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Abstract 

Purpose  This study was to improve image quality for high-speed MR imaging using a deep learning method for 
online adaptive radiotherapy in prostate cancer. We then evaluated its benefits on image registration.

Methods  Sixty pairs of 1.5 T MR images acquired with an MR-linac were enrolled. The data included low-speed, high-
quality (LSHQ), and high-speed low-quality (HSLQ) MR images. We proposed a CycleGAN, which is based on the data 
augmentation technique, to learn the mapping between the HSLQ and LSHQ images and then generate synthetic 
LSHQ (synLSHQ) images from the HSLQ images. Five-fold cross-validation was employed to test the CycleGAN model. 
The normalized mean absolute error (nMAE), peak signal-to-noise ratio (PSNR), structural similarity index measure-
ment (SSIM), and edge keeping index (EKI) were calculated to determine image quality. The Jacobian determinant 
value (JDV), Dice similarity coefficient (DSC), and mean distance to agreement (MDA) were used to analyze deform-
able registration.

Results  Compared with the LSHQ, the proposed synLSHQ achieved comparable image quality and reduced imag-
ing time by ~ 66%. Compared with the HSLQ, the synLSHQ had better image quality with improvement of 57%, 3.4%, 
26.9%, and 3.6% for nMAE, SSIM, PSNR, and EKI, respectively. Furthermore, the synLSHQ enhanced registration accu-
racy with a superior mean JDV (6%) and preferable DSC and MDA values compared with HSLQ.

Conclusion  The proposed method can generate high-quality images from high-speed scanning sequences. As a 
result, it shows potential to shorten the scan time while ensuring the accuracy of radiotherapy.
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Introduction
MR-linac is an innovative linear accelerator integrated 
with a magnetic resonance imaging (MRI) system. It 
enables the use of online adaptive planning based on the 
daily patient anatomical changes during every fraction 
[1–4]. The imaging system of Unity (Elekta) can currently 
provide 1.5  T low-speed, high-quality (LSHQ 3D) and 
high-speed, low-quality (HSLQ 3D) sequences for daily 
adaptive planning and position-validation. The LSHQ 
sequence can provide high-quality daily MR images, but 
its scan time is long for adaptive radiotherapy. The scan 
time of the HSLQ sequence (about 117 s) is much shorter 
than that of LSHQ sequence (about 411 s); however, the 
inferior image quality does not provide sufficient ana-
tomical detail for daily radiotherapy. High quality image 
can provide both the extent and position of a tumor pre-
cisely, so as to irradiate tumors with high accuracy. How-
ever, this time-consuming issue is a significant challenge 
for MRI-based adaptive radiotherapy. Long scan times 
mean that the patient is likely to become uncomfortable 
and move [5]. The case of spontaneous movements will 
generate motion artifacts around the organ of interest.

One way to reduce scan time is to employ a high-speed 
acquisition sequence to acquire under-sampled MRI and 
then improve its quality by postprocessing. Researchers 
have presented several conventional methods to restore 
under-sampled MRI images to achieve high-quality 
images. These methods, which include linear regression 
[6], compressed sensing [7, 8], and random forest [9, 10], 
can provide high quality MR images with short time. 
These conventional techniques can generate MR images 
with a high signal-to-noise ratio and a short scan time. 
However, the influence of extracting hand-crafted fea-
tures and the difficulty of modulating parameters to opti-
mize performance limit their utility for routine clinical 
applications [11].

An alternative method to obtain high-quality MR 
images from low-quality MR images is to apply a deep 
learning approach. Several researchers have used genera-
tive adversarial network (GAN) to produce high-quality 
MR images by inputting low-quality MR images [12, 13]. 
The task of improving the quality of under-sampled MR 
images using U-net was also reported [11, 14]. These 
studies provide several potential solutions to solve the 
problem of long MRI scan time for daily MR-linac appli-
cations [11–14]. However, applying deep learning in 
high-quality image generation is often challenged by 
limited training data, since it can be expensive and time-
consuming to acquire enough paired-data of real-world 
patients in MR-linac.

In this paper, we proposed a deep learning method 
that could steadily improve image quality for acceler-
ated 3D imaging. To address the difficulty of collecting 

patient data on MR-linac, we proposed a data augmenta-
tion technique to generate pseudo-linac MRI from sim-
ulation MRI for model pre-training. To the best of our 
knowledge, this is the first attempt to restore the image 
quality for high-speed scanning for the MR-linac. Differ-
ent from most of current research, we used the real MR 
images, not the simulated images, to train the deep learn-
ing model. The results indicated that our method could 
achieve higher quality image compared with high-speed 
MR scanning and save 66% of the total generation time 
compared with low-speed MR scanning. The proposed 
method also can improve the accuracy of image registra-
tion for radiotherapy.

Methods
Data acquisition
Daily-MRI data were collected from 19 patients with 
prostate cancer who received MRI based adaptive radi-
otherapy (ART) from May 2021 to July 2022. Daily MRI 
scanning was performed on Unity MR-linac (Elekta, 
Stockholm, Sweden) using T2 3D LSHQ and T2 3D 
HSLQ sequences within 30 min, respectively. Sixty pairs 
of 1.5 T MR images in total from nineteen patients who 
received ART were retrospectively analyzed in this study. 
The number of collected paired image sets (LSHQ and 
HSLQ images) varied from 2 to 5 pairs for each patient. 
Imaging data of LSHQ and HSLQ images were 20,400 
slices, respectively, for model training. The acquisition 
time of HSLQ (T2 3D Tra 2 min) and LSHQ (T2 3D Tra) 
sequence were 117  s and 411  s respectively. The MRI 
imaging protocols of HSLQ and LSHQ were shown in 
Additional file 1: Appendix A.

Furthermore, Images of 139 patients with prostate can-
cer were collected to train a data augmentation model to 
increase the size and diversity of the training set. Twenty 
of them, who were not included in the training of main 
model (19 patients), had 3.0  T simulation MR, LSHQ 
MR, and HSLQ MR images (2D slices: n = 6800). Simu-
lation-MRI scanning was performed using a 3.0  T MRI 
simulator (Discovery MR750w, GE Healthcare) with a 
T2-fs-propeller sequence. The Simulation-MRI imaging 
protocols were shown in Additional file 1: Appendix A.

Institutional Review Board approval was obtained for 
this retrospective analysis, and the requirement to obtain 
informed consent was waived. All the patient data were 
de-identified.

Data augmentation and training
To train an effective model, deep learning-based data-
augmentation was applied to increase the size and 
diversity of the training set. The workflow of data-aug-
mentation and the training step were shown in Fig.  1. 
Two cycle-GAN models, which was trained by twenty 



Page 3 of 9Zhu et al. Radiation Oncology          (2023) 18:108 	

pairs of 3.0 T simulation MR, LSHQ MR, and HSLQ MR 
images, that can transform 3.0 T simulation MR images 
to synthetic HSLQ or synthetic LSHQ MR images were 
trained. Secondly, 3.0  T simulation MR images of the 
remaining 119 patients were enrolled into two cycle-
GAN models to generate 119 sets of synthetic HSLQ and 
LSHQ MR images. Subsequently, a pre-trained model for 
high-resolution MR image generation was trained with 
these paired synthetic MR images.

To restore the image quality of high-speed scanning for 
the MR-linac, we used 60 pairs (from 19 patients) of daily 
MR images, including LSHQ and HSLQ MR images, to 
fine-tune the pre-trained model.

Deep learning framework
Figure 2 shows the workflow of the training and testing 
stages in the proposed framework. We employed a Cycle-
GAN which consisted of two discriminators (D) and two 
generators (G) to learn the mapping between the HSLQ 
and LSHQ images [15]. When testing the trained model, 
synthetic LSHQ images were predicted by the Generator 
AB of CycleGAN with HSLQ images as the input [16]. 
The CycleGAN model is expected to obtain high-qual-
ity synthetic LSHQ (synLSHQ) images from the HSLQ 
images with high acquisition speed. The details of the 
generator and discriminator are shown in Additional 
file 1: Appendix B.

Fig. 1  The workflow of data-augmentation and the training
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Experiment
The five-fold cross-validation technique was employed to 
evaluate the proposed method. Here the data set (60 pairs 
of daily MR images) was split into 5 folds for the cross-
validation [17]. Data for the same patient were selected 
into the same fold. During the first iteration, the first four 
folds (2D slices: 16,320) were used to fine-tune the model 
and the remaining one-fold (2D slices: 4080) was used 
to test the model. This process was repeated until each 
of the 5 folds was enrolled as the test set. In this experi-
ment, model training and testing were done on an Nvidia 
GeForce RTX 3090 GPU.

Evaluation
The benefit of the proposed synLSHQ, which was gen-
erated by our model, was analyzed in image quality, and 
registration accuracy.

Efficiency
The acquisition time of HSLQ, LSHQ and synLSHQ gen-
eration time is recorded so as to evaluate the efficiency of 
our proposed method.

Image quality
HSLQ and the proposed synLSHQ images were rigidly 
registered to the reference ones before the evaluation of 

image quality. The LSHQ images were set as the refer-
ence to evaluate the quality of HSLQ and the proposed 
synLSHQ images. The indices included the normalized 
mean absolute error (nMAE) [18, 19], structural similar-
ity index measure (SSIM) [20], peak signal-to-noise ratio 
(PSNR) [21], and edge keeping index (EKI) [22]. Lower 
nMAE, larger SSIM, greater PSNR, and higher EKI values 
indicated better quality synthetic images. The definition 
of these evaluation indexes is presented in Additional 
file 1: Appendix C.

Registration accuracy
The daily LSHQ images were deformable registered 
against the planning CT to perform online adaptive 
radiotherapy process in clinic. Therefore, we evalu-
ated the effect of image quality on deformable regis-
tration accuracy. The workflow of registration analysis 
is shown in Fig.  3. The synLSHQ and HSLQ images 
were deformably registered to the planning CT images, 
respectively. Jacobian determinant value (JDV) and 
geometric indices, which are two methods recom-
mended by the AAPM Task Group 132 [23, 24], were 
used to analyze the registration accuracy. The average 
JDV close to 1 indicates a better registration [24]. The 
CTV and OARs were manually contoured on the plan-
ning CT, deformed HSLQ, and synLSHQ images by 

Fig. 2  Illustration of the training and testing part of the CycleGAN framework
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an experienced clinician. The contours were reviewed 
by two senior clinicians. The consistency of the cor-
responding region of interest on planning CT and MR 
images can reflect registration accuracy. The geometric 
indices included the Dice similarity coefficient (DSC) 
and mean distance to agreement (MDA). A higher DSC 
and lower MDA indicate better image registration.

Results
Here, the performances of the synLSHQ images gener-
ated by the proposed method are analyzed by efficiency, 
image quality, and registration accuracy.

Efficiency
The total averaged  generation time (s/case) of our 
proposed method included HSLQ acquisition time 
(approximately 117  s) and synLSHQ generation time 
(approximately 22.6  s). Compared with the existing 
LSHQ acquisition approach that generally requires 411 s/
case, our highly efficient model (total generation time: 
139.6  s) yields greater promise to generate synLSHQ 
images for routine clinical use. Our proposed method 
(including HSLQ and synLSHQ generation time) saved a 
total time of up to 66% compared with the LSHQ scan-
ning approach.

Image quality
The results of image quality analysis between HSLQ 
and synLSHQ against the LSHQ images are shown in 
Table 1. The synLSHQ images generated by our method 
exhibited superior image quality with nMAE dropping 
by 57%, SSIM rising by 3.4%, PSNR increasing by 26.9%, 
EKI ascending by 3.6% compared with the HSLQ images, 
respectively. The statistical analysis in Table  1 further 
indicates that the image quality of the synLSHQ images 
was improved significantly compared with that of HSLQ 
(p < 0.01 for nMAE, SSIM, PSNR, and EKI).

Figure  4 shows examples and corresponding zoom-
in views of HSLQ, LSHQ, and the generated synLSHQ 
images. The zoom-in areas include the bladder and 
boundary of the pubic symphysis and prostate. The first 
two rows in Fig. 4 show that the boundary and soft tissue 
around the pubic symphysis and prostate in the synLSHQ 
image were easier to distinguish compared with that in 
the HSLQ images. The sky-blue arrow in the synLSHQ 
images shows a clear boundary and lower noise around 
the pubic symphysis. The synLSHQ images also provide 
a favorable image quality around the prostate (red arrow) 
compared with the HSLQ images.

The third and fourth row in Fig. 4 show that the streak 
artifacts appearing around the boundary of bladder (Red 
box) in the HSLQ images were corrected in the synLSHQ 
images. The synLSHQ images were more consistent with 
the LSHQ images.

Fig. 3  Workflow of Registration analysis. Evaluation metrics of 
registration: Jacobian determinant value (JDV); Dice similarity 
coefficient (DSC); Mean distance to agreement (MDA)

Table 1  Quantitative image quality analysis between synLSHQ and HSLQ versus LSHQ images

LSHQ, LSHQ images; HSLQ, HSLQ images; synLSHQ, synthetic LSHQ images; nMAE, normalized mean absolute error; SSIM, structural similarity index measurement; 
PSNR, peak signal-to-noise ratio; EKI, edge keeping index

nMAE SSIM PSNR (dBs) EKI
Mean ± sd Mean ± sd Mean ± sd Mean ± sd

HSLQ–LSHQ 0.14 ± 0.04 0.87 ± 0.02 HSLQ 20.95 ± 2.21 0.55 ± 0.06

synLSHQ–LSHQ 0.06 ± 0.01 0.90 ± 0.02 synLSHQ 26.59 ± 1.72 0.57 ± 0.06

synLSHQ versus HSLQ p < 0.01 p < 0.01 p < 0.01 p < 0.01
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Registration accuracy
The Jacobian determinant and geometric indices (DSC 
and MDA) were performed to analyze the registration 
accuracy for each transformation. When deformed to 

reference planning CT images, the JDVs for the HSLQ 
and synLSHQ images were 0.83 ± 0.07 and 0.88 ± 0.04, 
respectively. The p-value was less than 0.01 and the 
synLSHQ images exhibited a higher mean JDV by 0.05 

Fig. 4  Examples of HSLQ, LSHQ, and synLSHQ images. First column: HSLQ; Second column: LSHQ; Third column: synLSHQ. Red arrow: boundary of 
the prostate; Sky blue arrow: boundary of the pubic symphysis; Red box: boundary of bladder
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compared with the HSLQ images. These results indicate 
that deformed synLSHQ images experience less expan-
sion and shrinking compared with deformed HSLQ 
images.

Examples of the CTV, bladder, rectum, left femur head, 
and right femur head are shown in Fig. 5. The results of 
contours from the synLSHQ images are significantly 
close to that of the reference planning CT images. The 
DSC and MDA results of OARs for each transformation 
are shown in Fig.  6. On average, the synLSHQ images 
improved the DSC of the CTV, rectum, left femur head, 

and right femur head by 0.01 (p > 0.05), 0.03 (p < 0.05), 
0.01 (p < 0.05), and 0.02 (p < 0.05), respectively, and 
reduced the MDA of the CTV, rectum, left femur head, 
and right femur head by 0.13  mm (p > 0.05), 0.24  mm 
(p < 0.05), 0.11  mm (p < 0.05), and 0.22  mm (p < 0.05), 
respectively, compared with the HSLQ images. Mean-
while, the equivalent contours error of the bladder 
(p > 0.05 for both DSC and MDA) were obtained from the 
HSLQ and synLSHQ images. These results demonstrate 
that the volumetric overlap ratio of the synLSHQ and 
planning CT images was higher compared with that of 

Fig. 5  Examples of contours transferred to reference planning CT images. Purple colorwash: contours on planning CT image; Dark Blue line: 
contours on T2 HSLQ image; Sky blue line: contours on the T2 synLSHQ image

Fig. 6  DSC and MDA box plots for the manual contours on the T2 HSLQ and synLSHQ images with respect to the reference planning CT images



Page 8 of 9Zhu et al. Radiation Oncology          (2023) 18:108 

the HSLQ and planning CT images. The Jacobian deter-
minant and the geometric indices demonstrate that the 
proposed synLSHQ can improve the registration accu-
racy compared with HSLQ images.

Discussion
MRI guided adaptive radiotherapy is a useful technique; 
however, its time-consuming nature presents a signifi-
cant challenge. The long period of adaptive treatment 
often affects patient comfort—especially patients with 
diminished bladder capacity. Moreover, long scan times 
also introduce motion artefact in MR imaging. These lim-
itations impede the application of MRI guided adaptive 
radiotherapy. To improve patients’ comfort and reduce 
motion artefact, it is important to decrease the duration 
of each step of adaptive radiotherapy. The proposed syn-
LSHQ has the potential to effectively address this chal-
lenge. In one case, our proposed method saved 66% of 
the total generation time. With process optimization and 
hardware development, this method has the potential to 
further improve efficiency to reduce high-quality MRI 
acquisition time.

There was improvement in nMAE (57%), SSIM (3.4%), 
PSNR (26.9%), and EKI (3.6%) compared with the HSLQ 
images. Overall, synLSHQ generated by the proposed 
method enhances the registration accuracy with a supe-
rior mean JDV (6%) and preferable geometric indices.

Several studies have demonstrated the feasibility of 
deep learning methods for synthesizing high-resolution 
MR images from low-resolution MR images [8, 12, 25]. 
Most of the paired data for training and validation was 
generated using down-sampling post-processing method 
in previous studies. In our study, we proposed a deep 
leaning-based data augmentation technique to overcome 
the problem of limited size and diversity of training data 
in clinic. And then we proposed an effective fine-tune 
method by using real paired data from the MR-linac to 
generate high-quality synthetic MRI images.

The proposed method showed potential for MRI 
guided adaptive treatment of prostate cancer. For the 
application, the first step is to obtain under-sampled MRI 
images using the HSLQ sequence. Then the synLSHQ 
images are generated through the proposed model by 
inputting HSLQ images. Finally, synLSHQ images are 
registered to planning CT images to determine whether 
to perform online adaptive radiotherapy process. As 
shown in the above application scenarios, the proposed 
method can significantly reduce scan time while ensuring 
image quality compared with LSHQ sequence.

Several limitations should be considered in our study. 
Because of lack of enough real-world data, an augmen-
tation technique was used in training of the proposed 
model. There is no fully real-world data-based model 

compared with the proposed model. Fully real-world 
data-based model is meaningful for generating high 
quality MR in short time for precision radiotherapy in 
future work. The proposed method was tested with data 
collected in our department. External validation will be 
required before implementing our proposed model on 
other MR-linac machines. Meanwhile, our proposed 
model was trained for prostate cancer. Other models 
which are trained using data from other types of cancer 
should be carefully evaluated before clinical use.

Conclusion
In conclusion, we proposed a novel method to improve 
image quality and registration accuracy for accelerated 
3D imaging with a 1.5  T MRI radiotherapy system. It 
generates high-quality MRI images from HSLQ scan-
ning sequences to significantly shorten the scan time 
while ensuring the accuracy of radiotherapy.

Abbreviations
MRI	� Magnetic resonance imaging
GAN	� Generative adversarial network
CycleGAN	� Cycle-consistent GAN
LSHQ	� Low-speed, high-quality
HSLQ	� High-speed, low-quality
synLSHQ	� Synthetic LSHQ
TR	� Repetition time
TE	� Echo time
FOV	� Field of view
NAS	� Number of signal averaged
nMAE	� Normalized mean absolute error
PSNR	� Peak signal-to-noise ratio
SSIM	� Structural similarity index measurement
EKI	� Edge keeping index
CTV	� Clinical target volume
OARs	� Organs at risk
JDV	� Jacobian determinant value
DSC	� Dice similarity coefficient
MDA	� Mean distance to agreement

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13014-​023-​02306-4.

Additional file 1. Appendix.

Acknowledgements
Not applicable

Author contributions
JZ did the data analysis and Writing; XC was another major contributor in 
writing the manuscript; YL and BY performed the validation of the model; 
RW performed the data augmentation model; ZY contoured and checked 
the OARs; SQ and ZH collected and prepared the data; JD reviewed and 
edited the manuscript; KM created the ideas, formulated research goals and 
methodology.

https://doi.org/10.1186/s13014-023-02306-4
https://doi.org/10.1186/s13014-023-02306-4


Page 9 of 9Zhu et al. Radiation Oncology          (2023) 18:108 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Funding
This work was supported by the National Natural Science Foundation of China 
(11975313, 12005302). The Beijing Nova Program (Z201100006820058). Beijing 
Natural Science Foundation (7222149).

Availability of data and materials
The raw data supporting the conclusions of this article will be made available 
by the authors, without undue reservation.

Declarations

Ethics approval and consent to participate
For this study anonymized patient data was used. According to our local eth-
ics committee this does not require ethics approval.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 National Cancer Center, National Clinical Research Center for Cancer, Cancer 
Hospital, Chinese Academy of Medical Sciences and Peking Union Medical 
College, Beijing 100021, China. 2 School of Physics and Technology, Wuhan 
University, Wuhan 430072, China. 

Received: 13 January 2023   Accepted: 21 June 2023

References
	1.	 Kontaxis C, Woodhead PL, Bol GH, Lagendijk JJW, Raaymakers BW. Proof-

of-concept delivery of intensity modulated arc therapy on the Elekta 
Unity 1.5 T MR-linac. Phys Med Biol. 2021;66:041t1.

	2.	 Lagendijk JJ, Raaymakers BW, van Vulpen M. The magnetic resonance 
imaging-linac system. Seminar Radiat Oncol. 2014;24:3.

	3.	 Raaymakers BW, Jürgenliemk-Schulz IM, Bol GH, Glitzner M, Kotte ANTJ, 
Van Asselen B, et al. First patients treated with a 1.5 T MRI-Linac: clinical 
proof of concept of a high-precision, high-field MRI guided radiotherapy 
treatment. Phys Med Biol. 2017;62:L41–50.

	4.	 Winkel D, Bol GH, Kroon PS, van Asselen B, Hackett SS, Werensteijn-Hon-
ingh AM, et al. Adaptive radiotherapy: the Elekta Unity MR-linac concept. 
Clin Transl Radiat Oncol. 2019;18:54–9.

	5.	 Bruijnen T, Stemkens B, Lagendijk JJW, van den Berg CAT, Tijssen RHN. 
Multiresolution radial MRI to reduce IDLE time in pre-beam imaging on 
an MR-Linac (MR-RIDDLE). Phys Med Biol. 2019;64: 055011.

	6.	 Zhang Y, Cheng JZ, Xiang L, Yap PT, Shen D. Dual-Domain Cascaded 
Regression for Synthesizing 7T from 3T MRI. In: Medical image computing 
and computer-assisted intervention: MICCAI International Conference on 
Medical Image Computing and Computer-Assisted Intervention. 2018. 
vol. 11070, p. 410–7

	7.	 Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed 
sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–95.

	8.	 Mardani M, Gong E, Cheng JY, Vasanawala SS, Zaharchuk G, Xing L, et al. 
Deep generative adversarial neural networks for compressive sensing 
MRI. IEEE Trans Med Imaging. 2019;38:167–79.

	9.	 Alexander DC, Zikic D, Zhang J, Zhang H, Criminisi A. Image quality 
transfer via random forest regression: applications in diffusion MRI. In: 
Medical image computing and computer-assisted intervention: MICCAI 
International Conference on Medical Image Computing and Computer-
Assisted Intervention. 2014. vol. 17, p. 225–32.

	10.	 Chartsias A, Joyce T, Giuffrida MV, Tsaftaris SA. Multimodal MR synthesis 
via modality-invariant latent representation. IEEE Trans Med Imaging. 
2018;37:803–14.

	11.	 Wu Y, Ma Y, Capaldi DP, Liu J, Zhao W, Du J, et al. Incorporating prior 
knowledge via volumetric deep residual network to optimize the recon-
struction of sparsely sampled MRI. Magn Reson Imaging. 2020;66:93–103.

	12.	 Kim KH, Do WJ, Park SH. Improving resolution of MR images with an 
adversarial network incorporating images with different contrast. Med 
Phys. 2018;45:3120.

	13.	 Quan TM, Nguyen-Duc T, Jeong WK. Compressed sensing MRI reconstruc-
tion using a generative adversarial network with a cyclic loss. IEEE Trans 
Med Imaging. 2018;37:1488–97.

	14.	 Liu F, Feng L, Kijowski R. MANTIS: model-augmented neural neTwork with 
incoherent k-space sampling for efficient MR parameter mapping. Magn 
Reson Med. 2019;82:174–88.

	15.	 Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation 
using cycle-consistent adversarial networks. In: IEEE. 2017.

	16.	 Isola P, Zhu J, Zhou T, Efros AA. Image-to-image translation with condi-
tional adversarial networks. In: 2017 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), p. 5967–76.

	17.	 Rao RB, Fung G. On the dangers of cross-validation. An experimental 
evaluation. In: Proceedings of the SIAM International Conference on Data 
Mining, SDM 2008, April 24–26, 2008. Atlanta

	18.	 Wang W, Lu Y. Analysis of the mean absolute error (MAE) and the root 
mean square error (RMSE) in assessing rounding model. Iop Conf. 
2018;324:012049.

	19.	 Xie H, Lei Y, Wang T, Roper J, Dhabaan AH, Bradley JD, et al. Synthesizing 
high-resolution magnetic resonance imaging using parallel cycle-consist-
ent generative adversarial networks for fast magnetic resonance imaging. 
Med Phys. 2021;49:357.

	20.	 Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: 
from error visibility to structural similarity. IEEE Trans Image Process Publ 
IEEE Signal Process Soc. 2004;13:600–12.

	21.	 Wang T, Lei Y, Fu Y, Wynne JF, Curran WJ, Liu T, et al. A review on medical 
imaging synthesis using deep learning and its clinical applications. J Appl 
Clin Med Phys. 2021;22:11–36.

	22.	 Bhadauria HS, Dewal ML. Image denoising based on adaptive fusion 
of curvelet transform and total variation. Int J Signal Imaging Syst Eng. 
2011;4:220.

	23.	 Brock KK, Mutic S, Mcnutt TR, Hua L, Kessler ML. Use of image registra-
tion and fusion algorithms and techniques in radiotherapy: report of 
the AAPM radiation therapy committee task group No. 132. Med Phys. 
2017;44:e43.

	24.	 McKenzie EM, Santhanam A, Ruan D, O’Connor D, Cao M, Sheng K. 
Multimodality image registration in the head-and-neck using a deep 
learning-derived synthetic CT as a bridge. Med Phys. 2020;47:1094–104.

	25.	 Galbusera F, Bassani T, Casaroli G, Gitto S, Zanchetta E, Tta E, Costa F, et al. 
Generative models: an upcoming innovation in musculoskeletal radiol-
ogy? A preliminary test in spine imaging. Eur Radiol Exp. 2018;2:1–13.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Improving accelerated 3D imaging in MRI-guided radiotherapy for prostate cancer using a deep learning method
	Abstract 
	Purpose 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Data acquisition
	Data augmentation and training
	Deep learning framework
	Experiment
	Evaluation
	Efficiency
	Image quality
	Registration accuracy


	Results
	Efficiency
	Image quality
	Registration accuracy

	Discussion
	Conclusion
	Anchor 23
	Acknowledgements
	References


