segments. In the multivariable anal-
ysis, hypertension predicted higher ECV values in apical 
segments (β = 0.416, p = 0.030).

Integrated backscatter
The change from baseline to six-year follow-up visit was 
measured with IBS analysis. The global IBS change was 
1.04 (2.80) dB (p = 0.060). The most significant change 
was seen in inferoseptal segments, from 9.29 (3.35) dB 
at baseline to 11.76 (4.30) dB at six years (p = 0.026). Val-
ues were regarded as abnormal if they increased ≥ 100%. 
Twenty-three patients (77%) had at least one segment 
with abnormal IBS values (range 1–6). The median num-
ber of abnormal segments was 1.00 (1.00–3.00), cor-
responding to 6.25% (6.25–18.75%) of the segments. In 
the multivariable analysis, BMI (β = 0.589, p = 0.009) and 

Table 2  Global and regional T1, ECV, T2, and IBS values
Global Basal Mid Apical p

T1 (ms) median (Q1-Q3) 1235 (1199–1273) 1220 (1193–1262) 1219 (1179–1268) 1252 (1168–1319) 0.3931

*% abnormal 90.00 53.33 50.00 66.67 0.5292

ECV (%) median (Q1-Q3) 28.05 
(26.11–30.23)

27.40 
(25.23–28.78)

26.69 
(24.87–29.29)

28.98 
(26.65–32.51)

0.0081

*% abnormal 80.00 46.67 43.33 60.00 0.0382

T2 (ms) median (Q1-Q3) 35.54 
(34.61–38.23)

35.82 
(34.29–37.39)

34.88 
(34.03–36.97)

36.85 
(34.40–41.03)

0.0101

*% abnormal 6.90 3.45 0.00 3.45 0.3682

IBS (dB) mean (SD) 1.04 (2.80) 1.99 (3.93) 1.06 (3.73) -0.79 (4.16) 0.0801

*% abnormal 76.67 46.15 61.54 32.14 0.3682

One patient’s T2 values were missing, and two to four patients’ global or regional IBS values were missing and could not be evaluated. ECV, extracellular volume; 
IBS, integrated backscatter change from baseline to 6-year follow-up; *% abnormal, percentage of patients with abnormally high segmental values in a respective 
region; dB, decibel; p, p-value from 1Friedmans test or 2Cochran’s Q test for the difference between the basal, mid, and apical regions.

Fig. 3  Incidence of abnormal segmental values of the left ventricle in a 
bulls-eye configuration. T1 (A), ECV (B), and IBS (C) values are presented 
according to the same scale (0 – 50%), whereas T2 is scaled from 0–5%. 
The same color scale is used for every variable where values increase while 
the color changes from purple to yellow. ECV, extracellular volume; IBS, 
integrated backscatter

 

Fig. 2  The mean segmental left ventricle radiation dose as a composite 
of data from all patients in a bulls-eye representation. The dose color map 
uses a log2 scale where yellow areas receive the highest dose and transi-
tion towards purple equals decreasing dose. Gy, gray
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hypertension (β = -0.382, p = 0.042) predicted IBS change 
when the whole left ventricle was assessed.

Fragmented QRS
Eighteen patients (60%) had fQRS in at least one lead 
(range 1–4 leads) at baseline. A spontaneous correction 
of some or all fragmentation changes was observed in 
twelve patients during the six-year follow-up.

At six years, twenty-four patients (80%) had fQRS in 
one to five leads, including eight patients (26.7%) with-
out fQRS at baseline. Novel changes (range 1–5 leads) 
were seen in twenty (66.7%) patients’ ECGs and the total 
percentage of leads with fQRS increased from 9.2 to 
16.4% (p = 0.002) during the follow-up. Fourteen patients 
(46.7%) had new fragmentation at least in two different 
leads. For the distribution of changes, please see Fig. 4.

Patients were analysed based on whether they had 
more than one lead with a new fQRS during the six-year 
follow-up. The group with multiple new fragmentation 
changes (n = 14) had a statistically lower left ventricle 
radiation dose (3.77 vs. 8.04 Gy, p = 0.015) and were less 
frequently hypertensive (29% vs. 44%, p = 0.389). A higher 
left ventricle dose was associated with fewer new fQRS in 
the multivariable analysis (β = -0.569, p = 0.013).

Regional analysis combining multiple changes
Additional analyses were performed considering the 
extent of abnormal values in T1, ECV, and IBS in the 
different segments. There was no correlation between 
individual segmental or regional changes and RT doses. 
However, five patients (16.7%) had simultaneous abnor-
mal values in T1, ECV, and IBS in the same segments. 
The patients with abnormal values in all three analy-
ses had a higher left ventricle dose (8.04 Gy vs. 4.74 Gy, 
p = 0.108) than the rest, although this did not reach statis-
tical significance. In the binary logistic regression analy-
sis, increasing left ventricle radiation dose was associated 
with an increase in the likelihood of having changes in 
all three measurements (OR 1.26, 95% Cl. 1.00–1.59, 
p = 0.047).

Discussion
This multimodality imaging study showed that changes 
indicating diffuse myocardial fibrosis were progressive 
(IBS and ECG) during a six-year follow-up period, and 
they were localized in the RT-prone septal and apical seg-
ments in the echocardiography and CMR analysis. An 
association with radiation dose was seen when multiple 
parameters were combined.

Fig. 4  Fragmented QRS during the six-year follow-up. The leads are arranged according to the Cabrera lead system in order to present the changes in 
anatomical order
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Radiotherapy-induced myocardial changes
A key mechanism of RT-induced cardiotoxicity is the 
development of diffuse myocardial fibrosis[1] Histologi-
cal studies have verified the development of fibrosis in 
later phases after chest RT, with a more severe impact 
after a higher radiation dose [1, 8].

Diffuse fibrosis is commonly present in the early phases 
of several heart disorders, and the extent of fibrosis has 
been associated with the severity of clinical symptoms[9] 
In fact, Saiki et al. have shown that 8% of breast cancer 
patients treated with RT developed heart failure within 
six years of the treatment[3] Most commonly, patients 
presented with HFpEF and a higher RT dose was associ-
ated with elevated end-diastolic pressure and left ventric-
ular stiffness[3, 4] Therefore, the development of diffuse 
myocardial fibrosis after breast RT has a high clinical 
importance, and its early recognition is prudent for prog-
nostic and therapeutic reasons. However, there is a lack 
of studies assessing these modalities in patients treated 
with RT without chemotherapy.

Diffuse myocardial fibrosis in CMR
The role of CMR in oncology has been established, and 
growing evidence endorses the use of CMR in evaluat-
ing cancer patients receiving systemic cancer therapy[10] 
Currently, CMR is regarded as the radiological gold stan-
dard in determining diffuse myocardial fibrosis, char-
acterized by an increase in native T1 and ECV values, 
which correlate with histological fibrosis findings [10, 
11].

Studies of patient groups receiving chemotherapy and 
RT include lymphoma and breast, lung, and oesophagus 
cancer patients[12–17] It seems that the first year after 
the treatment is characterized by an increase in T1 and 
T2 values in CMR without a clear RT dose relationship, 
possibly presenting only oedematous tissue change in the 
early phase[15, 17] In later phases after RT, an increase 
in ECV has been observed with a linear dose association 
with segmental cardiac radiation doses in a study by de 
Groot et al.[12] Furthermore, Bergom et al. showed a 
correlation between a higher cardiac RT dose and myo-
cardial mass in breast cancer patients[16] Therefore, 
it seems that while tissue oedema changes dominate 
the first year, an increase in myocardial mass and ECV 
becomes evident in the later phase, indicating the evolu-
tion of diffuse fibrotic changes. However, all these studies 
included patients with combination therapies.

In our study, 90% and 80% of the patients (n = 27 and 
n = 24) presented abnormal segmental values in T1 and 
ECV mapping, respectively. The proportion of abnor-
mal myocardial segments was 18.75% in T1 mapping and 
21.88% in ECV mapping, a significant proportion con-
centrated in the apical and anteroseptal areas. As RT is 
known to induce diffuse myocardial fibrosis, our finding 

of changes indicating diffuse myocardial fibrosis in the 
areas of higher radiation dose is noteworthy. However, 
a dose relationship with a segmental radiation dose was 
not evident comparing single parameters, as has been the 
case in other studies [14, 15].

While 36.7% of our patients had hypertension at base-
line and an increase in the T1 and ECV values have been 
observed in hypertensive patients, this acts as a possible 
confounding factor. However, T1 and ECV elevation has 
been remarkable only among patients with co-occurring 
left ventricular hypertrophy, which was not present in 
our study population[18] Besides apical segments, we 
found no association between hypertension and T1 or 
ECV. There is no evidence that hypertension would cause 
isolated CMR changes; therefore, RT is the most plau-
sible explanation for the recorded abnormal values [18].

Integrated backscatter
Integrated backscatter measures myocardial reflectivity. 
The first studies showed increased values with histologi-
cally verified replacement scars[19] Later studies indicate 
that myocardial reflectivity increases for various reasons, 
including hypertrophic cardiomyopathy and ischemia[20, 
21] In our previous study, we showed that myocardial 
reflectivity increases after RT in anterior RT-prone areas 
in contrast to posterior parts [22].

In this study, all left ventricle segments were studied. 
A doubling of reflectivity was observed in 77% of our 
patients in at least one segment. Overall, 6.3% of the seg-
ments displayed a doubling of myocardial reflectivity, 
indicating the evolution of myocardial changes. Rising 
baseline BMI predicted a more significant change in left 
ventricle IBS values in our study. Obesity has been previ-
ously linked to higher IBS values, and it may predispose 
the heart to the cardiotoxicity of RT [23, 24].

Fragmented QRS
The presence of fQRS has been associated with abnor-
mal myocardial activation and has been investigated 
in multiple cardiac diseases[25] It has been shown that 
fQRS holds poor prognostic features[26] An association 
between fQRS and diffuse fibrosis has been established 
previously, showing an association between fQRS and 
CMR findings[27] Furthermore, Konno et al. found that 
the number of leads with fQRS was associated with the 
extent of CMR findings in hypertrophic cardiomyopathy 
patients, indicating that fQRS can be used both quali-
tatively and quantitatively to detect myocardial fibrosis 
[28].

Knowledge about fQRS after RT is scarce. In one study, 
Adar et al. [29]. followed 52 breast cancer patients treated 
with RT. In total, 37% of the patients developed a new 
fQRS during a one-year follow-up. They also observed 
an association between RT dose and the development of 
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fQRS. However, 86% of their patients also received che-
motherapy. In our study, a total of 66.7% of the patients 
accumulated new fragmentation changes, and half of the 
patients (47%) had fQRS in multiple leads. The preva-
lence of leads with fQRS increased from 9.2 to 16.4%. To 
our knowledge, this is the first study to present a pro-
gressive accumulation of fQRS after solely RT-treated 
patients.

We found an unexpected inverse association between 
new fQRS and radiation dose. Patients with multiple new 
fQRS also had hypertension less frequently, although this 
was not statistically significant. While it is counter-intui-
tive that a higher RT dose would cause fewer changes in 
the ECG, it can be speculated whether the hypertension 
medication protected patients from RT-induced cardio-
toxicity, as we know that these medications hold cardio-
protective qualities[30] In addition, this could explain 
why hypertension predicted a decrease in IBS. Addition-
ally, the cancellation of ECG changes in anatomically 
opposite myocardial segments with advancing myocar-
dial changes could explain the seemingly counter-intui-
tive results.

Association of multiple changes with left ventricle 
radiation dose
We found an association with left ventricle RT dose in 
the situations where abnormal values were observed in 
the same segment with CMR (T1 and ECV) and echo-
cardiography (IBS). This was most often seen apically 
and anteroseptally, where the high RT doses were deliv-
ered. However, no direct segmental level correlation was 
found. This might be due to various reasons, including 
imprecision between various imaging modalities con-
sidering the segmental data level. However, an associa-
tion with the radiation dose was evident when the impact 
was high enough to simultaneously induce changes in 
the same segment in both CMR and echocardiography. It 
may be that milder impact was diluted by imaging inac-
curacies, while only a more powerful effect with multiple 
changes produced an association with radiation heart 
doses.

Clinical implications
Our study endorses the results of previous studies indi-
cating the evolution of diffuse myocardial fibrosis after 
RT [12, 13, 15] In addition, our study is the first prospec-
tive follow-up study concentrating on findings of diffuse 
fibrosis in patients treated with postoperative RT without 
chemotherapy, showing its progressive nature. The early 
recognition of RT-induced myocardial fibrosis might 
open a window for effective early treatment, including 
the diligent management of other contributing factors, 
such as hypertension, as well as new specific treatment 
choices for HFpEF [31].

Limitations
There are several limitations to be acknowledged. First, 
the study population was small and not powered enough 
to show a statistically meaningful correlation. Second, the 
results did not translate to clinically significant adverse 
events, most likely due to too short follow-up time. Third, 
there is evidence that cancer itself can cause changes in 
the myocardium shown by the CMR[32] This could not 
be excluded since there was no baseline CMR imaging. 
Fourth, there were technical issues with the imaging. In 
contrast to CMR and echocardiography imaging, CT 
images were not ECG-gated or acquired with a breath-
hold. This might have contributed to the missing seg-
mental associations. In addition, we acknowledge that 
IBS is an angle-sensitive measurement also affected by 
depth. However, to overcome difficulties caused by angle 
and depth, a relative change in tissue reflectivity during 
the follow-up period was used instead.

Conclusion
During a six-year follow-up, multimodality imaging iden-
tified an accumulation of the markers indicating diffuse 
fibrosis in RT-prone regions of the left ventricle. An asso-
ciation with RT dose was found when multiple modalities 
were combined.
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