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Abstract 

Purpose:  We recently described the validation of deep learning-based auto-segmented contour (DC) models for 
organs at risk (OAR) and clinical target volumes (CTV). In this study, we evaluate the performance of implemented DC 
models in the clinical radiotherapy (RT) planning workflow and report on user experience.

Methods and materials:  DC models were implemented at two cancer centers and used to generate OAR and CTVs 
for all patients undergoing RT for a central nervous system (CNS), head and neck (H&N), or prostate cancer. Radiation 
Therapists/Dosimetrists and Radiation Oncologists completed post-contouring surveys rating the degree of edits 
required for DCs (1 = minimal, 5 = significant) and overall DC satisfaction (1 = poor, 5 = high). Unedited DCs were 
compared to the edited treatment approved contours using Dice similarity coefficient (DSC) and 95% Hausdorff 
distance (HD).

Results:  Between September 19, 2019 and March 6, 2020, DCs were generated on approximately 551 eligible cases. 
203 surveys were collected on 27 CNS, 54 H&N, and 93 prostate RT plans, resulting in an overall survey compliance 
rate of 32%. The majority of OAR DCs required minimal edits subjectively (mean editing score ≤ 2) and objectively 
(mean DSC and 95% HD was ≥ 0.90 and ≤ 2.0 mm). Mean OAR satisfaction score was 4.1 for CNS, 4.4 for H&N, and 4.6 
for prostate structures. Overall CTV satisfaction score (n = 25), which encompassed the prostate, seminal vesicles, and 
neck lymph node volumes, was 4.1.

Conclusions:  Previously validated OAR DC models for CNS, H&N, and prostate RT planning required minimal subjec-
tive and objective edits and resulted in a positive user experience, although low survey compliance was a concern. 
CTV DC model evaluation was even more limited, but high user satisfaction suggests that they may have served as 
appropriate starting points for patient specific edits.
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Introduction
Manual contouring of organs at risk (OAR) and clini-
cal target volumes (CTV) is an essential task in radio-
therapy (RT) planning. However, this process can be 
time consuming, depends on staff availability, and is a 
large contributor to RT treatment planning lead time. 
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Auto-segmentation solutions are frequently explored 
to alleviate workload pressures [1], and deep learning-
based auto-segmentation is thought to provide improved 
results over atlas-based methods [2]. Despite its potential 
utility, deep learning-based auto-segmentation is not yet 
widely used in clinical practice [3]. One possible factor 
associated with the slow adoption is the current lack of 
knowledge and guidelines regarding the commissioning 
and implementation of such machine learning applica-
tions [3].

In our previous report [4], we compared deep-learn-
ing based auto-segmented contours (DC) with multiple 
expert Radiation Oncologist contours for central nerv-
ous system (CNS), head and neck (H&N), and prostate 
OARs and CTVs and observed close similarity between 
the two contour sets. DCs were also noted to take sub-
stantially less time to produce compared to manual con-
tours, although this did not take into account the amount 
of potential editing that may be done in clinical practice. 
Considering the results of our previous study, these auto-
segmentation models were approved at our institutions 
for implementation and testing in the clinical workflow 
with the intention of facilitating current manual contour-
ing processes.

In the current study, we aim to characterize the impact 
of these DC models in the clinical workflow at two can-
cer centers. Capturing DC editing time to quantify time 
savings was not felt to be feasible given the associated 
added tasks involved, so other subjective and objective 
measures were devised to assess DC model performance 
and degree of editing required. By sharing our experi-
ence implementing machine learning auto-segmentation 
into the workflow, we hope to increase interest in adopt-
ing machine learning auto-segmentation applications in 
other Radiation Oncology clinical practices.

Methods
The Limbus Contour auto-segmentation software ver-
sion 1.0.22 was implemented at two British Columbia 
Cancer centers. Description of the software and its 
DC models are described in our previous report [4] 
but complete details have not been made public by the 
manufacturer. These models were trained using publi-
cally available data; no local institutional data was used. 
Approval for this study was obtained from our insti-
tutional research ethics board and consent from the 
participating departments was obtained. Planning com-
puted tomography (CT) images from both centers were 
captured using a GE Healthcare Optima CT580 series 
scanner with the following parameters depending on 
disease site: 120kVp, 100–700mAs, 1.25–2.5  mm slice 
thickness, and 0.683–1.270  mm in-plane pixel size. 
Using these CT images, the auto-segmentation software 

prospectively generated DCs to be reviewed and edited 
on all patients undergoing RT treatment planning for 
CNS, H&N, and prostate malignancies. The software 
was set up to automatically detect the planning CT 
image files and create DCs to be imported alongside the 
images into the treatment planning software.

The OARs to be auto-segmented for each eligible dis-
ease site were selected by each center; the OARs avail-
able to be selected included brainstem, globe, optic 
chiasm, optic nerve, parotid, submandibular, mandi-
ble, spinal cord, bladder, femoral head, and rectum. 
The CTV contours available were neck CTV, prostate, 
and seminal vesicles (SV). DCs for neck CTV included 
lymph node levels Ib, II, III, IV, V, and the retropharyn-
geal and retrostyloid nodes; this DC was generated 
on every third image slice as they were intended to 
be edited and interpolated according to the clinical 
scenario.

Generated DCs underwent manual review and were 
edited as needed prior to being used for RT treatment 
planning. Radiation Therapists/Dosimetrists are respon-
sible for OAR generation at both centers and performed 
the majority of OAR DC editing during this study. These 
contours are then sent to the Radiation Oncologist for 
review of OARs and creation of the target volumes, 
including adjusting the CTV DC if present. Uncom-
monly, unedited OAR DCs could be reviewed and edited 
by a Radiation Oncologist without a Radiation Thera-
pists/Dosimetrists assessment due to department work-
load and/or urgency of treatment. The two study centers 
are involved in resident physician teaching, but no resi-
dent physicians were at these centers during the study 
period and therefore no trainees were involved in review-
ing and/or editing study contours.

A subjective assessment of DC editing and workflow 
impact was captured by having Radiation Therapists/
Dosimetrists and Radiation Oncologists complete post-
contouring surveys for each RT plan, rating the degree 
of edits performed on the DCs (1 = minimal, 5 = signifi-
cant) and their overall OAR and CTV DC satisfaction 
(1 = poor, 5 = high) based on their own assessment; no 
further instructions were provided and the surveys did 
not record the name of the user to encourage candid 
feedback. A text field was also available for any free text 
comments. Radiation Therapists/Dosimetrists completed 
these surveys after their contouring was completed and 
before the contours were sent to the Radiation Oncologist 
for their review. Cases could have more than one survey 
entry since different OARs may be contoured by different 
Radiation Therapists/Dosimetrists, and Radiation Oncol-
ogists would create a separate entry for the CTV before 
sending the contours for peer review and treatment plan-
ning. When multiple survey entries existed for an RT 
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plan, the entries were combined and only the worst score 
for each structure or satisfaction rating was kept.

Objective comparison metrics were also captured 
for patients with a completed survey and an approved 
RT treatment plan by the study end date. In this analy-
sis, the unedited DCs were compared to the final treat-
ment approved contours using Dice similarity coefficient 
(DSC) and 95% Hausdorff distance (HD) to provide an 
objective assessment of DC editing. Since inaccurate DCs 
could still provide workflow benefits compared to wholly 
manually generated contours, these comparison metrics 
are less useful than the survey assessments at character-
izing workflow impact of DC implementation. However, 
the objective comparisons do assist in the identification 
of consistent DC contouring errors that can then be the 
target of model training and improvement.

DSC is defined as D(A,B) = 2|A ∩ B|/(|A| +|B|) and 
describes the relative overlap of segmentation volumes 
A and B. DSC values range from 0 for no overlap to 1 
for complete overlap. HD is a bi-directional measure to 
quantify the distance between two contour surfaces. The 
95% HD is the distance that represents the largest sur-
face-to-surface separation among the closest 95% of sur-
face points. For example, if a 95% HD is 2 mm, then 95% 
of contour A points are within 2 mm of contour B points. 
No comparisons were performed on RT plans containing 
DCs without a survey, as we could not verify that these 
DCs were utilized.

No cropping of the superior or inferior borders for 
these structures was performed for this analysis. Pros-
tate volumes were compared to the closest CTV volume 
regardless as to whether the CTV included a portion of 
the SV, except for post-prostatectomy cases. No contour 
comparison was performed for SV, as there was no CTV 
volume that was felt to be appropriate for comparison; a 
CTV volume that excluded the prostate was only availa-
ble in a handful of cases and it typically only included the 
proximal SV. No contour comparisons were performed 
for neck CTVs, since the DCs were only generated on 
every third slice.

Assessment of the rectum, prostate, and SV from pros-
tate cases were excluded from the overall analysis when 
a rectal spacer gel was used, as this scenario was not 
included in model training; OAR DC models for cases 
with rectal spacers are currently in development.

Results
DC models were implemented into the clinical work-
flow at both centers on September 19, 2019. From this 
date until March 6, 2020, DCs were generated for 606 RT 
plans (370 at center A and 236 at center B). However, this 
number includes an estimated 40–70 non-prostate pelvic 
RT cases from center A in which auto-segmentation was 

requested off study; a more specific number was not able 
to be determined.

Not all eligible cases had a survey completed for them 
due to compliance. 203 post-contouring surveys were 
collected on 174 cases (27 CNS, 54 H&N, and 93 pros-
tate RT plans);153 (88%) of these cases were from center 
A, resulting in an approximate survey compliance rate 
of 46–51% (153/300-330) at center A and 9% (21/236) at 
center B.

Approximately 22 and 7 Radiation Therapists/Dosi-
metrists from center A and B, respectively, participated 
in completing the surveys, while approximately 10 Radia-
tion Oncologists from center A and none from center B 
were involved in the surveys. 185 of the surveys (91%) 
were completed by a Radiation Therapist/Dosimetrists; 
29 cases had 2 survey entries that were combined.

Five prostate cases had rectal spacer gel in-situ; the 
editing scores for the rectum, prostate, and SV from 
these cases were excluded from the overall analysis, but 
are reported separately in the Additional file  1. Other 
specific patient and disease characteristics were not cap-
tured as part of this study. Table 1 contains the number of 
entries and editing scores for each OAR and CTV struc-
ture. The editing score dataset is also represented as box 
plots in Fig. 1. The survey editing score data by center is 
summarized in the Additional file 2.

The submitted surveys contained 157 OAR satis-
faction scores with a mean score of 4.4 (range 2–5, 
median 5). Of these 157 scores, 26, 48, and 83, were 
from CNS, H&N, and prostate RT plans, respectively, 
with mean satisfaction scores of 4.1, 4.4, and 4.6, 

Table 1  Summary of editing scores for central nervous system, 
head and neck, and prostate organs at risk and clinical target 
volumes (CTV)

1 = minimal editing required, 5 = significant editing required

Structure Number Median (range) Mean

Brainstem 38 1 (1–5) 1.6

Globes 66 1 (1–5) 1.6

Optic Chiasm 20 3 (1–5) 3.4

Optic Nerve 22 1 (1–3) 1.4

Spinal Cord 46 1 (1–4) 1.3

Parotids 26 2 (1–5) 2.0

Submandibulars 20 1 (1–3) 1.5

Mandible 26 2 (1–4) 2.3

Neck CTV 2 2 (1–3) 2.0

Bladder 86 1 (1–3) 1.4

Femoral Heads 89 2 (1–3) 1.6

Prostate 9 3 (2–4) 2.8

Rectum 83 1 (1–4) 1.7

Seminal Vesicles 10 2 (1–4) 2.1
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respectively. OAR and CTV satisfaction scores by dis-
ease site are represented in Fig. 2. There were 25 CTV 
satisfaction scores with a mean score of 4.3 (range 
2–5, median 5). Of these 25 satisfaction scores, 9 and 
16 were from H&N and prostate RT plans, respec-
tively, with mean satisfaction scores of 4.8 and 4.1, 
respectively.

During the study period, 130 of the 174 cases (75%) 
had approved RT treatment plans available and were 
included in the contour comparison analysis. The 
remaining 25% of cases corresponded to patients 
whose treatment was cancelled, patients who were re-
planned with another planning CT, or RT plans that 
had not yet been approved by the study end date. The 
unedited DCs were compared to the final treatment 
approved contours for 23 CNS, 36 H&N, and 71 pros-
tate RT plans. Examples of the unedited and edited 
DCs can be found in the Additional file 3. A total of 54 
cases (42%; 21 CNS, 12 H&N, 21 prostate) had regis-
tered magnetic resonance (MR) images.

Table 2 contains a summary of the 95% HD and DSC 
scores and box plots are shown in Fig.  3. The sum-
marized contour comparison data by center are also 
presented in the Additional file  3. Select graphs cor-
relating the survey editing score with the 95% HD or 
DSC for each structure can be found in Fig. 4, with the 
remaining plots shared in the Additional file 2.

Discussion
With increasing interest and uptake of machine learn-
ing applications and auto-segmentation in Radiation 
Oncology [3], literature to help promote and guide the 
commissioning and clinical implementation of these 
algorithms is becoming more readily available [5]. 
While machine learning auto-segmentation is widely 
hypothesized to be associated with workflow benefits 
and time savings, limited prospective data exists to 
confirm this claim. To our knowledge, only one other 
study characterizing the workflow impact of DC model 
implementation has been published to date and this 
report evaluated the use of prostate magnetic reso-
nance (MR)-based DCs [6], as opposed to the CT-based 
models in this study that may be more widely applica-
ble to typical Radiation Oncology practices.

We implemented previously validated DC models 
for CNS, H&N, and prostate RT planning and found 
that OAR DCs required minimal subjective editing 
and were associated with high user satisfaction. Objec-
tively comparing the unedited DC with the final treat-
ment approved contour also indicated that major edits 
were uncommon, including in cases with moderate 
artifact (e.g. example H&N case in Additional file  2). 
Evaluation of CTV DCs for H&N and prostate RT plan-
ning was more limited but the submitted survey sat-
isfaction scores suggest that they may have been used 

Fig. 1  Box plots of user editing scores for central nervous system, head and neck, and prostate organs at risk and clinical target volumes (CTV). 
1 = minimal editing required, 5 = significant editing required. SV = seminal vesicles
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favorably as a template for patient specific edits and 
interpolation.

Both centers in our study reported noticeable time sav-
ings with using DCs to the study team, but we unfortu-
nately did not have a feasible method to evaluate RT plan 
contouring times before and after auto-segmentation 
implementation, which would have demonstrated work-
flow benefit more definitively. For this study, there was 
consensus within the two participating centers that hav-
ing users record contouring and editing times for each 
RT plan was not practical. Other available metrics, such 
as tracking contouring task completion time, were also 
not considered to be reliable given that this metric could 
encompass staffing availability delays much larger in scale 
than any auto-segmentation time savings.

We therefore relied on post-contouring survey feed-
back as a quantifiable indicator as to whether DCs 
impeded, rather than streamlined, existing workflow with 
the presumption that any unusable DCs would result in 
poor editing scores and overall satisfaction results.  Sur-
vey assessments were used in the previously mentioned 
workflow study [6] and such an evaluation approach 

appears consistent with published auto-segmentation 
implementation recommendations [5]; these recommen-
dations acknowledge that while time savings is the ration-
ale, evaluating the degree of manual editing required and 
having an avenue for feedback are also important results 
to capture.

To minimize possible bias and obtain as close to a real-
world representation of impact as possible, no specific 
instructions on how to assess the auto-segmentations on 
the surveys were provided. On a 5 point scale (1 = mini-
mal, 5 = significant edits required), average editing scores 
were 2 or less for brainstem, globe, optic nerve, parotid, 
submandibular, spinal cord, bladder, femoral head, and 
rectum DCs. The OARs with higher average editing 
scores (optic chiasm and mandible) are discussed sepa-
rately. Overall satisfaction scores for OAR DCs from all 3 
disease sites had a mean satisfaction score of > 4 (1 = low 
satisfaction, 5 = high user satisfaction).

These favourable survey results suggest that the OAR 
DCs were associated with a clinical workflow benefit 
and likely resulted in time savings. This finding is sup-
ported by a recent contouring study that utilized the 

Fig. 2  Box plot of user satisfaction scores for central nervous system (CNS), head and neck (H&N), and prostate organs at risk (OAR) and clinical 
target volumes (CTV). 1 = low satisfaction, 5 = high satisfaction
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same commercial software as the present study and 
demonstrated time savings with editing DCs over man-
ual contours for the bladder and rectum [7].

However, compliance with the surveys was not ideal; 
survey completion rates were approximately 48% and 
9% at the two centers despite multiple reminders sent 
during the study and some survey entries did not have 
assessments of all relevant structures even though 
those DCs appear to have been utilized.  From discus-
sion with the participating centers, the DCs were regu-
larly used in workflow and the staff felt that the surveys 
were unnecessary as DCs lead to a noticeable improve-
ment in contouring processes; however, no metrics to 
support this claim are available. An additional consid-
eration is that the survey results could have been influ-
enced by a multitude of factors related to the subjective 
nature of this assessment method, including differing 
user contouring experience and biases for or against 
auto-segmentation implementation.

Objective comparison metrics were also evaluated, 
but given that there are no clinically relevant thresh-
olds at which DCs can be determined to be benefi-
cial to workflow, the subjective results are likely more 
indicative of whether DCs were felt to facilitate RT 
contouring. This is supported by the aforementioned 
workflow study by Cha et  al., which noted a 30% time 
savings with using prostate MR-based DCs compared 
to historic controls but found that their geometric 

comparison results did not strongly correlate with con-
touring time [6].

Even so, we found the comparison metrics to still be 
useful for identifying DC outliers with lower similarity to 
the final treatment approved contour and these outliers 
are apparent on the 95% HD and DSC box plots (Fig. 3). 
On review of these cases, we discovered instances of 
the bladder DCs including adjacent bowel or prostate, 
rectum DCs being inaccurate in certain cases with sig-
nificant amounts of gas, and salivary gland DCs being 
under-contoured when there was adjacent tumor. These 
scenarios and inaccuracies occurred infrequently so 
should not preclude the implementation of DCs, but they 
highlight an important benefit of DC models over atlas-
based models. Through ongoing user feedback and moni-
toring of DC performance, areas of poor performance 
can be identified to guide further training and improve 
DC accuracy, which is generally not possible with atlas-
based auto-segmentation methods.

The optic chiasm (editing score 3.4) was one of 
the two OAR DC models with a mean survey editing 
score > 2. From the contour comparison analysis, the 
optic chiasm DC can be seen in Fig. 3 to also objectively 
require more user adjustments with mean 95% HD and 
DSC of 5.13  mm and 0.55, respectively. The increased 
amount of editing needed is consistent with our previ-
ous findings of this structure having a large degree of 
inter-observer variability in contouring [4], which likely 

Table 2  Summary of comparison metrics from comparing unedited deep learning-based auto-segmented contours and final 
treatment approved contours for central nervous system, head and neck, and prostate organs at risk and clinical target volumes (CTV)

Structure Number 95% Hausdorff distance (mm) Dice similarity coefficient

Median (range) Mean Median (range) Mean

Brainstem 56 1.31 (0–7.76) 1.87 0.98 (0.72–1) 0.94

Left Globe 48 0.76 (0–3.27) 1.06 0.98 (0.86–1) 0.97

Right Globe 47 0.62 (0–3.5) 1.03 0.98 (0.85–1) 0.97

Optic Chiasm 30 5.35 (0–10.63) 5.13 0.47 (0.15–1) 0.55

Left Optic Nerve 32 1.73 (0–7.36) 1.86 0.89 (0.61–1) 0.86

Right Optic Nerve 33 1.19 (0–7.99) 1.76 0.94 (0.54–1) 0.87

Spinal Cord 38 0.72 (0–3.81) 1.13 0.97 (0.64–1) 0.91

Left Parotid 35 2.53 (0.21–8.74) 2.93 0.94 (0.78–0.99) 0.93

Right Parotid 35 2.77 (0.22–7.64) 2.96 0.95 (0.82–0.99) 0.94

Left Submandibular 20 2.22 (0.26–7.56) 2.51 0.96 (0.66–0.99) 0.93

Right Submandibular 23 2.34 (0.25–6.87) 2.00 0.95 (0.78–0.99) 0.94

Mandible 34 1.56 (0–2.98) 1.47 0.96 (0.85–1) 0.96

Bladder 71 0.64 (0–19.54) 1.51 0.99 (0.92–1) 0.99

Left Femoral Head 71 1.27 (0–7.24) 1.48 0.99 (0.93–1) 0.98

Right Femoral Head 71 1.28 (0–8.88) 1.77 0.99 (0.93–1) 0.98

Prostate 51 4.26 (0.2–50.15) 6.29 0.9 (0.18–1) 0.88

Rectum 71 3.04 (0–17.3) 4.76 0.95 (0.77–1) 0.93
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pertains to varying contouring preferences of optic 
nerve and optic chiasm junctions and difficulty visu-
alizing the optic chiasm on CT images. Furthermore, 
23 of the 30 cases in this study that utilized the optic 
chiasm DC had MR images registered to their plan-
ning CT scan to help delineate this structure. An MR-
based DC model for the optic chiasm and other CNS 
OARS are currently in development, but some degree 

of inter-observer variations will likely always be present 
[8].

The mandible DC model was not evaluated in our pre-
vious validation study, but was included in this study 
since we hypothesized that the minimal anatomic vari-
ability in this structure would lead to high performance. 
However, this structure was the other OAR DC that was 
noted to subjectively require a larger degree of manual 

Fig. 3  Box plots of Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD) from comparing unedited deep learning-based contours with 
final treatment approved contours for central nervous system (CNS; a, b), head and neck (H&N; c, d), and prostate (e, f) organs at risk (OAR) and 
clinical target volumes (CTV). L = left, R = right
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edits with a mean editing score of 2.3. Despite this higher 
mean and relatively wider spread of editing scores seen in 
Fig. 1, the mandible was minimally edited objectively, as 
shown by low mean 95% HD of 1.47 mm and high mean 
DSC values of 0.96. Our contour comparison results were 
also comparable or improved to other DC and atlas based 
methods [9–11]. One possible explanation for the dis-
crepancy between objective and subjective editing scores 

could be that small edits may have been performed on 
many image slices of this larger structure and felt to be 
manually tedious resulting in a higher editing score, but 
these edits may have had minimal effects on the geomet-
ric contour comparison metrics. Conversely, large and 
obvious inaccuracies on only a few image slices may have 
had a similar effect. We are unable to confirm what influ-
enced the discrepancy without having known the rater’s 

Fig. 4  Plots correlating survey editing score with Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD) from comparing unedited deep 
learning-based contours with final treatment approved contours for all (a, b) and select (c–f) central nervous system, head and neck, and prostate 
organs at risk and clinical target volumes. Best-fit line is shown on each plot
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thoughts at the time of editing, but ongoing evaluation 
of the mandible DC model performance in clinical work-
flow will help characterize if any specific editing is con-
sistently needed for this structure.

CTVs for H&N and prostate were evaluated in this 
study, but a fewer number of survey entries for these 
structures were available. Radiation Therapists/Dosi-
metrists would defer contouring of these structures to 
Radiation Oncologists and compliance with the post-con-
touring surveys among this user group was much lower. 
From the small amount of data collected, CTVs subjec-
tively seemed to require a moderate amount of editing, 
which was to be expected as these contours depend on 
the clinical scenario. The 25 submitted overall CTV sat-
isfaction scores were moderate to high (Fig. 2), perhaps 
suggesting that CTV DCs likely achieved their purpose of 
being appropriate templates for manual patient specific 
edits.

No contour comparison analysis was performed for 
neck CTVs or SVs, since there were no appropriate 
approved structures to compare the DCs to. CTVs for 
prostate RT planning can include a portion of the proxi-
mal SV, so a direct geometric evaluation of the prostate 
contours was also not possible. However, we opted to still 
compare the unedited prostate DC to the closest match-
ing approved CTV volume to estimate how much edit-
ing for this structure might have occurred. From this 
comparison, we observed a mean 95% HD of 6.29  mm 
and mean DSC of 0.88. These values appear to be within 
range of the inter-observer variability seen for the pros-
tate in our previous validation study (average worst 
expert to expert 95% HD and DSC of 5.3 mm and 0.83, 
respectively) [4] and are similar to the prostate and SV 
comparison indices in the aforementioned MR-based 
workflow study (mean DSC 0.89) [6], so it is possible that 
the prostate DCs at least did not require an excessive 
degree of editing.

The primary goal of this study was to evaluate the 
workflow impact of DC implementation through sub-
jective and objective measures. As a secondary ad hoc 
analysis, the values from each case were plotted together 
for each structure (Fig. 4 and Additional file 1) to explore 
the relationship between survey editing scores and com-
parison metrics. The slope of the best-fit lines on these 
graphs suggests that higher editing scores were associ-
ated with increased objective editing (i.e. higher 95% HD 
and lower DSC). On the other hand, Cha et al. observed 
in their workflow study that their geometric indices were 
not strongly correlated with the physician quality scores 
[6]. This disagreement in findings may be related to the 
differing subjective assessment scale used (3 point vs 5 
point scale) or the method of score assignment (rating 
each structure vs a global rating).

On closer examination of our graphs, some plots had 
more shallow best-fit lines than others, potentially indi-
cating that there was a less prominent association with 
editing score and comparison metrics for these struc-
tures. One hypothesis for this observation was that users 
may have assigned higher editing scores to small DC 
inaccuracies that could have significant clinical impli-
cations, while these inaccuracies would have minimal 
effects on the 95% HD and DSC metrics which only con-
sider geometric information.

For example, the steep best-fit line of the optic globe 
(Fig. 4c, d) suggests a close association with editing scores 
and comparison metrics; this structure typically will have 
few clinically significant inaccuracies since it is usually 
not in close proximity to a target and the dose-constraint 
of concern is a maximum dose [12] which would tend to 
not change significantly with minor contouring differ-
ences. On the other hand, the parotid gland has a more 
shallow best-fit line (Fig. 4e, f ) suggesting a weaker asso-
ciation; this structure more likely will have DC inaccura-
cies that are felt to be more clinically impactful since the 
relevant dose constraint considers the mean dose to the 
whole parotid volume [13].

As we touched upon earlier, the absence of a contour-
ing and editing time metric, low survey compliance, and 
possible survey biases represented limitations of this 
study. Additionally, the limited utility of the objective 
comparison metrics in assessing DC model performance 
in the clinical workflow should be considered when inter-
preting those results. Other than there being no relevant 
threshold and their not being able to take into account 
any clinical information, these metrics are also suscep-
tible to inconsistencies secondary to operational proce-
dures. For instance, many of the spinal cord DSC outliers 
were from comparing spinal cord DCs with a treatment 
approved spinal cord structure that actually represented 
the spinal canal. Other comparisons were not able to be 
performed because the DC was used to create a differ-
ently named structure (e.g. the globe was used to create 
a retina structure). Moreover, falsely high similarity was 
possible when DCs were used but not closely reviewed, 
which might occur when a requested OAR DC is far away 
from the target volume (e.g. the optic chiasm for an oro-
pharyngeal or larynx target).

In summary, we implemented deep-learning based auto-
segmentation for CNS, H&N and prostate OARs and 
CTVs into the clinical RT planning workflow at two cancer 
centers and captured subjective and objective measures of 
DC performance. Our results suggest that well-trained DC 
models were associated with a positive user experience and 
did not require any degree of manual editing that would 
appear to inhibit their usability. As this software contin-
ues to be utilized by our centers, scenarios associated with 
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consistent DC underperformance can be identified and 
targeted with additional training to further improve DC 
model accuracy. Additional OAR and CTV DC models, 
such as those applicable to breast, thoracic, and gynecolog-
ical RT treatment planning, are currently being developed 
and tested in workflow by a variety of groups, including at 
our own institutions [14–17].
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