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Abstract 

Background:  Stereotactic radiosurgery (SRS) is the preferred treatment for vestibular schwannoma (VS) in patients 
with preserved hearing and tumour diameter < 3 cm. Emerging evidence suggests restricting cochlear dose could 
preserve hearing. This retrospective replanning study aims to compare dynamic conformal arc therapy (DCAT), 
intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans for superiority of 
cochlear dose sparing without compromising tumour coverage.

Methods:  Eligibility criteria included sporadic VS, serviceable hearing and availability of CT and MRI for planning. The 
original gross tumour volume and brainstem OAR volume were retained; the cochlea was newly contoured on the 
planning CT scan (bone window). Each case was replanned using the three above techniques, prescribing 12 Gy to 
the 80% isodose line. No dose constraint was applied to the cochlea.

Results:  Eighteen patients were replanned. Mean tumour volume was 2.25 cc. Tumour coverage and tumour mean 
dose (DCAT: 14.2, IMRT: 14.6, VMAT: 14.5 Gy) were comparable. Paddick and RTOG conformity indices were better 
for DCAT (0.66 and 1.6) and VMAT (0.69 and 1.5) compared to IMRT (0.56 and 1.9). DCAT had superior gradient index 
(3.0) compared to VMAT (3.4) and IMRT (3.4). VMAT delivered the lowest mean brainstem maximum dose (8.3 Gy) and 
decreased the mean cochlear dose (3.4 Gy) by 2.3 and 2.1 Gy, and the mean cochlear maximum dose (3.6 Gy) by 2.4 
and 2.5 Gy relative to DCAT and IMRT, respectively.

Conclusion:  LINAC-based SRS treatment using VMAT can achieve better cochlear dose sparing than DCAT or IMRT 
while maintaining tumour coverage.
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Background
Vestibular schwannoma (VS) is a benign tumour arising 
from the Schwann cells of the vestibulocochlear nerve. 
It makes up 10% of all intracranial neoplasms and 80% 

of tumours at the cerebellopontine angle [1]. The early 
symptoms are hearing loss and tinnitus in the affected 
ear, but larger tumours may also be associated with gait 
imbalance. With improvements in screening for hearing 
loss and increased access to MRI, the incidence of VS is 
increasing [2] and these tumours are often detected while 
the patient still has useful hearing. Management options 
include observation, microsurgery or radiosurgery.
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Stereotactic radiosurgery (SRS) has become the pre-
ferred treatment for VS in patients with preserved 
hearing and tumour diameter < 3  cm [3, 4]. Originally, 
SRS was performed using Gamma Knife (GK), but SRS 
can now be delivered using conventional LINAC or 
CyberKnife with parity in treatment outcomes [5, 6]. 
Moreover, LINAC-based SRS has grown technically 
more advanced with its ability to use intensity modulated 
radiation therapy (IMRT) and volumetric modulated arc 
therapy (VMAT) techniques, with the possibility of bet-
ter sparing of organs-at-risk (OAR), especially the coch-
lea. As there is accumulating evidence supporting dose 
sparing of the cochlea to preserve hearing [7–11], choos-
ing a LINAC-based treatment technique that is supe-
rior in reducing the cochlear dose is prudent. Moreover, 
dose sparing must be achieved without compromising 
tumour coverage, since limiting the dose to the cochlea at 
the expense of tumour coverage is currently not recom-
mended [12, 13].

The purpose of this retrospective dosimetric study is 
to compare plans generated using dynamic conformal 
arc therapy (DCAT), IMRT and VMAT techniques for 
LINAC-based SRS of VS. The primary aim is to compare 
cochlear dose sparing achieved using these techniques 
without compromising tumour coverage. The secondary 
aim is to assess tumour-related factors that affect dose 
sparing of the cochlea.

Methods
Patient selection
Patients included in this treatment planning study 
were previously treated at the Royal Adelaide Hospi-
tal between 2000 and 2015. Selection criteria were uni-
lateral VS, pre-treatment pure-tone average (PTA) less 
than 50 decibels (dB) and availability of CT and MRI for 
planning. Patients were excluded if they had bilateral 
VS (neurofibromatosis type 2), previous treatment with 
radiotherapy or surgery or received SRS for recurrent 
VS. Hospital Research Ethics Committee approval was 
obtained for this study.

Planning methodology
The original treatment plans of the selected patients 
were retrieved from the archive. The gross tumour vol-
ume (GTV) and brainstem OAR volumes were retained. 
As it was not a routine practice to contour cochlea in our 
institution, the cochlea was newly contoured using the 
bone window (3000–4500/600–800 HU) of the planning 
CT scan by two investigators independently [14] (Fig. 1). 
Any contour variation was assessed and resolved. No 
GTV to planning target volume (PTV) margin expansion 
was used. For each patient, the SRS was replanned using 
three techniques: DCAT (Brainlab iPlan RT 4.5), IMRT 

(Brainlab iPlan RT 4.5) and VMAT (Brainlab Elements 
RT Cranial SRS 1.5) (Fig. 2), prescribing 12 Gy to the 80% 
isodose line. The plans were accepted only if tumour cov-
erage was > 99.9%. The IMRT and DCAT planning was 
performed by a senior radiation therapist and the VMAT 
by a senior radiation physicist who had no knowledge of 
the dosimetric outcomes of the IMRT and DCAT plans.

All treatment plans were generated using a Varian True-
Beam STx 6FFF beam model in the respective planning 
system. Both DCAT and VMAT plans were derived from 
standard non-coplanar 3 arc templates, with arc entry 
biased according to the laterality of the target. The Brainlab 
Elements VMAT planning system additionally provided an 
automatic arc angle optimisation driven by the locations of 
the PTV and OARs. The IMRT plans were generated using 
9 beams, arranged according to target laterality. All plans 
were optimised for target coverage with sufficiently low 
priority on OARs to avoid compromising target coverage. 
Doses were computed using a 1 mm dose grid.

Plan comparison
The plan quality was compared using the following dosi-
metric parameters: target coverage (D98% and D2%), con-
formity index (CI) (RTOG, where lower is better, and 
Paddick, where higher is better), gradient index (GI, 
lower is better) and homogeneity index (HI) [15, 16]. 
OAR dose sparing achieved by each technique was com-
pared using Dmax (D0.03cc) and Dmean for the cochlea, and 
Dmax (D0.03cc) and D1cc for the brainstem. Tumour charac-
teristics—volume, dimensions, distance from the fundus 
of the internal auditory canal and Ohata stage [17]—were 
also recorded to assess their association with cochlear 
dose.

Statistical analysis
A linear mixed-effects model was employed to assess 
significant difference between the techniques for 

Fig. 1  Example of contouring cochlea (light blue), GTV (orange), and 
brainstem (green)
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various dosimetric outcome parameters. A random 
effect was used to adjust for clustering on patient, as 
each patient underwent multiple techniques. Linear 
regression models were used to assess the association 
between various cochlear dosimetric parameters and 

tumour characteristics. The statistical software used 
was SAS 9.4 (SAS Institute Inc., Cary, NC, USA).

Results
Eighteen eligible patients were identified. The mean 
tumour volume was 2.25  cc (SD 2.3), median 1.38  cc, 
range 0.34–7.7  cc. Other tumour characteristics are 
provided in Table  1, and descriptive statistics (plan 
quality parameters and OAR dose) in Table 2.

From a plan quality perspective, all plans had ade-
quate target coverage (Table  2). The mean dose to the 
tumour volume, D2% and D98% were very similar across 
all groups. The mean RTOG CI for DCAT, IMRT and 
VMAT was 1.6 (SD 0.2), 1.9 (0.4) and 1.5 (0.2), respec-
tively. The mean Paddick CI for DCAT, IMRT and 
VMAT was 0.66 (0.089), 0.56 (0.079) and 0.69 (0.079), 
respectively. The difference between the mean Pad-
dick and RTOG CIs of the DCAT and VMAT plans was 
not statistically significant but were superior to IMRT 
(Tables 2 and 3). The DCAT plans achieved better GI, 
with a mean of 3.0 (0.5) compared with 3.4 (0.5) for 
IMRT and 3.4 (0.4) for VMAT, and this difference was 
statistically significant (P < 0.0001).

VMAT was superior in sparing the OARs (brainstem 
and cochlea). For VMAT, the mean brainstem Dmax 
(D0.03cc), cochlear Dmean and cochlear Dmax (D0.03cc) 
were 8.3 Gy (4.2), 3.4 Gy (1.7) and 3.6 Gy (1.8), respec-
tively. The difference between all cochlear dosimet-
ric parameters was statistically superior in favour of 
VMAT. The mean cochlear dose was 2.3 and 2.1  Gy 
lower for VMAT than DCAT and IMRT, respectively. 
The mean cochlear Dmax (D0.03cc) was 2.4 and 2.5  Gy 
lower for VMAT than DCAT and IMRT, respectively. 
Additionally, the mean brainstem D1cc was 1.1 and 
0.6 Gy lower for VMAT than DCAT and IMRT, respec-
tively (Tables 2 and 3).

The linear mixed-effects model did not show any 
significant association between cochlear dosimet-
ric parameters and tumour volume or dimensions but 
did show significant association with the fundus dis-
tance (Table  4). Hence, linear regression modelling 
was used to test the association between cochlear dose 
parameters and the fundus distance for each treatment 
technique (Table 5). The results showed statistically sig-
nificant associations regardless of the treatment tech-
nique. For DCAT, IMRT and VMAT, for every 1  mm 
increase in fundus distance, the cochlear Dmax and 
Dmean decreased by 0.59 and 0.54 Gy, 1.0 and 0.92 Gy, 
and 0.73 and 0.67 Gy, respectively (Table 5).

Fig. 2  Isodose distribution for DCAT (top), IMRT (middle), VMAT 
(bottom) for a representative case. Yellow line = GTV; dark blue 
line = cochlea; green line = brainstem; PTV expansion = 0 mm; 
Colourwash threshold is set between 2 and 16 Gy



Page 4 of 7Khong et al. Radiation Oncology            (2023) 18:2 

Discussion
Dose to the cochlea is increasingly recognised as likely a 
critical factor in preventing hearing loss [7–11]. However, 
cochlear dose sparing can be challenging since vestibular 
schwannomas are very often anatomically closely related 
to the cochlea. Indeed, of the various tumour character-
istics in our study, the distance from the fundus was the 
only significant predictor of the cochlear dose regardless 
of the treatment technique, which is not surprising as 
the fundus distance is a surrogate for the tumour’s prox-
imity to the cochlea and will be inversely related to the 
cochlear dose. For SRS, although not supported by strong 
evidence, the current recommended cochlear dose limit 

is 4  Gy [18, 19]. Even for the currently recommended 
marginal dose of 11–14  Gy [3, 20, 21], it is still a sig-
nificant challenge to restrict the dose to cochlea < 4 Gy. 
Moreover, for better preservation of hearing, restricting 
cochlear dose as low as < 3  Gy has been proposed [22]. 
Restricting the dose to the cochlea to such a low dose can 
be achieved only by means of a very steep dose gradient.

On the other hand, minimizing cochlear dose may not, 
by itself, be sufficient to preserve hearing as there are 
other factors that play a role in hearing outcome after 
SRS [23]. Dose to the cochlear nerve, transient tumour 
expansion and vascular injury from radiotherapy have all 
been speculated to contribute to the hearing loss. Hence, 
cochlear dose sparing at the expense of tumour coverage 
should be generally avoided. A practical approach will be 
to maintain tumour coverage and apply the ALARA prin-
ciple to restrict dose to cochlea. Herein lies the impor-
tance of choosing the best treatment technique that 
facilitates maximum dose reduction to the cochlea and 
optimum tumour coverage.

The published dosimetric studies have mostly com-
pared LINAC-based SRS with Gamma Knife SRS [24, 25]. 
We are not aware of any other study that compared all 
three DCAT, IMRT and VMAT techniques for LINAC-
based SRS for VS, particularly from the standpoint of 
cochlear dose sparing. This comparison is very relevant 
as many centres have access to only LINAC-based SRS, 
with increasing availability of IMRT and VMAT tech-
niques to deliver the treatment.

We were able to show that, although each technique 
generated high-quality plans that met the planning objec-
tives, VMAT plans were superior to DCAT or IMRT. 
VMAT produced a more conformal plan than IMRT 
and was on par with DCAT. However, the superiority of 
VMAT was unequivocal in sparing OAR as it delivered 
the lowest brainstem and cochlear doses. Compared to 
IMRT and DCAT, the mean difference between cochlear 
dosimetric parameters was at least 2 Gy less for VMAT. 
We believe such a decrease may be of substantial advan-
tage when the aim is to achieve maximum dose sparing 
to the cochlea. DCAT was able to achieve better GI com-
pared to VMAT, but this by itself is of minimal signifi-
cance since the higher GI for VMAT is likely a trade-off 
for achieving better OAR dose sparing.

Balik et  al. [25] compared GK and VMAT plans for 
eight VS patients, prescribing 12–13 Gy, and showed no 
significant difference in plan quality parameters or OAR 
doses. In this study, the cochlear Dmean was 7.23 (3.13) Gy 
for VMAT plans, which is higher than the 3.4 (1.7) Gy in 
our study, probably due to the planning dose constraint 
they applied to cochlea (Dmax of 12 Gy). Abacioglu et al. 
[26] compared GK and RapidArc (TrueBeam Linac) SRS 

Table 1  Tumour characteristics

 x = parallel to the axis of petrous bone in the axial plane; y = perpendicular to x

Characteristic Mean (SD)

Volume (cc) 2.25 (2.3)

Diameter (mm)

 y 19.4 (4.4)

 x 15.4 (6.7)

Distance from fundus (mm) 1.7 (1.9)

Ohata classification Number of patients (%)

A 3 (16.7)

B 4 (22.2)

C 9 (50.0)

D 2 (11.1)

Table 2  Descriptive statistics of dosimetric parameters

Dmean = mean dose; D98% = dose to 98% of target volume; D2% = dose to 2% of 
target volume; D0.03cc = maximum dose at 0.03 cc; D1cc = maximum dose at 1 cc

Parameter (mean [SD]) DCAT​ IMRT VMAT

Conformity index

 RTOG 1.6 (0.2) 1.9 (0.4) 1.5 (0.2)

 Paddick 0.66 (0.089) 0.56 (0.079) 0.69 (0.079)

Gradient index 3.0 (0.5) 3.4 (0.5) 3.4 (0.4)

Homogeneity index 1.3 (0.01) 1.3 (0.1) 1.3 (0.03)

Tumour

 Dmean (Gy) 14.2 (0.1) 14.6 (0.6) 14.5 (0.4)

 D98% (Gy) 13.0 (0.4) 13.4 (0.4) 13.2 (0.7)

 D2% (Gy) 15.1 (0.1) 15.3 (0.7) 15.5 (0.4)

Brainstem

 D0.03cc (Gy) 10.3 (3.7) 9.0 (4.5) 8.3 (4.2)

 D1cc (Gy) 4.6 (2.5) 4.1 (2.6) 3.5 (2.2)

Cochlea

 D0.03cc (Gy) 6.0 (1.8) 6.1 (2.5) 3.6 (1.8)

 Dmean (Gy) 5.7 (1.6) 5.5 (2.3) 3.4 (1.7)
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plans for 6 VS cases and prescribed 12.5 Gy. Of the two 
plan optimisation strategies they used, the second strat-
egy is of interest since this aimed for maximum OAR 
sparing. The cochlear Dmean was 3.3 (0.8) and 4.1 (0.9) 
for GK and RapidArc, respectively. Our VMAT plans 
achieved a slightly lower cochlear Dmean, but it is com-
parable given our lower marginal dose of 12 Gy. A larger 
study by Kim et al. [24], comparing GK and VMAT plans 
of 19 patients, also did not show any significant difference 
in the cochlear doses. They showed that VMAT using 5 
coplanar arcs produced superior Paddick CI for targets 
larger than 0.5 cc compared to GK, but the mean coch-
lear dose (6.0 [1.4] Gy) was higher. Their prescription 

Table 3  Mean difference in plan quality and OAR dosimetric parameters between treatment techniques

D1cc = maximum dose at 1 cc; D0.03cc = maximum dose at 0.03 cc; Dmean = mean dose

Parameter Technique Mean difference (95% CI) Comparison P value Global
P value

Conformity index (RTOG) DCAT vs IMRT − 0.3 (− 0.4, − 0.1) 0.0002

DCAT vs VMAT 0.1 (− 0.04, 0.3) 0.14 < .0001

IMRT vs VMAT 0.4 (0.3, 0.5) < .0001

Conformity index (Paddick) DCAT vs IMRT 0.098 (0.056, 0.14) < .0001

DCAT vs VMAT − 0.027 (− 0.070, 0.016) 0.21 < .0001

IMRT vs VMAT − 0.13 (− 0.17, − 0.083) < .0001

Gradient index DCAT vs IMRT − 0.4 (− 0.6, − 0.3) < .0001

DCAT vs VMAT − 0.4 (− 0.6, − 0.3) < .0001 < .0001

IMRT vs VMAT 0.01 (− 0.2, 0.2) 0.89

Brainstem D1cc (Gy) DCAT vs IMRT 0.5 (0.1, 1.0) 0.030

DCAT vs VMAT 1.1 (0.6 1.5) < .0001 < .0001

IMRT vs VMAT 0.6 (0.1, 1.0) 0.016

Cochlea D0.03cc (Gy) DCAT vs IMRT − 0.1 (− 0.8, 0.5) 0.64

DCAT vs VMAT 2.4 (1.8, 3.0) < .0001 < .0001

IMRT vs VMAT 2.5 (2.0, 3.2) < .0001

Cochlea Dmean (Gy) DCAT vs IMRT 0.2 (− 0.4, 0.7) 0.48

DCAT vs VMAT 2.3 (1.8, 2.9) < .0001 < .0001

IMRT vs VMAT 2.1 (1.6, 2.7) < .0001

Table 4  Mean difference in cochlear D0.03cc and cochlear Dmean by tumour characteristics

D0.03cc = maximum dose at 0.03 cc; Dmean = mean dose

Parameter Characteristic Mean difference (95% CI) Global P value

Cochlea D0.03cc (Gy) Tumour volume (cc) − 0.49 (− 1.7,0.74) 0.43

y-diameter (mm) 0.04 (− 0.27,0.36) 0.78

x-diameter (mm) 0.16 (− 0.28,0.60) 0.47

Distance from fundus (mm) − 0.69 (− 1.1,− 0.28) 0.0017

Cochlea Dmean (Gy) Tumour volume (cc) − 0.54 (− 1.7,0.59) 0.34

y-diameter (mm) 0.05 (− 0.24,0.34) 0.73

x-diameter (mm) 0.18 (− 0.23,0.58) 0.39

Distance from fundus (mm) − 0.62 (− 1.0,-0.24) 0.0023

Table 5  Subgroup analysis by treatment technique: mean 
difference in cochlear D0.03cc and cochlear Dmean by distance from 
fundus

D0.03cc = maximum dose at 0.03 cc; Dmean = mean dose

Technique Cochlear 
dosimetric 
parameter

Mean difference per 
distance (Gy/mm) 
(95% CI)

Global P value

DCAT​ Cochlea D0.03cc − 0.59 (− 0.95, − 0.22) 0.0035

IMRT Cochlea D0.03cc − 1.0 (− 1.44, − 0.57) 0.0002

VMAT Cochlea D0.03cc − 0.73 (− 1.04, − 0.43) 0.0001

DCAT​ Cochlea Dmean − 0.54 (− 0.89, − 0.20) 0.0038

IMRT Cochlea Dmean − 0.92 (− 1.30, − 0.54) 0.0001

VMAT Cochlea Dmean − 0.67 (− 0.95, − 0.38) 0.0001
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dose was 12 Gy and they also used a maximum dose of 
12  Gy as the cochlear dose constraint. Dutta et  al. [27] 
compared DCAT (Brainlab) with CyberKnife and pre-
scribed 13–15 Gy. They found that DCAT delivered a sig-
nificantly higher cochlear Dmean compared to CyberKnife 
(6.9 [0.7] vs 5.4 [0.6]). Our study also demonstrated that 
VMAT reduced the mean cochlear dose by at least 2 Gy 
compared to DCAT and delivered lower cochlear Dmean 
than this study. This supports the use of VMAT in insti-
tutions that do not have access to CyberKnife, although 
further studies comparing these two techniques may 
quantify this.

Sharma et al. [28] created 5 different sets of static con-
formal field, DCAT and IMRT SRS plans for their cohort 
of 8 patients and, of these, the two DCAT and IMRT 
plans that prescribed 12 Gy to the 80% isodose line are of 
interest here. Unlike our study, IMRT was able to signifi-
cantly lower the mean cochlear dose (5.0 [0.98] Gy), but 
not the maximum cochlear dose (9.8 [1.8] Gy), compared 
with DCAT. While their mean dose was slightly lower 
than that achieved in our IMRT plans (5.5 [2.3] Gy), we 
could not compare the maximum doses as they did not 
mention how the maximum dose was defined.

In contrast to our findings, Lagerwaald et al. [29] failed 
to show any difference in reducing the  maximum dose 
to critical organs, including the cochlea and brainstem, 
when they compared VMAT with single arc and 5 arc 
DCAT for three cases. A plausible explanation for this 
failure of VMAT to achieve superior sparing of criti-
cal organs could be due to tumour location in the small 
sample. Our study showed that distance from fundus was 
a significant predictor of the ability to spare the cochlea 
regardless of  the treatment technique. The 18 cases we 
selected may have increased the variability of tumour size 
and location, and thereby allowed the benefits of VMAT 
to be more evident.

Our study has some limitations. First, the VMAT plan-
ning was performed using newer planning software than 
that used to produce DCAT and IMRT plans. Second, we 
did not set a cochlear dose constraint, which could have 
achieved better results, not only for IMRT and DCAT 
but also for VMAT; we chose not to do this in order to 
maintain uniformity between treatment planning tech-
niques and to allow maximum dose sparing with least 
risk of compromising tumour coverage. Lastly, although 
we demonstrated the dosimetric superiority of VMAT, 
we did not compare other factors like planning time and 
treatment delivery time.

Conclusion
Our study supports the use of VMAT as the preferred 
technique for LINAC-based SRS for vestibular schwan-
noma where hearing preservation is a goal. LINAC-based 

SRS treatment planning using the VMAT technique 
(Brainlab) can achieve better cochlear dose sparing than 
DCAT or IMRT while maintaining tumour coverage.
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