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Abstract 

Background and objective:  Radiation pneumonitis (RP) could be a lethal complication of lung cancer treatment. 
No reliable predictors of RP severity have been recognized. This prospective pilot study was performed to identify 
early predictors of high grade lung toxicity and to evaluate clinical, biological or dosimetric features associated with 
different grades of toxicity.

Method:  Sixteen patients with non-small cell lung cancer with indication of concurrent chemoradiotherapy using 
60 Gy/2 Gy/fraction starting at cycle one of platinum based chemotherapy were included. Bronchoalveolar lavage 
(BAL), pulmonary function testing (PFT), and 18F-2-fluoro-2-deoxy-D-glucose positron-emission tomography was per‑
formed before radiotherapy (RT), after three weeks of treatment, and two months post-RT. For analysis, patients were 
grouped by grade (low [G1-G2] vs. high [G3-G5]). The two groups were compared to identify predictors of RP. Protein 
expression BAL and lung tissue metabolism was evaluated in two patients (RP-G1 vs. RP-G3). Categorical variables 
such as comorbidities, stages and locations were summarized as percentages. Radiation doses, pulmonary function 
values and time to RP were summarized by medians with ranges or as means with standard deviation. Longitudinal 
analysis PFT was performed by a T-test.

Results:  All 16 patients developed RP, as follows: G1 (5 pts; 31.3%); G2 (5 pts; 31.3%); G3 (5 pts; 31.3%); and G5 (1 
pts; 6.1%). Patients with high grade RP presented significant decrease (p = 0.02) in diffusing lung capacity for carbon 
monoxide (DLCO) after three weeks of RT. No correlation between dosimetric values and RP grades was observed. 
BAL analysis of the selected patients showed that CXCL-1, CD154, IL-1ra, IL-23, MIF, PAI-1 and IFN-γ were overexpressed 
in the lungs of the RP-G3 patient, even before treatment. The pre-RT SUVmax value in the RP-G3 patient was non-
significantly higher than in the patient with RP-G1.

Conclusions:  RT induces some degree of RP. Our data suggest that decrease in DLCO% is the most sensitive param‑
eter for the early detection of RP. Moreover, we detect biological differences between the two grades of pneumonitis, 
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Background
Radiotherapy (RT) is a mainstay treatment for non-
small cell lung cancer (NSCLC). Several studies have 
showed a benefit in local control and survival increas-
ing biological equivalent doses [1]. However, its effec-
tiveness is limited by the risk of radiation-induced lung 
injury (RILI). RILI is the result of an abnormal heal-
ing response to lung irradiation caused by damage to 
parenchymal cells, vasculature, and/or stroma followed 
by inflammatory cytokine release [2]. Diagnosis of 
RILI is based on nonspecific symptoms with or with-
out abnormalities in pulmonary function tests (PFT). 
Radiographic changes usually reveal parenchymal 
abnormalities.

Radiation pneumonitis (RP), and pulmonary fibrosis 
(PF) represent, the acute and late phase of RILI. Symp-
tomatic RILI has been described in 30% of cases, with 
mortality rates as high as 2% [3–6]. Distinctions between 
these phases is arbitrary because early and late effects 
of RT are a continuous spectrum of the same biologi-
cal event. Early-RILI or RP is considered when symp-
toms appear within 12  week after lung RT and up to 
6 months post-RT. X-rays is characterized by inhomoge-
neous opacity inside or outside the irradiation field and 
increased density of septal structures. Late-RILI or PF 
is a chronic lung damage that usually evolves over 6 to 
24 months after RT. X-rays shows contracted, dense scar 
that occupies a much smaller volume than the originally 
irradiated volume. Also fibroelastosis pleuroparenchymal 
changes can be observed do to RT [7].

The relationship between the development of RILI and 
baseline patient characteristics, lung function parameters 
and radiation dose have been retrospectively investigated 
[3, 8, 9]. Some molecular biomarkers in blood and bron-
choalveolar lavage (BAL) have been proposed [10–12]. In 
addition, imaging technologies such as 8F-2-fluoro-2-de-
oxy-D-glucose (18F-FDG) positron-emission computed 
tomography (PET/CT) are able to quantify the uptake of 
18F-FDG in the lung as a marker of pulmonary inflamma-
tion [13–17]. Despite these advances, scarce data is avail-
able to show reliable predictive factors of RP, the effects 
of radiation on the lung, or the mechanisms leading to 
fibrosis and death in the context of RILI.

This prospective pilot study was conducted to iden-
tify early predictive factors of severity in RP and to 
evaluate the possible features associated with different 
grades of RP.

Methods and material
Patients
Patients diagnosed with NSCLC at our Institution with 
indication of concurrent chemoradiotherapy regimen 
using 60 Gy 2 Gy/fraction starting at cycle one of plati-
num based chemotherapy were prospectively included 
from January 2011 to March 2013. Inclusion criteria 
comprised: histologically confirmed NSCLC, inoperable 
locally advanced NSCLC, no previous thoracic RT. Exclu-
sion criteria included: Karnofsky index < 70, interstitial 
lung disease (ILD), forced expiratory volume at first sec-
ond (FEV1) < 30%, chronic respiratory failure, oral corti-
costeroid treatment, contraindication for bronchoscopy, 
or refusal to participate. The Ethics Committee of the 
University Hospital of Bellvitge and the Catalan Institute 
of Oncology approved the study protocol (PR206/08). 
Patients signed a written informed consent prior to 
inclusion.

Patients underwent BAL by fiberotpic-bronchoscopy, 
lung function testing, and 18FDG-PET/CT prior to ini-
tiation of RT, at the end of the third week of RT, and at 
two months post-RT. Patient consultations were once 
weekly from the time of study inclusion until RT comple-
tion. Thereafter, patients were evaluated every 15  days 
for 6 months and then monthly for one year. The follow-
up visits included: medical history, physical examina-
tion and monthly chest X-rays. RP diagnosis was based 
on the appearance or worsening of dyspnea and cough, 
which may associate fever or chest pain, accompanied 
with changes of radiological images. RP diagnosis and 
imaging evaluation were made by the multidisciplinary 
clinical team (medical oncologist, radiation oncologist 
and thoracic radiologist). RP grade was scored according 
to the Common Terminology Criteria for Adverse Events 
version 4.0. (CTCAEv4.0) [18]. Patients were divided into 
2 groups (low-grade RP [G1 and G2], and high-grade RP 
[G3-G5]), according to the CTCAEv4.0. The two groups 
were compared to identify early predictors for high-grade 
RP development.

Radiotherapy treatment
Treatment planning for the RT used a 3D technique. 
An specific CT scan over the thorax and upper abdo-
men with intravenous contrast was obtained [19]. Gross 
tumor volume (GTV) was contoured according to the 
PET/CT and diagnostic CT scan. No prophylactic nodal 
irradiation was performed. To cover subclinical disease, 
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the GTV was expanded according to histological find-
ings. The GTV was increased by 0.6 cm for squamous cell 
carcinomas and by 0.8 cm for adenocarcinomas to pro-
vide the clinical target volume (CTV) [20]. The planning 
target volume (PTV) was determined by adding 0.7  cm 
to the CTV in the lateral and anterior posterior direction 
and 1.5 cm in the cranio-caudal direction [21]. The mean 
dose to the PTV was 60  Gy according to standard pro-
tocols [22]. Organs at risk were contoured in accordance 
with treatment guidelines [23]. Dose constrains to the 
lungs were V20 < 35% (i.e., 35% of the healthy lung should 
receive ≤ 20 Gy) with a mean dose < 19 Gy. Radiotherapy 
and chemotherapy were started at the same time.

Pulmonary function testing
PFT parameters were measured according to European 
Respiratory Society guidelines [24] using computerized 
lung function testing equipment (Body Box  5500; Mor-
gan Scientific). The parameters assessed included forced 
vital capacity (FVC), forced expiratory volume at first 
second (FEV1), and diffusing lung capacity for carbon 
monoxide (DLCO). The same technician performed the 
PFT at all follow-up consultations.

BAL sample collection
BAL was performed in both lungs (i.e., the irradiated and 
non-irradiated) by using four 40 mL aliquots of isotonic 
saline solution (0.45%) per wash through a fiberoptic-
bronchoscope (Olympus BF-160) to facilitate the extrac-
tion of cytokines and chemokines from the alveolar 
space. The first sample was discarded; the second and the 
third samples were mixed and sent for cytological evalua-
tion. The fourth aliquot was centrifuged (543.6 g × 5 min) 
into cellular fraction and supernatant, which was ali-
quoted for cytokine determination; both fractions were 
frozen at − 80 °C.

Protein array analysis of cytokine in BAL supernatant
To evaluate differences in individual predisposition to 
lung damage and tissue repair response, we evaluate BAL 
samples. In this preliminary report, we chose one repre-
sentative patient from each study group: one from low 
grade RP (RP-G1) and another from high grade RP (RP-
G3). Expression protein was assessed using the Human 
Cytokine Array Panel A (R&D Systems, Minneapolis, 
MN; USA). Protein concentration was measured in each 
sample [25]. Pixel density of the spots was analysed using 
the Multi Gauge V3.0 (FujiFilm, Palo Alto, CA; USA). 
Three independent readers compared the mean pixel 
density values in the spots.

Positron‑emission computed tomography
Patients underwent PET/CT imaging with 18F-FDG 
according to standard practice [26]. They were asked 
to fast 6 h prior to the imaging session to ensure fast-
ing blood glucose levels within the normal range 
(3.3–5.6  mmol/L). Patients received an intravenous 
administration of FDG per kg of body weight. The 
18F-FDG-PET/CT scan was performed with a hybrid 
PET/CT scanner (General Electric Discovery ST). The 
whole-body acquisition protocol included a CT scan 
and a PET scan in a three-dimensional mode. No iodine 
intravenous contrast was administered. The CT data 
were used for attenuation correction and anatomic 
location of PET findings. The standardized uptake value 
(SUV) was used to measure uptake in the lungs.

Image analysis
Pre-treatment PET/CT image analyses of the two 
patients (i.e., RP-G1 and RP-G3) were performed to 
screen for possible differences in the SUV. This analy-
sis was processed by three independent readers and 
evaluated using custom Matlab software (v2011a, 
Mathworks, Inc; Natick, MA; USA). The lung region 
of interest (ROI) was segmented semi-automatically. 
Overlap of central airway, liver, heart, diaphragm, and 
tumor in the lung ROI were manually removed. The 
resulting binary lung ROI was used for the analysis. 
The SUV was calculated from the PET attenuation cor-
rected emission images [27]. SUV of voxels in the lung 
ROI were binned into histograms; the maximum SUV 
(SUVmax) was calculated according to the formula 
described by Petit el al. [15].

Statistical analysis
Since the prevalence of RP is variable due to differences 
in diagnostic scales [4], sample size was calculated using 
the “observed versus a reference mean” [28], which 
includes the reported prevalence of RP among the inter-
stitial lung disease [29]. To detect a relevant clinical dif-
ference (alpha = 0.05 and beta = 0.1), 17 patients were 
required (assuming a follow-up loss rate of 20%).

Patients were divided into 2 groups (low-grade [G1 
and G2], and high-grade [G3-G5]), according to the 
CTCAEv4.0. The two groups were compared to identify 
predictors for the early identification of RILI. Categori-
cal variables were summarized as percentages. Ordi-
nal categorical variables were summarized by medians 
with ranges or as means with standard deviation (SD). 
Longitudinal analysis of FEV1(%) and DLCO(%) was 
performed by a T-test. Differences were considered sta-
tistically significant for p < 0.05. All plots and analyses 
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were performed using the statistical software R version 
3.2.1 for Windows.

Results
Population
Seventeen patients were invited to participate and one 
refused. A total of 16 patients were included. Table  1 
shows the characteristics of the cohort.All patients devel-
oped RP, with different grades of severity distributed as 
follows: 5 patients, G1 (31.3%); 5 patients, G2 (31.3%); 5 
patients, G3 (31.3%); and 1 patient, G5 (6.1%) who died 
3 weeks after beginning the treatment. The rest of them 
had one year of follow-up from the start of concurrent 
chemoradiotherapy. Patients were grouped by RP grade 
(low [G1-G2] vs. high [G3-G5]), with 10 and 6 patients 
in each group, respectively. Four patients from the high-
grade group developed RILI in both lungs.

Table 2 shows the patient characteristics by RP group 
(low vs. high grade). There were no significance differ-
ences between the groups in terms of age, gender, comor-
bidities, PFT baseline values, cancer histology, stage and 
tumor localization. No differences were observed in the 
time of onset of RP and severity (p = 0,6642). The mean 
radiation dose was higher in the high-grade group [18 Gy 
(15.2 Gy-20.1 Gy) vs. 16.1 Gy (12 Gy-22.2 Gy)]; however, 
V20 was lower in the high-grade group [29.5 Gy (95% CI 
23–30) vs. 32  Gy (95% CI 21–35)]. No significant cor-
relation between dosimetric values and RP grades was 
observed.

Pulmonary function testing
Baseline FEV1(%) and DLCO(%) at diagnosis was not 
associated with the different grade of RP development. 
No significant differences in mean values were found 
between the groups at the three time points (baseline, 
end of week three, and at two month post-RT) (Tables 3 
and 4). However, by the end of the third week of RT, the 
DLCO(%) had decreased substantially in those cases that 
developed high-grade group (p = 0.0203) (Fig. 1-B). Fur-
thermore, the DLCO(%) decline was even worse after 
2 months post-RT in that same group (p = 0.0342) (Fig. 1-
B). A FEV1(%) decline was observed after 2  months of 
RT but not earlier during the treatment (Fig. 1-A). There-
fore, the DLCO(%) decrease during the RT allows to 
predict a high-grade RP even before starting respiratory 
symptoms.

Protein array analysis in the BAL supernatant
Different cytokine and chemokine expression pro-
file (pre-RT and week 3) was found in a patient with 
RP-G1 compared to another with RP-G3 (Fig. 2). Before 
RT (Fig.  2-A), the only protein expressed in the tumor-
free lung of the RP-G1 patient was ICAM while the 

Table 1  Clinical and  treatment characteristics 
of the sample

FVC: forced vital capacity, FEV1: forced expiratory volume in one second, 
DLCO: diffusing lung capacity for carbon monoxide, COPD: chronic obstructive 
pulmonary disease, NSCLC: non-small cell lung cancer

Characteristics

No. of patients 16

Sex

Male 14 (87.5%)

Female 2 (12.5%)

Age (range) 63 (58.8–76)

Smoking history

Current 10 (62.5%)

Former 5 (31.2%)

Never 1 (6.2%)

Pulmonary function (range)

FVC (%) 101 (87–105.8)

FEV1 (%) 85.5 (71.5–93.3)

FEV1/FVC 67.9 (60.5–73)

DLCO (%) 71 (57.2–87.5)

Comorbidities

Hypertension 5 (31.2%)

Diabetes 3 (18.8%)

COPD 11 (68.8%)

Heart disease 2 (12.5%)

Vascular disease 2 (12.5%)

Histologic type

Adenocarcinoma 4 (25%)

Squamous cell carcinoma 9 (56.2%)

Large cell neuroendocrine carcinoma 2 (12.5%)

NSCLC 1 (6.2%)

Location

Mediastinum 1 (6.2%)

Hilar 3 (18.8%)

Right upper lobe 6 (37.5%)

Right inferior lobe 2 (12.5%)

Left superior lobe 3 (18.8%)

Left inferior lobe 1 (6.2%)

Radiation doses (range)

Mean dose (Gy) 17.2 (12.7–22.9)

V20 (%) 30 (20.3–35.8)

V5 (%) 60 (47.5–65.8)

Pneumonitis grades

1 5 (31.3%)

2 5 (31.3%)

3 5 (31.3%)

4 0 (0%)

5 1 (6.1%)
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Table 2  Patient characteristics according to pneumonitis grade: low vs. high grade

FVC: forced vital capacity, FEV1: forced expiratory volume in one second, DLCO: diffusing lung capacity for carbon monoxide, COPD: chronic obstructive pulmonary 
disease, NSCLC: non- small cell lung cancer

Characteristics Low grade (G1–G2) High grade (G3–G5)

No. of patients 10 (62.5%) 6 (37.5%)

Sex

Male 9 (90%) 5 (83.3%)

Female 1 (10%) 1 (16.7%)

Age (range) 66.0 (59.2–67) 59.5 (58.2–65.2)

Smoking history

Current 8 (80%) 2 (33.3%)

Former 2 (20%) 3 (50%)

Never 0 (0%) 1 (16.7%)

Pulmonary function (range)

FVC (%) 100,5 (88.5- 106.5) 102.5(82.5–104.8)

FEV1 (%) 81.5 (59–93) 89 (77–90.5)

FEV1/FVC 64 (55–71.6) 69.5 (67.9–80.3)

DLCO (%) 71 (46.8–83.5) 71.5 (63.5–92.2)

Comorbidities

Hypertension 3 (30%) 2 (33.3%)

Diabetes 0 (0%) 3 (50%)

COPD 7 (70%) 4 (66.7%)

Heart disease 1 (10%) 1 (16.7%)

Vascular disease 2 (20%) 0 (0%)

Histologic type

Adenocarcinoma 3 (30%) 1 (16.7%)

Squamous cell carcinoma 5 (50%) 4 (66.7%)

Large cell neuroendocrine carcinoma 2 (20%) 0 (0%)

NSCLC 0 (0%) 1 (16.7%)

Clinical stage

IIB 3 (30%) -

IIIA 6 (60%) 3 (50%)

IIIB 1 (10%) 5 (50%)

Location

Mediastinum 1 (10%) 0 (0%)

Hilar 2 (20%) 1 (16.7%)

Right upper lobe 4 (40%) 2 (33.3%)

Right inferior lobe 1 (10%) 1 (16.7%)

Left superior lobe 1 (10%) 2 (33.3%)

Left inferior lobe 1 (10%) 0 (0%)

Chemotherapy agents

Carboplatin-etoposide 1 (10%) 1 (16.7%)

Carboplatin-gemcitabina 1 (10%) 0 (0%)

Cisplatin-vinorelbine 2 (20%) 0 (0%)

Cisplatina-etoposide 6 (60%) 5 (83.3%)

Radiation doses (range)

Mean dose(Gy) 16.1 (12–22.2) 18 (15.2–20.1)

V20 (%) 32 (21–35.8) 29.5(23–30)

Onset of radiation pneumonitis (median) 68,5 days 111 days
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tumor-free lung of the RP-G3 patient presented an over-
expression of CD154, CXCL-1, ICAM, IFN-γ, IL-1ra, 
IL-23, MIF and PAI-1. In the lung with tumor (Fig.  2-
A), the RP-G1 patient expressed CXCL-1, ICAM, IL-
1ra and MIF while the RP-G3 patient showed those 
same cytokines but also expressed CD154, IL-23, IFN-γ 
and PAI-1. At the end of third week of RT (Fig.  2-B), a 
change in the cytokine and chemokine patterns was 
detected in both cases. RT induced expression of CD154, 
CXCL-1, IL-1ra, IL-23, MIF, and PAI-1 while reducing 
ICAM expression in both lungs of the RP-G1 patient. RT 
increased cytokine response of the most overexpressed 
proteins in the tumor and tumor-free lungs of the RP-G3 
patient, with a higher expression of CD154, CXCL1, IL-
1ra, IFN-γ, IL-23 and PAI-1 (Fig. 2-B).

PET/CT image analysis
The pre-RT SUVmax value was calculated for the RP-G1 
and RP-G3 patients. In both patients, the pre-treatment 
SUVmax was higher than normal (standardized lung 
SUVmax values, 0.05 ± 0.17) [30]. However, the RP-G3 
patient had a non-significantly higher SUVmax (2.20 vs. 
2, respectively).

Discussion
The present study demonstrates that RT induces RILI in 
all patients who undergo external RT with variable clini-
cal manifestations and different degrees of lung damage. 
This variability in the degree of RILI suggests that severe 
RP may be associated with differences in individual 

predisposition. The early decrease of DLCO(%) was a 
predicting factor of severe RP development and thus 
could serve as a marker for early diagnosis and treatment 
modification.

The reported prevalence of RP in lung cancer patients 
ranges from 0 to 58% [4]. This variation is likely due to 
differences in diagnostic scales, non-specific symptoms, 
and the lack of standardized assessment protocols [4]. In 
the present study, standard follow-up protocols detected 
RILI in all of the patients but with different severity pres-
entation. This finding suggests that all patients treated 
with RT are likely to develop RILI to a greater or lesser 

Table 3  Mean values in  FEV1 between  CTCAEv4.0 groups 
at baseline, end of third week, and two month post-RT

FEV1: forced expiratory volume in one second, CTCAEv4.0: common terminology 
criteria for Adverse Events version 4.0, RT: radiotherapy, SD: standard deviation

Mean values Low grade (G1–
G2)

High grade (G3–
G5)

p Value

Baseline 78.2% (SD 21.2) 88.5% (SD: 19.1) 0.2803

3 weeks of RT 93.4% (SD 17.5) 86.2% (SD: 22.4) 0.0668

2 months post-RT 78.7% (SD: 12.0) 76.4% (SD 11.8) 0.3015

Table 4  Mean values in DLCO between CTCAEv4.0 groups 
at baseline, end of third week, and two month post-RT

DLCO: diffusing lung capacity for carbon monoxide, CTCAEv4.0: common 
terminology criteria for adverse events version 4.0, RT: radiotherapy, SD: 
standard deviation

Mean values Low grade (G1–
G2)

High grade (G3–
G5)

p Value

Baseline 67.7% (SD 22.4) 83.3% (SD: 30.2) 0.0719

3 weeks of RT 62.8% (SD 11.5) 65.6% (SD: 21.6) 0.2136

2 months post- RT 57% (SD: 13.6) 55.2% (SD 16.7) 0.0595

Fig. 1  Pulmonary function test values at different time-points by 
CTCAEv4.0 groups (low-grade [GI and GII] and high-grade [GIII-GV]). 
a Evolution of FEV1: The points represent the FEV1 (%) value of 
each patient at the three different observation times. The straight, 
is the mean FEV1 (%) value at each observation time. CTCAEv4.0: 
Common Terminology Criteria for Adverse Events version 4.0 FEV1: 
forced expiratory volume in one second RT: radiotherapy. b Evolution 
of DLCO values: The points represent the DLCO (%) value of each 
patient at three different observation times. The straight line is the 
mean DLCO (%) value at each observation time. CTCAEv4.0: Common 
Terminology Criteria for Adverse Events version 4.0 DLCO: diffusing 
lung capacity for carbon monoxide RT: radiotherapy
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extent, which may depend on individual biological 
characteristics.

Previous studies have shown that subtle, local changes 
in PFT after RT can be used as indicators of acute and 
chronic lung damage, although published results are not 
always consistent [3, 9]. The largest and most consistent 

changes in PFT values after RT are observed in DLCO, 
which has been directly associated with respiratory mor-
bidity [31]. In the present study, we evaluated the mean 
differences in FEV1(%) and DLCO(%) between low-grade 
RP patients [G1-G2] and high-grade RP patients [G3-
G5]. We found no statistically significant differences 
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Fig. 2  Cytokine and chemokines in bronchoalveolar lavage in patients with grade 1 and grade 3 radiation pneumonitis. a Before radiotherapy. b 
Third week with radiotherapy
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between the two groups in FEV1(%) values at the differ-
ent time points, thus leading us to conclude that FEV1(%) 
is not a predictor of RP, a finding that is consistent 
with other reports [9, 31]. By contrast, we found that a 
decrease in DLCO(%) 2  month post-RT was predictive 
of RP severity, in line with some previous reports [9, 31]. 
Importantly, the decline in DLCO(%) after three weeks of 
RT was an early predictor of severe RP. The explanatory 
power of this variable could be that histopathological 
alterations present during the latency phase (i.e., without 
clinical manifestations) for RILI may alter gas exchange 
[3]. Clearly, the ability to early predict severe RILI would 
be helpful to optimize therapeutic options.

Classically, RP grade has been associated with the 
radiation dose [3, 8]. In our study, the high-grade group 
received a higher mean radiation dose but lower V20 
than the low-grade group. This finding is contrast with 
the meta-analysis published by Palma et  al. [32] The 
absence of a significant association in this study between 
RP grade and radiation parameters could be due to the 
limited sample size, the small differences among patients 
with regards to the radiation dose and biological predis-
position [9].

The 18FDG-PET/CT has been use to quantify increase 
cell glycolysis in the healthy lung tissue, excluding 
tumoral areas, like a marker of pulmonary inflammation 
through the uptake of 18FDG mesure by SUV [15-17]. It 
should be noted that both patients (RP-G1 and RP-G3) 
presented higher pre-RT SUVmax than normal values 
(0.05 ± 0.17) [30]. This finding could be explained by the 
role of chronic inflammation in lung cancer. Tumorgen-
esis includes a diverse leukocyte cells that has been con-
sidered key factors in tumor promotion since they release 
different variety of cytokines, chemokines, and cytotoxic. 
These mediators alter the adequate balance between pro-
inflammatory and anti-inflammatory cytokines, favoring 
the increase of the first ones and producing a chronic 
inflammation state [33].

Accordingly, Castillo et  al. [16, 17] demonstrated the 
predictive value of pre-treatment 18F-FDG lung uptake 
in the subsequent development of RP symptoms. In this 
study, RP-G3 patient had a higher SUVmax in healthy 
lung tissue respect RP-G1 patient.These findings support 
the experience already published by Catillo et al.

RILI produce an imbalance between type 1 and type 
2 helper T-cells and abnormal fibroproliferative wound 
healing [34]. Variations among patients in terms of RP 
severity and lung repair capacity could be related to 
individual pre-treatment lung biomolecular conditions 
and genetic factors [35]. In the present study, increased 
expression of some mediators were obtained in BAL 
of tumor lungs in both patients (RP-G1 and RP-G3), 
although these proteins were also expressed in the 

tumor-free lung of the RP-G3 patient before RT. Pre-
vious studies indicate that IL-1ra is involved in acute 
inflammation [36]; MIF modulates RILI [37]; and CXCL1 
promotes angiogenesis and thus contribute to the patho-
genesis of PF. [34] Interestingly, CD154, IFN-γ, IL-23 and 
PAI-1 were expressed in both lungs (tumor and tumor-
free lung) before RT only in the RP-G3 patient. These 
four cytokines have been described in animal models 
of lung fibrosis [38, 39]. Furthermore, a recent study 
reported that a truncated PAI-1 protein protects against 
RILI in a murine model [40]. Finally, Liu et al. found that 
rs7242 GT/GG genotypes located in the 3ÚTR of PAI-1 
were associated with a significantly increased risk of RP 
[41]. Overall, our findings suggest a potential biological 
predisposition to lung damage and altered wound healing 
in RILI development, which would deserve a depth study 
to better understand pathogenesis.

Study strengths and limitations
We have to recognize some limitations: First, the small 
sample size which was calculated using “observed versus 
a reference mean” and even although we have enrolled 
sixteen patients, instead of including seventeen, we have 
not had any loss of follow up. Secondly, the low power of 
the biological lung and the PET/CT image analysis (only 
two patients). In this sense, this is a pilot study to identify 
if there are differences in biological features associated 
with different grades of RP. Our findings, warrant further 
investigation in a larger sample. The main strength of the 
study is that it is the first prospective study to evaluate 
patients with NSCLC through a longitudinal clinical and 
biological follow-up that demonstrate RT induces RILI in 
all cases but in some of them with a high-grade of lung 
injury and consequent altered wound repair.

Conclusion
RT treatment always induces some degree of lung injury 
and the extent of the damage is variable. Our data suggest 
that decrease in DLCO% is the most sensitive parameter 
for the early detection of severe RP. Moreover, we detect 
biological differences between the two grades of pneu-
monitis, highlighting the potential value of cytokines 
such as CXCL-1, CD154, IL-1ra, IL-23, MIF, PAI-1 and 
IFN-γ as a prognostic marker for developing high grade 
of lung toxicity. Further multicenter studies with larger 
sample size are essential to validate these preliminary 
findings.

Abbreviations
CTCAEv4.0: Common terminology criteria for adverse events version 4.0; 
CXCL1: Chemokine (C-X-C motif ) ligand 1; CTV: Clinical target volume; G1: 
Grade 1; G2: Grade 2; G3: Grade 3; G5: Grade 5; GTV: Gross tumour volume; 
ICAM: Intercellular adhesion molecular; IFN-γ: Interferon-gamma; IL-23: Inter‑
leukin-23; IL-1ra: Interleukin-1 receptor antagonist; MIF: Macrophage migration 



Page 9 of 10Aso et al. Radiat Oncol          (2020) 15:246 	

inhibitory factor; PTV: Planning target volume; PAI-1: Plasminogen activator 
inhibitor type 1; RT: Radiotherapy; RP-G1: Radiation pneumonitis grade 1; RP-
G3: Radiation pneumonitis grade 3; ROI: Region of interest; TGF-β1: Transform‑
ing growth factor β-1; V20: Healthy lung that should receive ≤ 20 Gy.

Acknowledgements
Authors wish to thank Bradley Londres for editing the manuscript. Pilar Bayo 
and Gabriel Reynés (Department of Nuclear Medicine, Bellvitge Universitary 
Hospital and Physic Department, Catalan Institute of Oncology) for image 
analysis.

Authors’ contributions
S.A., A.N and M.M. takes responsibility of the content and writing of manu‑
script. S.A., A.N., J.I.M., F.M, and M.M. designed the study. S.A., A.N, S.P., R.P, 
collected data. N.C and R.L performed the bronchoscopy S.A., L.R., R.C., E.C., 
and T.G., performed image analysis, S.A., A.M. and M.M., performed cytokine 
analysis A.N., R.C., S.P, E.C., A.M., J.I.M., N.C., R.L., L.R., R.P., F.M., J.D., and T.G., 
reviewed manuscript and approved final manuscript.

Funding
The Sociedad Española de Neumología y Cirugía Torácica (SEPAR) supported 
this project by a grant to finance the material expenses for the protein array 
analysis of cytokine, for statistical analysis and English corrector. The Insitut 
d’Investigació de Bellvitge (IDIBELL) supported this project by a grant to finance 
Samantha Aso PhD graduated student. These institutions haven’t participated 
in the design or development of the study or in the writing of the document.

Availability of data and materials
The datasets are available to all interested researchers on reasonable request 
from corresponding author.

Ethics approval and consent to participate
The Ethics Committee of the University Hospital of Bellvitge and the Catalan 
Institute of Oncology approved the study protocol (PR206/08). Patients signed 
a written informed consent prior to inclusion.

Consent for publication
Not applicable.

Competing interests
M.M: she’s consulting of Esteve-Teijin, Boehringer Ingelheim, Roche, Chiesi, 
GSK and Pfizer. Rest of authors: the authors declare that they have no compet‑
ing interests.

Author details
1 Department of Respiratory Medicine, Bellvitge University Hospital; 
L’Hospitalet de Llobregat, Feixa Llarga S/N, 16th Floor, 08907 Barcelona, 
Spain. 2 Laboratory of Respiratory Medicine, IDIBELL, Barcelona University; 
L’Hospitalet de Llobregat, Barcelona, Spain. 3 Department of Radiation Oncol‑
ogy, Catalan Institute of Oncology, L’Hospitalet de Llobregat, Feixa Llarga 
199‑203, 08908 Barcelona, Spain. 4 Divisions of Radiation Oncology, University 
of Texas MD Anderson Cancer Center, Houston, TX, USA. 5 Department 
of Computational and Applied Mathematics, Rice University, Houston, TX, USA. 
6 Department of Nuclear Medicine, Bellvitge Universitary Hospital; L’Hospitalet 
de Llobregat, Barcelona, Spain. 7 Department of Medical Oncology, Catalan 
Institute of Oncology: L’Hospitalet de Llobregat, Barcelona, Spain. 8 The Uni‑
versity of Texas Health Science Center, Houston, TX, USA. 9 CIBER of Respiratory 
Diseases (CIBERES), ISCIII, Barcelona, Spain. 

Received: 17 August 2020   Accepted: 21 October 2020

References
	1.	 Ma L, Men Y, Feng L, Kang J, Sun X, Yuan M, Jiang W, Hui Z. A current 

review of dose-escalated radiotherapy in locally advanced non-small 
cell lung cancer. Radiol Oncol. 2019;53(1):6–14. https​://doi.org/10.2478/
raon-2019-0006.

	2.	 Rodemann HP. Molecular radiation biology: Perspectives for radiation 
oncology. Radiother Oncol. 2009;92:293–8. https​://doi.org/10.1016/j.
radon​c.2009.08.023.

	3.	 Madani I, De Ruyck K, Goeminne H, De Neve W, Thierens H, Van Meer‑
beeck J. Predicting risk of radiation-induced lung injury. J Thorac Oncol. 
2007;2:864–74. https​://doi.org/10.1097/JTO.0b013​e3181​45b2c​6.

	4.	 Inoue A, Kunitoh H, Sekine I, Sumi M, Tokuuye K, Saijo N. Radiation pneu‑
monitis in lung cancer patients: a retrospective study of risk factors and 
the long-term prognosis. Int J Radiat Oncol Biol Phys. 2001;49:649–55. 
https​://doi.org/10.1016/s0360​-3016(00)00783​-5.

	5.	 Kong FM, Ten Haken R, Eisbruch A, Lawrence TS. Non-small cell lung can‑
cer therapy-related pulmonary toxicity: An update on radiation pneumo‑
nitis and fibrosis. Semin Oncol. 2005;32:S42–54. https​://doi.org/10.1053/j.
semin​oncol​.2005.03.009.

	6.	 Wang JY, Chen KY, Wang JT, Chen JH, Lin JW, Wang HC, Lee LN, Yang PC. 
Outcome and prognostic factors for patients with non-small-cell lung 
cancer and severe radiation pneumonitis. Int J Radiat Oncol Biol Phys. 
2002;54:735–41. https​://doi.org/10.1016/s0360​-3016(02)02994​-2.

	7.	 Portillo K, Arriaga I, Ruiz-Manzano J. Fibroelastosis pleuropulmonar: ¿es 
también una entidad idiopática? Arch Bronconeumol. 2015;51:509–14. 
https​://doi.org/10.1016/j.arbre​s.2015.05.002.

	8.	 Zhang XJ, Sun JG, Sun J, Ming H, Wang XX, Wu L, Chen ZT. Prediction 
of radiation pneumonitis in lung cancer patients: a systematic review. J 
Cancer Res Clin Oncol. 2012;138:2103–16. https​://doi.org/10.1007/s0043​
2-012-1284-1.

	9.	 Kong F-MS, Wang S. Nondosimetric risk factors for radiation-induced 
lung toxicity. Semin Radiat Oncol. 2015; 25:100–9. DOI: https​://doi.
org/10.1016/j.semra​donc.2014.12.003

	10.	 Barthelemy-Brichant N, Bosquée L, Cataldo D, Corhay J-L, Gustin M, Seidel 
L, Thiry A, Ghaye B, Nizet M, Albert A, Deneufbourg L-M, Bartsch P, Nus‑
gens B. Increased IL-6 and TGF-beta1 concentrations in bronchoalveolar 
lavage fluid associated with thoracic radiotherapy. Int J Radiat Oncol Biol 
Phys. 2004;58:758–67. https​://doi.org/10.1016/S0360​-3016(03)01614​-6.

	11.	 Rübe CE, Palm J, Erren M, Fleckenstein J, König J, Remberger K, Rübe C. 
Cytokine plasma levels: reliable predictors for radiation pneumonitis? 
PLoS ONE. 2008;3:e2898. https​://doi.org/10.1371/journ​al.pone.00028​98.

	12.	 Kong FM, Ao X, Wang L, Lawrence TS. The use of blood biomarkers to pre‑
dict radiation lung toxicity: A potential strategy to individualize thoracic 
radiation therapy. Vol. 15, Cancer Control. 2008. p. 140–50. DOI: https​://
doi.org/10.1177/10732​74808​01500​206

	13.	 Guerrero T, Johnson V, Hart J, Pan T, Khan M, Luo D, Liao Z, Ajani J, Stevens 
C, Komaki R. Radiation pneumonitis: local dose versus [18F] fluorodeoxy‑
glucose uptake response in irradiated lung. Int J Radiat Oncol Biol Phys. 
2007;68:1030–5. https​://doi.org/10.1016/j.ijrob​p.2007.01.031.

	14.	 De RD, Houben A, Aerts HJWL, Dehing C, Wanders R, Öllers M, Ding‑
emans A-MC, Hochstenbag M, Boersma L, Borger J, Dekker A, Lambin P. 
Increased 18F-deoxyglucose uptake in the lung during the first weeks of 
radiotherapy is correlated with subsequent Radiation-Induced Lung Tox‑
icity (RILT): A prospective pilot study. Radiother Oncol. 2009;91:415–20. 
https​://doi.org/10.1016/j.radon​c.2009.01.004.

	15.	 Petit SF, Van Elmpt WJC, Oberije CJG, Vegt E, Dingemans AMC, Lambin 
P, Dekker ALA, De Ruysscher D. [18F]fluorodeoxyglucose uptake pat‑
terns in lung before radiotherapy identify areas more susceptible to 
radiation-induced lung toxicity in non-small-cell lung cancer patients. Int 
J Radiat Oncol Biol Phys. 2011;81:698–705. https​://doi.org/10.1016/j.ijrob​
p.2010.06.016.

	16.	 Castillo R, Pham N, Ansari S, Meshkov D, Castillo S, Li M, Olanrewaju A, 
Hobbs B, Castillo E, Guerrero TM. Pre-radiotherapy FDG PET predicts 
radiation pneumonitis in lung cancer. Radiat Oncol. 2014;9:74. https​://doi.
org/10.1186/1748-717X-9-74.

	17.	 Castillo R, Pham N, Castillo E, Aso-Gonzales S, Ansari S, Hobbs B, Palacio 
D, Skinner H, Guerrero TM. Pre-radiation therapy fluorine helps identify 
patients with esophageal cancer at high risk for radiation pneumonitis. 
Radiology. 2015;275:822–31. https​://doi.org/10.1148/radio​l.14140​457.

	18.	 National Institute of Cancer. Common Terminology Criteria for Adverse 
Events (CTCAE ), Version 4.0, DCTD, CTI, NIH, DHHS. NIH Publication. 2009. 
0–71 p. DOI: https​://doi.org/10.1186/s1295​5-016-0426-6

	19.	 De Ruysscher D, Faivre-Finn C, Nestle U, Hurkmans CW, Le Péchoux C, 
Price A, Senan S. European organisation for research and treatment 
of cancer recommendations for planning and delivery of high-dose, 

https://doi.org/10.2478/raon-2019-0006
https://doi.org/10.2478/raon-2019-0006
https://doi.org/10.1016/j.radonc.2009.08.023
https://doi.org/10.1016/j.radonc.2009.08.023
https://doi.org/10.1097/JTO.0b013e318145b2c6
https://doi.org/10.1016/s0360-3016(00)00783-5
https://doi.org/10.1053/j.seminoncol.2005.03.009
https://doi.org/10.1053/j.seminoncol.2005.03.009
https://doi.org/10.1016/s0360-3016(02)02994-2
https://doi.org/10.1016/j.arbres.2015.05.002
https://doi.org/10.1007/s00432-012-1284-1
https://doi.org/10.1007/s00432-012-1284-1
https://doi.org/10.1016/j.semradonc.2014.12.003
https://doi.org/10.1016/j.semradonc.2014.12.003
https://doi.org/10.1016/S0360-3016(03)01614-6
https://doi.org/10.1371/journal.pone.0002898
https://doi.org/10.1177/107327480801500206
https://doi.org/10.1177/107327480801500206
https://doi.org/10.1016/j.ijrobp.2007.01.031
https://doi.org/10.1016/j.radonc.2009.01.004
https://doi.org/10.1016/j.ijrobp.2010.06.016
https://doi.org/10.1016/j.ijrobp.2010.06.016
https://doi.org/10.1186/1748-717X-9-74
https://doi.org/10.1186/1748-717X-9-74
https://doi.org/10.1148/radiol.14140457
https://doi.org/10.1186/s12955-016-0426-6


Page 10 of 10Aso et al. Radiat Oncol          (2020) 15:246 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

high-precision radiotherapy for lung cancer. J Clin Oncol. 2010;28:5301–
10. https​://doi.org/10.1200/JCO.2010.30.3271.

	20.	 Giraud P, Antoine M, Larrouy A, Milleron B, Callard P, De Rycke Y, Carette 
MF, Rosenwald JC, Cosset JM, Housset M, Touboul E. Evaluation of 
microscopic tumor extension in non-small-cell lung cancer for three-
dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol 
Phys. 2000;48:1015–24. https​://doi.org/10.1016/s0360​-3016(00)00750​-1.

	21.	 Senan S, Chapet O, Lagerwaard FJ, Ten HRK. Defining target volumes 
for non-small cell lung carcinoma. Semin Radiat Oncol. 2004;14:308–14. 
https​://doi.org/10.1016/j.semra​donc.2004.07.004.

	22.	 Ramnath N, Dilling TJ, Harris LJ, Kim AW, Michaud GC, Balekian AA, 
Diekemper R, Detterbeck FC, Arenberg DA. Treatment of stage III non-
small cell lung cancer: diagnosis and management of lung cancer, 3rd 
ed: American college of chest physicians evidence-based clinical practice 
guidelines. Chest. 2013;143:e314S-340S. https​://doi.org/10.1378/chest​
.12-2360.

	23.	 Kong FM, Ritter T, Quint DJ, Senan S, Gaspar LE, Komaki RU, Hurkmans 
CW, Timmerman R, Bezjak A, Bradley JD, Movsas B, Marsh L, Okunieff P, 
Choy H, Curran WJ Jr, et al. Consideration of dose limits for organs at risk 
of thoracic radiotherapy: Atlas for lung, proximal bronchial tree, esopha‑
gus, spinal cord, ribs, and brachial plexus. Int J Radiat Oncol Biol Phys. 
2011;81:1442–57. https​://doi.org/10.1016/j.ijrob​p.2010.07.1977.

	24.	 Brusasco V, Crapo R, Viegi G. Coming together: The ATS/ERS consensus on 
clinical pulmonary function testing. Eur Respir J. 2005;26:1–2. https​://doi.
org/10.1183/09031​936.05.00034​205.

	25.	 Lowry OH, Rosebrough FAL, Randall RJ. Protein measurement with the 
Folin phenol reagent. J Biol Chem. 1951;193:265–75.

	26.	 Boellaard R, Doherty MJO, Weber WA, Mottaghy FM, Lonsdale MN, Stroo‑
bants SG, Oyen WJ, Kotzerke J, Hoekstra OS, Pruim J, Marsden PK, Tatsch 
K, Hoekstra CJ, Visser EP, Arends B, Verzijlbergen FJ, Zijlstra JM, Comans EF, 
Lammertsma AA, Paans AM, Willemsen AT, Beyer T, Bockisch A, Schaefer-
Prokpo C, Delbeke D, Baum RP, Chiti A and Krause BJ. FDG PET and PET/
CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur 
J Nucl Med Mol Imaging. 2010; 37:181–200. DOI: https​://doi.org/10.1007/
s0025​9-009-1297-4

	27.	 Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl 
Med. 1991;32:623–48.

	28.	 Marrugat J, Vila J, Pavesi M, Sanz F. Estimation of the sample size in clinical 
and epidemiological investigations. Med Clin (Barc). 1988;111(7):267–76.

	29.	 Xaubet A, Ancochea J, Morell F, Rodríguez-Arias JM, Villena V, Blanquer R, 
Montero C, Sueiro A, Disdier C, Vendrell M, Spanish Group on Interstitial 
Lung Disease, SEPAR. Report on the Incidence of Interstitial Lung Diseases 
in Spain. Sarcoidosis Vasc Diffuse Lung Dis. 2004;21(1):64–70.

	30.	 Ley JA, Borbón GA, Ochoa Carrillo FJ, Escobar RV, Rojas SH, Estrada G. 
Valor estandarizado de captación máximo, determinado con Tomografía 
Computarizada. “Primera experiencia en México” (Spanish). An Radiol 
Mex. 2007; 6:113–9.

	31.	 Lopez Guerra JL, Gomez DR, Zhuang Y, Levy LB, Eapen G, Liu H, Mohan 
R, Komaki R, Cox JD, Liao Z. Changes in pulmonary function after three-
dimensional conformal radiotherapy, intensity-modulated radiotherapy, 
or proton beam therapy for non-small-cell lung cancer. Int J Radiat Oncol 
Biol Phys. 2012;83:E537–43. https​://doi.org/10.1016/j.ijrob​p.2012.01.019.

	32.	 Palma DA, Senan S, Tsujino K, Barriger RB, Rengan R, Moreno M, Bradley 
JD, Kim TH, Ramella S, Marks LB, De Petris L, Stitt L, Rodrigues G. Predict‑
ing radiation pneumonitis after chemoradiation therapy for lung cancer: 
an international individual patient data meta-analysis. Int J Radiat Oncol 
Biol Phys. 2013;85(2):444–50. https​://doi.org/10.1016/j.ijrob​p.2012.04.043.

	33.	 Gomes M, Teixeira AL, Coelho A, Araújo A and Medeiros R. the 
role of inflammation in lung cancer. In: B. B. Aggarwal et al. (eds.), 
Inflammation and cancer, advances in experimental medicine 
and biology. Porto: Springer Basel; 2014. p. 1–23. DOI: https​://doi.
org/10.1007/978-3-0348-0837-8_1

	34.	 Keane MP. The role of chemokines and cytokines in lung fibrosis. Vol. 17, 
European Respiratory Review. 2008. p. 151–6.

	35.	 Tang W, Yang L, Qin W, Yi MX, Liu B, Yuan XL. Impact of genetic variant of 
HIPK2 on the risk of severe radiation pneumonitis in lung cancer patients 
treated with radiation therapy. Radiat Oncol. 2020;15(1):9. https​://doi.
org/10.1186/s1301​4-019-1456-0.

	36.	 Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder-Candrian S, Scs‑
nyder B, Akira S, Quesniaux V.F.J, Lagente V, Ryffel B and Couillin I. IL-1R1/
MyD88 signaling and the inflammasome are essential in pulmonary 
inflammation and fibrosis in mice. J Clin Invest. 2007; 117:3786–99. DOI: 
https​://doi.org/10.1172/JCI32​285

	37.	 Mathew B, Jacobson JR, Siegler JH, Moitra J, Blasco M, Xie L, Unzueta 
C, Zhou T, Evenoski C, Al-Sakka M, Sharma R, Huey B, Bulent A, Smith B, 
Jayaraman S, Reddy NM, Reddy SP, Fingerle-Rowson G, Bucala R, Dudek 
SM, Natarajan V, Weichselbaum RR and Garcia J.G.N. Role of migratory 
inhibition factor in age-related susceptibility to radiation lung injury via 
NF-E2-related factor-2 and antioxidant regulation. Am J Respir Cell Mol 
Biol. 2013; 49:269–78. DOI: https​://doi.org/10.1165/rcmb.2012-0291O​C

	38.	 Gasse P, Riteau N, Vacher R, Michel ML, Fautrel A, di Padova F, Fick L, 
Charron S, Lagente V, Eberl G, Le Bert M, Quesniaux VF, Huaux F, Leite-
de-Moraes M, Ryffel B, Couillin I. IL-1 and IL-23 mediate early IL-17A 
production in pulmonary inflammation leading to late fibrosis. PLoS ONE. 
2011;6:e23185. https​://doi.org/10.1371/journ​al.pone.00231​85.

	39.	 Kaufman J, Sime PJ, Phipps RP. Expression of CD154 (CD40 ligand) by 
human lung fibroblasts: differential regulation by IFN-gamma and IL-13, 
and implications for fibrosis. J Immunol. 2004;172:1862–71. https​://doi.
org/10.4049/jimmu​nol.172.3.1862.

	40.	 Senoo T, Hattori N, Tanimoto T, Furonaka M, Ishikawa N, Fujitaka K, Haruta 
Y, Murai H, Yokoyama A, Kohno N. Suppression of plasminogen activator 
inhibitor-1 by RNA interference attenuates pulmonary fibrosis. Thorax. 
2010;65:334–40. https​://doi.org/10.1136/thx.2009.11997​4.

	41.	 Liu B, Tang Y, Yi M, Liu Q, Xiong H, Hu G, Yuan X. Genetic variants in the 
plasminogen activator inhibitor-1 gene are associated with an increased 
risk of radiation pneumonitis in lung cancer patients. Cancer Med. 
2017;6:681–8. https​://doi.org/10.1002/cam4.1011.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1200/JCO.2010.30.3271
https://doi.org/10.1016/s0360-3016(00)00750-1
https://doi.org/10.1016/j.semradonc.2004.07.004
https://doi.org/10.1378/chest.12-2360
https://doi.org/10.1378/chest.12-2360
https://doi.org/10.1016/j.ijrobp.2010.07.1977
https://doi.org/10.1183/09031936.05.00034205
https://doi.org/10.1183/09031936.05.00034205
https://doi.org/10.1007/s00259-009-1297-4
https://doi.org/10.1007/s00259-009-1297-4
https://doi.org/10.1016/j.ijrobp.2012.01.019
https://doi.org/10.1016/j.ijrobp.2012.04.043
https://doi.org/10.1007/978-3-0348-0837-8_1
https://doi.org/10.1007/978-3-0348-0837-8_1
https://doi.org/10.1186/s13014-019-1456-0
https://doi.org/10.1186/s13014-019-1456-0
https://doi.org/10.1172/JCI32285
https://doi.org/10.1165/rcmb.2012-0291OC
https://doi.org/10.1371/journal.pone.0023185
https://doi.org/10.4049/jimmunol.172.3.1862
https://doi.org/10.4049/jimmunol.172.3.1862
https://doi.org/10.1136/thx.2009.119974
https://doi.org/10.1002/cam4.1011

	Severity of radiation pneumonitis, from clinical, dosimetric and biological features: a pilot study
	Abstract 
	Background and objective: 
	Method: 
	Results: 
	Conclusions: 

	Background
	Methods and material
	Patients
	Radiotherapy treatment
	Pulmonary function testing
	BAL sample collection
	Protein array analysis of cytokine in BAL supernatant
	Positron-emission computed tomography
	Image analysis
	Statistical analysis

	Results
	Population
	Pulmonary function testing
	Protein array analysis in the BAL supernatant
	PETCT image analysis

	Discussion
	Study strengths and limitations

	Conclusion
	Acknowledgements
	References


