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Abstract 

Background:  Quantitative image analysis based on radiomic feature extraction is an emerging field for survival pre-
diction in oncological patients. 18F-Fluorethyltyrosine positron emission tomography (18F-FET PET) provides important 
diagnostic and grading information for brain tumors, but data on its use in survival prediction is scarce. In this study, 
we aim at investigating survival prediction based on multiple radiomic features in glioblastoma patients undergoing 
radio(chemo)therapy.

Methods:  A dataset of 37 patients with glioblastoma (WHO grade 4) receiving radio(chemo)therapy was analyzed. 
Radiomic features were extracted from pre-treatment 18F-FET PET images, following intensity rebinning with a fixed 
bin width. Principal component analysis (PCA) was applied for variable selection, aiming at the identification of the 
most relevant features in survival prediction. Random forest classification and prediction algorithms were optimized 
on an initial set of 25 patients. Testing of the implemented algorithms was carried out in different scenarios, which 
included additional 12 patients whose images were acquired with a different scanner to check the reproducibility in 
prediction results.

Results:  First order intensity variations and shape features were predominant in the selection of most important 
radiomic signatures for survival prediction in the available dataset. The major axis length of the 18F-FET-PET volume 
at tumor to background ratio (TBR) 1.4 and 1.6 correlated significantly with reduced probability of survival. Additional 
radiomic features were identified as potential survival predictors in the PTV region, showing 76% accuracy in inde-
pendent testing for both classification and regression.

Conclusions:  18F-FET PET prior to radiation provides relevant information for survival prediction in glioblastoma 
patients. Based on our preliminary analysis, radiomic features in the PTV can be considered a robust dataset for sur-
vival prediction.
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Background
Glioblastoma is the most aggressive primary brain 
tumor with a median survival of less than two years 
[1–4]. Combining surgery, chemotherapy and radio-
therapy is the current standard of care, but prognosis 
remains poor because of the heterogeneous and complex 
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pathogenesis [2]. Therefore, survival prediction based 
on images acquired before treatment may represent an 
important step towards a more personalized approach. In 
recent years, a lot of research has been done in this area 
with a strong focus on quantitative medical image analy-
sis [5].

There is an increasing interest towards the use of 
18F-Fluorethyltyrosine (18F-FET) Positron Emission 
Tomography (PET) imaging for the characterization of 
aggressive brain tumors such as glioblastoma. 18F-FET 
PET images were reported to provide valuable infor-
mation, able to effectively support treatment response 
assessment in glioblastoma [6–10]. In the framework of 
the recent randomized multicenter phase II trial ARTE, 
higher 18F-FET PET TBR (tumor-to-background ratio) on 
pre-treatment scans and persistent 18F-FET PET signal of 
longer contrast-enhancing tumor was found to associate 
with inferior overall survival [10]. However, dedicated 
studies are needed to assess the predictive power related 
to 18F-FET PET radiomics for survival prediction in glio-
blastoma. The effective use of radiomics to predict overall 
survival as an indicator of treatment response comes with 
a large variability of different strategies regarding image 
acquisition, tumor segmentation, image processing and 
feature extraction, data handling and implementation of 
machine learning models [5, 11, 12]. For example, reliable 
tumor segmentation methods should reduce the inher-
ent intra- and inter-observer variability [13]. At the same 
time, segmented contours should be readily available to 
facilitate their integration in the treatment planning pro-
cess. In addition, site-specific image acquisition protocols 
introduce variations in imaging scanners, image recon-
struction and even SUV intensities, which can have an 
effect on the extracted radiomic features [12, 14, 15]. This 
calls for specific studies to evaluate the reproducibility of 
radiomic features, in order to maximize their use in sur-
vival prediction models.

The objective of this work was to identify key radiomic 
features in 18F-FET PET images acquired before treat-
ment for glioblastoma patients undergoing radiochemo-
therapy, and to assess their reproducibility, aiming at 
consistent prediction accuracy of overall survival.

Methods
Radiomic features were extracted from four different 
volumes of interest (VOIs) to identify the VOIs with the 
most reliable information in terms of survival predic-
tion. After features were extracted, principal component 
analysis (PCA) was employed to reduce dimensionality 
of the feature space, working either as data reduction or 
feature selection method. Four different datasets were 
generated with the PCA and used as input data for the 
machine learning algorithms. Overall, three different 

prediction models were implemented: (1) a univariate 
Cox regression model to predict survival time, providing 
preliminary investigation of potentially relevant features, 
(2) a random forest classification model to predict overall 
survival at 1 year, (3) a random forest regression model to 
predict survival time.

Clinical dataset
The retrospective study included 37 patients with glio-
blastoma (WHO grade 4) diagnosed between 2009 and 
2017. Survival time was defined, in days, as the time 
between the day of treatment planning CT acquisition 
and the day of decease. Due to the high malignancy of 
glioblastoma and the related poor survival prognosis, the 
event of decease occurred in all of the cases. The follow-
ing inclusion criteria were applied for patient selection:

•	 Evidence of macroscopic tumor before the start of 
treatment planning

•	 PET image acquired not more than 3  weeks before 
the treatment planning CT to avoid significant 
anatomical changes and tumor growth/shrinkage 
between PET imaging and start of treatment

•	 IDH-wildtype glioblastoma, in cases of available IDH 
mutational status

•	 Follow-up of at least one year.

18F-FET PET images were acquired at the Department 
of Nuclear Medicine, University Hospital of Munich 
prior to primary radiation treatment. 18F-FET PET 
images were used to delineate the tumor based on stand-
ardized uptake values (SUVs) and subsequently extract 
radiomic features within the selected volumes of interest 
(VOIs). Planning target volumes (PTVs) were delineated 
within the treatment planning software Oncentra Exter-
nal Beam (version 4.5, Nucletron, Elekta AB, Sweden). 
When available (32 out of 37 patients), the reconstructed 
treatment planning CTs and structures were restored 
from the archive using the treatment planning software.

18F-FET PET images acquired with a Siemens ECAT 
Exact HR+ (Siemens Healthineers, Erlangen, Germany) 
scanner according to the standard protocol of the depart-
ment, described in detail previously [16], were used as 
initial training set (N = 25 cases). A transmission scan 
was performed during 15  min with a 68Ge rod source. 
Thereafter, approximately 180  MBq of 18F-FET were 
injected as an intravenous bolus. Once the patient was 
in position, a 40 min dynamic emission recording in 3D 
mode consisting of 16 frames was started. The ordered 
subset expectation maximization (OSEM) algorithm was 
used for image reconstruction slice per slice (OSEM-2D). 
The OSEM-2D reconstruction consisted of 6 iterations 
and used 16 projection subsets. The voxel size in images 
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reconstructed with the described OSEM-2D algorithm 
was 2.035 × 2.035 × 2.425  mm3, with a resulting image 
matrix of size 128 × 128 × 63.

The remaining 12 patients were acquired in list mode 
with a Biograph 64 PET/CT (Siemens Healthineers, 
Erlangen, Germany), and OSEM-3D was used to recon-
struct images. OSEM-3D images were reconstructed with 
4 iterations, 21 subsets, a 5  mm Gaussian post-recon-
struction filter and standard corrections (attenuation, 
random and scattered coincidences, dead time decay). 
The reconstruction matrix was set to 336 × 336 × 109, 
with voxel size 1.018 × 1.018 × 2.027 mm3.

The key features of the available clinical dataset are 
summarized in Table 1.

Feature extraction
Four different volumes of interest (VOIs) were used to 
compare the prognostic power of the radiomics analysis 
when limited to a specific region. The PMOD software 
(PMOD Technologies, Zurich, Switzerland) was used to 
generate PET-based VOIs and to register PTV contours 
to the PET images. PET-based VOIs were defined using 
a semi-automatic segmentation method, as described 
by Unterrainer et  al. [16]. A tumor-to-background ratio 
(TBR) threshold of 1.6 has been considered to be optimal 
to differentiate tumor tissue and surrounding healthy tis-
sue [16, 17]. Besides 1.6, two additional TBR thresholds 
were chosen, one smaller value of 1.4 and one larger 
value of 1.8. This procedure resulted in a set of three 
PET-based VOIs for every patient, further on referred 
to as voi14, voi16 and voi18 corresponding to the TBR 
threshold 1.4, 1.6 and 1.8, respectively.

The fourth VOI was generated using the PTV, which 
was defined by experienced radiation oncologists during 
the treatment planning process. The gross tumor volume 
(GTV) was contoured based on the contrast enhanced 
T1 weighted MRI, complementing the treatment plan-
ning CT. T2 and Fluid Attenuated Inversion Recovery 
(FLAIR) MRI images were used in addition if available. 
The clinical target volume (CTV) was then created by 
adding a 2 cm margin to the GTV [18]. The final planning 
target volume (PTV) was obtained by adding 0.3–0.5 cm 
to the CTV. As the goal was to extract radiomics features 
from the PET image, the PTV structures had to be reg-
istered to the PET images. The PET image was loaded 
into PMOD, serving as reference image, whereas the 
treatment planning CT image was iteratively registered 
via rigid matching. The resulting transformation matrix 
was applied to the PTV contour to be overlaid onto the 
PET image. This provided PET intensity values within 
the PTV with no need to interpolate raw image intensi-
ties. The workflow of the image registration procedure is 
depicted in Fig. 1.

The PTV, when defined on the treatment planning 
CT, may include bone and other structures with high 
CT numbers that do not provide any information about 
tracer uptake in tumor tissue and surrounding brain tis-
sue. As those regions would cause noise in the radiomic 
features and impair identification of intensity related pat-
terns in tumor regions, these structures were excluded 
from the PTV. As shown schematically in Fig. 1, the PTV 
was much larger compared to the metabolically active 
tumor, consistently with previously reported studies [19]. 
This provided a way to assess the role of areas featuring 
a low intensity 18F-FET PET signal, included in the PTV 
but outside the metabolically active area (TBR-based 
VOIs).

Image intensities were rebinned using a fixed bin 
width approach [11, 20]. To determine the appropriate 
bin width, the mean TBR intensity range of the initial 
25 patients was calculated from voi14 and subsequently 
divided by the number of bins. Such a number was 
selected aiming at optimal feature robustness, as investi-
gated by Tsujikawa et al. for PET imaging [21], and there-
fore set to 64. According to this strategy, a bin width of 
0.04 was obtained for TBR-based resampling, by dividing 
the mean TBR intensity range (voi14) in 64 bins.

Following rebinning, the python package pyradiom-
ics was used to extract quantitative image features for 
the selected VOIs (i.e. voi14, voi16, voi18 and PTV) 
in the 18F-FET PET image [22, 23]. In total 107 radi-
omic features were extracted from the 3D PET images, 
including the following feature classes: First Order (FO), 
Shape (SH), Gray Level Co-occurrence Matrix (GLCM), 
Gray Level Size Zone Matrix (GLSZM), Gray Level Run 
Length Matrix (GLRLM), Neighbouring Gray Tone Dif-
ference Matrix (NGTDM), Gray Level Dependence 
Matrix (GLDM).

Dimensionality reduction and feature selection
Unsupervised methods were applied to reduce the data 
dimensionality and perform feature selection. For both 
tasks we applied PCA based on the singular value decom-
position (SVD) of the feature set, as provided within the 
scikit-learn package (version 0.22.2) [24–26]. PCA was 
utilized following the standardization of radiomic fea-
tures, which resulted in feature values with zero mean 
and unit variance.

Four different types of feature datasets were considered:

•	 Top: the dataset consisted of 10 features per princi-
pal component and was generated using PCA-based 
feature selection: the features with the highest PCA 
loadings were retained, focusing on the components 
that explained 90–95% of the total variance in the 
data
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Table 1  Features of the clinical dataset

Patient characteristics

Histopathologic diagnosis

 Glioblastoma, WHO grade 4 N = 33

 Anaplastic astrocytoma, IDH wildtype, TERT promotor mutation (Glioblastoma, WHO grade 4 equivalent according to 
the current WHO classification)

N = 4

IDH mutational status

 IDH WT N = 28

 IDH mutational status unknown N = 9

MGMT promotor methylation status

 Methylated N = 21

 Unmethylated N = 16

Sex

 Male N = 20

 Female N = 17

Age at the time of irradiation

 Median 62 years

 Range 30–76 years

Neurosurgical treatment prior to irradiation

 Stereotactical biopsy only N = 27

 Neurosurgical resection N = 10

Radiotherapy dosage

 30 × 2 Gy N = 32

 29 × 2 Gy (due to discontinuation) N = 1

 33 × 1.8 Gy N = 2

 12 × 1.8 Gy/2,1 SIB (due to discontinuation) N = 1

 10 × 3 Gy plus 1 × 4 Gy N = 1

Chemotherapy concomitant to radiotherapy

 Temozolomide (EORTC26981/22981-NCIC CE3 protocol) N = 34

 Temozolomide and lomustine (NOA-09 protocol) N = 1

 No concomitant chemotherapy N = 2

PET characteristics

PET acquisition protocol

 Intravenous bolus 180 MBq

 Scan duration 40 min

 Dynamic frames 16

OSEM-2D

 Iterations 6

 Subsets 16

 Voxel spacing 2.035 × 2.035 × 2.425 mm3

 Reconstruction matrix 128 × 128 × 63

OSEM-3D

 Iterations 4

 Subsets 21

 Voxel spacing 1.018 × 1.018 × 2.027 mm3

 Reconstruction matrix 336 × 336 × 109

 Post-reconstruction filter Gaussian (5 mm)
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•	 PC: the dataset consisted of the principal component 
values of each patient, calculated with the entire fea-
ture set of 107 features, aiming at the same total vari-
ance applied for the Top features

•	 SH-FO: the dataset consisted of all the shape and first 
order features (32 features overall)

•	 PC(SH-FO): the dataset consisted of the principal 
component values of each patient, calculated with 
shape and first order features (32 overall), with the 
same goal in terms of total variance explained.

Identification of relevant radiomic features
The extracted radiomic features were analyzed to high-
light the relevant ones for the purpose of survival 
prediction.

The Cox proportional hazard model was applied to 
identify relevant radiomic features in survival prediction 
based on the calculated hazard ratios. The Cox regression 
was implemented using the lifelines package in python 
(version 0.24.4) [27]. Univariate Cox models were fitted 
to the four feature datasets and potentially relevant fea-
tures were identified based on the reported p-value of the 
Wald statistics. A threshold corresponding to 95% signifi-
cance (i.e. 5% p-value) was selected to classify whether 
the corresponding radiomic features had a statistically 
relevant impact on survival prediction.

Survival prediction based on multiple features
We used random forests for both classification and 
regression analysis based on multiple radiomic features. 
Random forest is an ensemble method, which means 
that it combines a number of base estimators built with 

decision trees in order to reduce variance and improve 
generalizability [28, 29]. Random forest algorithms were 
implemented with the python package Scikit-learn [29]. 
Survival prediction was applied for classification (cat-
egorize survival at one-year follow-up) and regression 
(prediction of survival time). In Scikit-learn, the random 
forest algorithm for classification provided the use of dif-
ferent class weights to adjust for the imbalance in class 
frequencies.

To select the best hyper-parameter settings in the 
models, a coarse to fine strategy was applied using a ran-
domized search cross-validation on training data. To 
reduce computation time, the randomized search cross-
validation was applied twice: (1) in a very broad range of 
hyper-parameters to identify the order of magnitude of 
the best performing hyper-parameters and (2) once the 
magnitude was assessed, multiple values within this mag-
nitude were included in the final parameter grid.

The performance in survival prediction was quantified 
on the optimal model (i.e. with the determined hyperpa-
rameters): we rated survival classification at 12  months 
based on the Area Under the Receiver Operating Charac-
teristic Curve (AUC), and survival time prediction based 
on the Concordance Index (C-index). We considered dif-
ferent testing scenarios, where data from the 25 OSEM-
2D cases were mixed with the 12 OSEM-3D cases:

1.	 Only OSEM-3D data in the test dataset, only OSEM-
2D data in the training dataset

2.	 A fivefold train and test cross-validation using the 
entire dataset (OSEM-2D and OSEM-3D data com-
bined).

Results
Patients and treatment
Patients were treated with conventionally fractionated 
radiochemotherapy with temozolomide (TMZ) based on 
the EORTC26981/22981-NCIC CE3 protocol [30] in 34 
cases, in one case with conventionally fractionated radio-
chemotherapy with TMZ and lomustine according to the 
NOA-09 protocol [31], in one case with hypofractionated 
radiotherapy only and in one case with conventionally 
fractionated radiotherapy only due to a contraindication 
for chemotherapy. Radiotherapy dosage was 30 × 2 Gy in 
32 cases, 29 × 2  Gy due to discontinuation in one case, 
33 × 1.8 Gy in two cases, 12 × 1.8 Gy/2.1 Gy on a simul-
taneous integrated boost (SIB) due to discontinuation in 
one case and with 10 × 3 Gy plus 1 × 4 Gy in one case.

Identification of relevant radiomic features
When considering the initial 25 patients, a total number 
of 5–7 principal components turned out to be sufficient 

Fig. 1  Workflow of the image registration procedure that was 
implemented to overlay the PTV and PET-based VOIs onto the 
FET-PET image
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to explain 90–95% of the total variance in the data. The 
Top dataset included the 10 features with the highest 
loadings for the first 5–7 principal components: Fig.  2 
shows the features that appeared most frequently in the 
Top dataset across the 4 VOIs (voi14, voi16, voi18 and 
PTV). Shape and first order features were predominantly 

selected (87.5% and 55.6% average selection frequency, 
respectively) compared to all other feature types (37.3% 
average selection frequency). This indicates that shape 
and first order features have larger variations across the 
analyzed glioblastoma patients, which might be relevant 
for outcome prediction.

Fig. 2  Circle plot showing the frequency of feature selection in the Top dataset. The height of each color bar in the circular plot is proportional to 
the selection frequency across the 4 VOIs. Color codes denote different radiomic features types, as indicated by text labels in the inner part of the 
circle
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When analyzing the statistical relevance of single 
radiomic features via the Cox proportional hazard 
model, very few radiomic features turned out to be sig-
nificant in the Top dataset. Figure 3 depicts graphically 
which radiomic features were classified as significant 
in the different regions at 95% confidence in univariate 
Cox proportional hazard models.

Figure 4 shows the effect on survival of the shape fea-
ture Major Axis Length in voi14 and voi16 which resulted 
in significantly different prediction performance for the 
univariate Cox proportional hazard model. The log-rank 
test comparison between the Kaplan–Meier curves, 
where patients were stratified according to the median 
value, exhibited a p-value smaller than 0.05. This indi-
cates the ability of the radiomic feature Major Axis 
Length to stratify patients in different risk classes, con-
nected to a significantly different probability of survival 
at 95% statistical confidence.

Survival prediction based on multiple features
Table  2 reports the average results for the two testing 
scenarios. The best performance was obtained when 
considering the PTV as VOI for independent testing on 
OSEM-3D images. Conversely, results for the CV case 
were in general lower than independent testing. This 
indicates that features selected on OSEM-2D images can 
adequately predict survival in OSEM-3D, whereas data 
mixing in training does not allow the implemented mod-
els to achieve satisfactory prediction performance.

Discussion
We analyzed the reproducibility of radiomic features 
extracted from 18F-FET PET images, and their use for 
survival analysis in glioblastoma patients. Two different 
patient cohorts were available which included cases with 
PET images reconstructed via an OSEM-2D algorithm, as 
well as more recent cases with OSEM-3D reconstruction. 
The OSEM-2D cohort served as a homogeneous training 
dataset, providing a consistent source of data to optimize 
the performance of survival prediction models based on 
multiple radiomic features. The random forests survival 

Fig. 3  Statistically relevant features from the univariate Cox model fit 
for the Top radiomics dataset. All of the listed features were associated 
to a hazard ratio larger than 1, meaning that increasing values reduce 
the survival probability

Fig. 4  Kaplan–Meier survival curves showing the effect of the shape feature Major Axis Length in voi14 (left panel) and voi16 (right panel). Patient 
stratification based on the median value is depicted, with the corresponding p-value of the log-rank test
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models, featuring the parameters optimized on the first 
patient cohort, were then tested in multiple scenarios 
including newer data. This provided a framework to 
check the reproducibility of radiomic features extracted 
from 18F-FET PET images to achieve accurate survival 
prediction in glioblastoma patients.

When analyzing the role of single radiomic features, 
shape and first order features extracted from 18F-FET 
PET images were highlighted as the most relevant in the 
analyzed dataset. This was confirmed both in unsuper-
vised PCA feature selection (Fig.  2) and in the analysis 
of hazard ratios in univariate Cox proportional models 
for PET-based VOIs (Fig.  3). As visible in Fig.  3, differ-
ent features were deemed significant when analyzing the 
univariate Cox proportional models in multiple regions 
(VOIs). Univariate Cox models were used to assess sig-
nificant variables, instead of multivariate analysis. This 
choice was justified by the intrinsic limitations in Cox 
proportional models for reduced number of events per 
variable, as discussed in [32].

A closer look at these results highlights that increas-
ing values of the shape feature Major Axis Length (i.e. the 
maximal extension of the biologically active area in the 
18F-FET PET image) in voi14 and voi16 are significantly 
correlated to a reduced overall survival time. This means 
that larger regions of biologically active tumor in the 18F-
FET PET image, when the image is thresholded at 1.4 or 
1.6 TBR, are clear indicators of lower survival probabil-
ity. When extending the analysis to the PTV, the Elon-
gation was also found to be significantly correlated to 
survival. The Elongation is defined as the square root of 
the ratio between the minor and major axis of the PTV, 
with values ranging between 0 (maximal elongation) 
and 1 (sphere-like shape) [22]. As increasing values are 
associated to poorer survival, this means that spherical 

PTVs seem less favorable in terms of survival compared 
to elongated PTVs. It should be stressed here that Elon-
gation values in our dataset were relatively high (above 
0.57), meaning that the minor axis of the PTV is at least 
33% of the major axis. Specific further studies are there-
fore required to check performance in case of elongated 
PTVs, i.e. corresponding to small Elongation values.

Higher order features were not linked to significant 
survival prediction in TBR-based VOIs. Conversely, 
increasing values of GLCM Joint Entropy in the PTV, 
which encodes variability in intensity, were shown to 
decrease survival. The existence of multiple significant 
features calls for survival prediction models that can bet-
ter handle multiple radiomics signatures simultaneously, 
such as the implemented random forest algorithms.

The generalization capabilities were analyzed by 
investigating the reproducibility of radiomics-based 
predictions in two testing scenarios, where images 
reconstructed with the OSEM-3D algorithm were also 
included. In independent testing, significantly better 
results were obtained when considering the PTV as VOI 
(Table 2). In this setting, feature sets that included shape 
and first order 18F-FET PET features obtained more con-
sistent results, thus confirming the findings of univari-
ate Cox models. The Cox regression models resulted in 
general lower performance than the implemented Ran-
dom Forest predictors. When testing the univariate Cox 
models on OSEM-3D data, the C-index for the Major 
Axis Length in VOI16 and VOI14 reached 0.58 and 0.56, 
respectively.

Conversely, the performance in CV when mixing dif-
ferent images (OSEM-2D vs. OSEM-3D) were inferior, 
with the exception of the PC(SH-FO) dataset for survival 
classification in the PTV (0.7 AUC). This can be partly 
explained by the lower degree of reproducibility between 

Table 2  Results on the testing experiments, expressed as average over all scenarios (1–4)

Classification and regression performance figures above 65% are highlighted in bold

CLASSIFICATION-AUC​ REGRESSION-C-index

Top PC PC(SH-FO) SH-FO Top PC PC(SH-FO) SH-FO

Test on OSEM-3D

PTV 0.76 0.34 0.77 0.80 0.76 0.60 0.68 0.67
voi14 041 0.44 0.44 0.63 0.55 0.64 0.43 0.60

voi16 0.33 0.37 0.42 0.50 0.55 0.40 0.52 0.60

voi18 0.12 0.30 0.42 0.32 0.31 0.47 0.33 0.47

CV OSEM-2D + OSEM-3D

PTV 0.59 0.29 0.70 0.58 0.51 0.47 0.62 0.53

voi14 0.56 0.51 0.44 0.59 0.59 0.52 0.50 0.53

voi16 0.26 0.32 0.39 0.50 0.55 0.51 0.45 0.65

voi18 0.57 0.48 0.40 0.39 0.43 0.44 0.19 0.42
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VOIs segmented in the OSEM-2D reconstructed images 
versus the OSEM-3D ones. Results from independ-
ent testing on OSEM-3D images indicated that features 
selected on OSEM-2D images can adequately predict 
survival on different images. Overall best testing perfor-
mance was found for the SH-FO dataset in classification 
for the PTV, thus confirming the importance of shape 
and first order features.

The optimal performance in the PTV shows that also 
areas of the 18F-FET PET image at lower image intensi-
ties, i.e. outside of the high intensity region at 1.4–1.6 
TBR, may play a key role in radiomics-based survival 
prediction. This also strengthens the relevance of expert-
based contouring for PTV delineation, which can 
potentially highlight relevant areas of low/medium bio-
logical activity, due to the intrinsic relevance in survival 
prediction.

A comparative analysis of our results with other studies 
is challenging, due to the lack of extensive literature on 
the topic. 18F-FET PET images have been mostly used for 
diagnostic purposes, and/or to differentiate progression 
and treatment-related changes [5, 9]. Carles et al. [8] have 
reported an analysis of relevant 18F-FET PET features 
in recurrent glioblastoma patients, including also over-
all survival as clinical endpoint. More complex features 
were highlighted as significant for recurrent glioblastoma 
patients, whereas our results suggest that shape and first 
order features are more predictive for overall survival 
in primary glioblastoma. Conversely, best results in our 
study were achieved for the PTV, where the GLCM Joint 
Entropy turned out to be significant in univariate analy-
sis. This confirms that higher order features are indeed 
relevant for primary glioblastoma patients, especially 
when considered within the PTV region.

MR images have been used more frequently to predict 
survival in a radiomics-based approach. The performance 
reported in our study based on 18F-FET PET images are 
in line with previously reported outcomes on MRI-based 
radiomics in glioblastoma [33–38]. These studies include 
also more recent extensions from traditional radiomics 
to deep learning models, designed to include traditional 
risk factors as potential predictors [35]. Therefore, 18F-
FET PET images are suggested as valuable candidates for 
the prediction of overall survival in primary glioblastoma 
patients. The complimentary use of MRI and 18F-FET 
PET images has been recently shown in recurrent glio-
blastoma patients to derive independent biomarkers of 
response to treatment [38].

The main limitation in our study is the reduced num-
ber of patients, also in reason of the unique characteris-
tics of the analyzed patient cohort, which consists solely 
of glioblastoma patients receiving 18F-FET PET prior to 
primary radio(chemo)therapy. This motivated the use 

of stringent criteria for feature selection, but hindered a 
more extensive analysis of the relevance of single features 
in survival prediction. For this reason, the univariate 
analysis was restricted to the Top features dataset, which 
might have underestimated the relevance of complex tex-
tural features, as these latter were under-represented in 
the PCA feature selection procedure (Fig.  2). Reported 
results indeed confirm the appropriateness of such a 
selection, as PCA including only SH-FO features outper-
formed PCA including more complex features (Table 2). 
As further limitation, no comparison with MRI-based 
radiomic features has been carried out in this work. 
Different studies have investigated the use of quantita-
tive features from MRI and 18F-FET PET for treatment 
response and survival [6, 10, 38], highlighting the compli-
mentary role of these imaging modalities. A comparative 
radiomics-based analysis is therefore suggested to high-
light the need of dedicated imaging protocols for glio-
blastoma survival prediction.

Conclusions
The findings of feature analysis and prediction perfor-
mance based on 18F-FET PET images show that shape 
features in voi14, voi16, and PTV are significant predic-
tors of overall survival in glioblastoma patients. When 
radiomics-based prediction is enlarged to the PTV a 
more robust prediction of survival is achieved, with 76% 
accuracy in independent testing both for classification 
and regression analyses. These preliminary results should 
be extended to a larger patient cohort for further valida-
tion of our findings.
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