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Abstract

Background: Patients with locally advanced non-small-cell lung cancer (LA-NSCLC) have poor prognosis despite
several multimodal approaches. Recently, low-dose fractionated radiotherapy concurrent to the induction chemotherapy
(IC-LDRT) has been proposed to further improve the effects of chemotherapy and prognosis. Until now, the predictive
value of metabolic response after IC-LDRT has not yet been investigated. Aim: to evaluate whether the early metabolic
response, assessed by 18F-fluoro-deoxyglucose positron emission-computed tomography (18F-FDG PET-CT), could
predict the prognosis in LA-NSCLC patients treated with a multimodal approach, including IC-LDRT.

Methods: Forty-four consecutive patients (35males, mean age: 66 ± 7.8 years) with stage IIIA/IIIB NSCLC were
retrospectively evaluated. Forty-four patients underwent IC-LDRT (2 cycles of chemotherapy, 40 cGy twice daily),
26/44 neo-adjuvant chemo-radiotherapy (CCRT: 50.4Gy), and 20/44 surgery. 18F-FDG PET-CT was performed before
(baseline), after IC-LDRT (early) and after CCRT (final), applying PET response criteria in solid tumours (PERCIST). Patients
with complete/partial metabolic response were classified as responders; patients with stable/progressive disease as
non-responders. Progression free survival (PFS) and overall survival (OS) were assessed using Kaplan-Meyer analysis; the
relationship between clinical factors and survivals were assessed using uni-multivariate regression analysis.

Results: Forty-four out of 44, 42/44 and 23/42 patients underwent baseline, early and final PET-CT, respectively. SULpeak
of primary tumour and lymph-node significantly (p = 0.004, p = 0.0002, respectively) decreased after IC-LDRT with a
further reduction after CCRT (p = 0.0006, p = 0.02, respectively). At early PET-CT, 20/42 (47.6%) patients were classified as
responders, 22/42 (52.3%) as non-responders. At final PET-CT, 19/23 patients were classified as responders (12
responders and 7 non-responders at early PET-CT), and 4/23 as non-responders (all non-responders at early PET-CT).
Early responders had better PFS and OS than early non-responders (p≤ 0.01). Early metabolic response was predictive
factor for loco-regional, distant and global PFS (p = 0.02, p = 0.01, p = 0.005, respectively); surgery for loco-regional and
global PFS (p = 0.03, p = 0.009, respectively).
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Conclusions: In LA-NSCLC patients, 18F-FDG metabolic response assessed after only two cycles of IC-LDRT predicts the
prognosis. The early evaluation of metabolic changes could allow to personalize therapy. This multimodality approach,
including both low-dose radiotherapy that increases the effects of induction chemotherapy, and surgery that removes
the disease, improved clinical outcomes. Further prospective investigation of this new induction approach is warranted.
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Background
Lung cancer is the leading cause of death from cancer
worldwide due to both its high incidence (estimated in-
cidence of 1.8 million new cases in 2012) and fatality
(overall ratio of mortality incidence of 0.87) (http://glo-
bocan.iarc.fr/Pages/fact_sheets_cancer.aspx?cancer=lung)
[1]. Non-small-cell lung cancer (NSCLC) is the most fre-
quent among lung cancers and, unfortunately, approxi-
mately 30% of patients are diagnosed with locally
advanced NSCLC (LA-NSCLC), including unresectable
stage II to III disease. Patients with LA-NSCLC, still rep-
resent a challenge for clinicians because the optimal
treatment has not been clearly established and the prog-
nosis is poor. To date, the Tumor-Node-Metastasis
(TNM) staging system [2] - mainly based on morpho-
logic and dimensional criteria and on anatomic
localization - is considered the most important tool to
define the disease stage, to guide treatment, and to esti-
mate the prognosis. There is a general agreement among
national and international guidelines that in patients
with stage III NSCLC, the standard care is definitive
concurrent chemo-radiotherapy (http://www.nccn.org/
professionals/physician_gls/pdf/nscl.pdf ) [3–7]. Despite
the risk of severe toxicity of this therapeutic approach,
and occasionally death from pneumonitis, less than 20%
of the patients is free from disease progression after
5 years [8]. The prognosis, in addition to being poor, is
variable because it differs among patients despite be-
longing to the same TNM stage (homogenous group); it
is multifactorial because it may be influenced by envir-
onmental, patient and tumour factors, including molecu-
lar profile [9, 10]; it is dynamic because it may be
different at staging, after treatment or at recurrence
[11]. Therefore, aiming to improve the prognosis, the at-
tention is focused on: 1) finding new therapeutic ap-
proaches, such as induction chemotherapy with or
without concurrent low-dose radiotherapy before the
standard treatment; 2) personalizing the therapy taking
into account several factors, such as patient-related char-
acteristics, tumour histology, co-morbidities; 3) asses-
sing, as early as possible, the response to treatment. 18F-
fluoro-deoxyglucose positron emission tomography
(PET) is a well-established and useful tool to assess the
metabolic response (early or late) [12, 13] and to select
non-responder from responder patients allowing to

tailor the treatment [14, 15], as well as to predict the
outcome on the basis of early or late changes in tumour
metabolism [16–18]. PET response criteria in solid tu-
mours (PERCIST) [19] has been proposed in 2009 to
evaluate the metabolic changes after treatment using the
standardized uptake value normalized to lean body mass
(SUL).
Until now, the predictive value of metabolic response

after low-dose radiotherapy concurrent to the induction
chemotherapy (IC-LDRT) in NSCLC patients has not
yet been investigated. The aim of our study was to
retrospectively evaluate whether the early metabolic
response - assessed by 18F-fluoro-deoxyglucose posi-
tron emission-computed tomography (18F-FDG PET-
CT) - could predict the disease progression free sur-
vival and the overall survival in patients with NSCLC
stage III treated with a multimodal approach includ-
ing IC-LDRT, neoadjuvant chemo-radiotherapy, and
surgery.

Methods
We retrospectively reviewed the clinical charts and elec-
tronic database of consecutive patients with histologi-
cally diagnosed NSCLC stage III, according to the 7th
edition of the TNM classification for lung cancer [2],
between January 2009 and October 2014. All patients,
although judged medically fit for neo-adjuvant concur-
rent chemo-radiotherapy and for surgery, were either
unresectable (due to N3 contralateral nodal involvement,
mediastinal invasion, or bulky N2 disease) or resectable
requiring a pneumonectomy.
Pulmonary physician evaluated the preoperative risk of

mortality and long-term disability for major anatomic
resection, according to Brunelli A et al. [20] performing
cardiovascular evaluation and spirometry to measure the
predicted post-operative Forced Expiratory Volume in
1 s (FEV1) and the diffusing capacity for carbon monox-
ide (DLCO). When considered appropriate, the following
additional tests were performed: a low technology exer-
cise test (stair climbing altitude -SCA- or shuttle walk
distance -SWD), and a cardiopulmonary exercise test
(peak oxygen consumption -VO2peak). In addition,
quality-of-life was assessed using the Eastern Coopera-
tive Oncology Group Performance Status (ECOG PS).
Each patient of our cohort had ECOG PS less or equal
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to 1, and were classified as at low risk for anatomic sur-
gical resection (FEV1 and DLCO >60%; FEV1 and DLCO
within 30–60% plus SCA > 22 m or SWD > 400 m; FEV1

and DLCO within 30–60% plus SCA < 22 m or SWD <
400 m plus VO2peak >75%).
The staging evaluation included: total body diagnostic

computed tomographic (CT), bone scintigraphy, brain
CT or magnetic resonance (MR), and 18F-FDG PET-CT
(baseline PET-CT). The pathologic proof of N2 and/or
N3 involvement was required whenever lymph-nodes
showed or the short axis higher than 1 cm on diagnostic
CT or increased metabolic activity on 18F-FDG PET-CT.
This retrospective study has been approved by the Ethics
Committee of Fondazione Policlinico Universitario A.
Gemelli, Rome.

Treatment and follow-up
The induction treatment protocol - consisted of two cy-
cles of platinum-based chemotherapy - administered
concurrently with “ultra-fractionated low dose” radio-
therapy (LDRT, 40 cGy twice daily, days 1–2 and 8–9,
every cycle) delivered with a conformal technique to the
primary tumour, involved regional lymph-nodes and
those adjacent, as showed in Fig. 1. After concurrent
low-dose radiotherapy to induction chemotherapy (IC-
LDRT), patients were re-evaluated and underwent: 1)
surgery when medically fit patients showed a complete
metabolic response on mediastinal lymph-nodes and/or
resectable residual primary tumour extension; 2) neo-
adjuvant concurrent chemo-radiotherapy (CCRT, total
dose 50.4Gy, fractionation 1.8Gy/day) delivered with
Linac using a conformal or intensity modulated tech-
nique to the sites of residual disease and, in case of me-
diastinal nodal clearance, originally involved nodal
stations were also included in medically fit non-surgical
patients without distant progression; 3) best supportive
care, second-line chemotherapy, and/or palliative radio-
therapy, according to the referring physician’s prefer-
ence, in medically fit patients with distant progression

and patients with poor medical conditions. After CCRT,
patients were re-evaluated and underwent surgery or
best supportive care, as reported above. Patients were
followed every 3 months for 2 years with diagnostic
total-body CT and brain MR or CT; then every 6 months
indefinitely.

18F-FDG PET-CT acquisition protocol and response
evaluation
Three 18F-FDG PET-CT were performed using the same
acquisition and reconstruction protocols: before starting
IC-LDRT (baseline PET-CT), at the end of IC-LDRT
(early PET-CT), and at the end of CCRT (final PET-CT).
The details of the study were explained and all patients
provided written informed consent. All patients fasted
for at least 6 h and presented a blood glucose level
<150 mg/dl. PET-CT was performed 60 ± 10 min after
administration of 240Mq of 18F-FDG (range: 185–
333 MBq), according to the body mass index. No oral
or intravenous contrast agents were administered nor
bowel preparation were applied for patients. All the
studies were performed using an integrated PET-CT
device (3D Gemini GXL, Philips Healthcare, Cleve-
land, OH) with the same injected dose activity
(±20%). An X-ray scout was carried to precisely define
the spatial range of CT acquisition and a low-dose CT
scan was performed from the base of the skull to the
thighs (120 kV, 75 mA). CT images were used for the
anatomical localization, for attenuation correction and
fusion with PET images. Matched CT and PET im-
ages were reconstructed with a field-of-view of
50 cm. PET data were also shown in a rotating max-
imum intensity projection. PET and CT datasets were
transferred to an independent computer workstation
by DICOM (Digital Imaging and Communications in
Medicine) transfer.
A semi-quantitative analysis was performed on PET-

CT images using the Syntegra Philips fusion program by
two nuclear medicine physicians (M.V.M. and V.S.) with

Fig. 1 Treatment scheme of low-dose fractionated radiotherapy concurrent with induction chemotherapy. Legend: Solid bars represent 40 cGy
of radiotherapy
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PET-CT experience. PET Response Criteria in Solid Tu-
mours (PERCIST) version 1.0 criteria [19] were used to
evaluate the metabolic response on early and final PET-
CT. According to the PERCIST criteria, the Standardized
Uptake Value (SUV) corrected for lean body mass (SUL)
was calculated [21]; the SULpeak was determined using
spheric regions of interest (with a diameter of about
1.2 cm) manually drawn over the primary tumour and
over the lymph-node showing the highest 18F-FDG up-
take. The percentage changes in SULpeak (ΔSULpeak)
were also calculated between PET-CT scans. Patients
with complete or partial metabolic response were classi-
fied as responder, and patients with stable or progressive
disease as non-responders.

Statistical considerations
The data were analysed by using the MedCalc Statistical
Software version 12.7.2 with statistical significance set at
p < 0.05. Results were reported with 95% Confidence In-
tervals (CI). Student’s paired t test was used to compare
the SULpeak at different time points. Disease progression
free survivals (loco-regional, distant and global) and
overall survival were calculated according to the Kaplan
Meyer method and differences between groups were
tested with the log-rank. Predictive factors for survivals
were identified using univariate and multivariate regres-
sion analysis. Each factor whose p value was less than
0.1 in the univariate analysis was included in the multi-
variate analysis.

Results
Population and treatment
Forty-four patients (mean age: 66 ± 7.8 years, range: 47–
81; 35 males) with NSCLC stage III were included in this
analysis. The patients’ clinical characteristics are illus-
trated in Table 1. The majority of patients reported me-
diastinal lymph-node involvement of whom 26 with N2
(59.1%), and 10 with N3 (22.7%). Twenty-six out of 44
(59.1%) patients had stage IIIA, 18/44 (40.9%) patients
stage IIIB. Figure 2 shows the treatment flow-chart. In
particular: 44, 42 and 23 patients underwent baseline,
early and final PET-CT, respectively.
All 44 patients completed the IC-LDRT and, subse-

quently, 4 (9.0%) underwent surgery, 26 (59.1%) under-
went neo-adjuvant CCRT, 14 (31.8%) received palliative
or best supportive care (in 3 patients the medical condi-
tions worsened after IC-LDRT, 4 developed distant me-
tastasis, and in 7 the CCRT was considered unsafe).
Twenty-six out of 44 patients (59.1%) underwent

CCRT and, subsequently, 16/26 patients (61.5%) under-
went surgery and 10/26 (38.5%) received palliative or
best supportive care for the worsening of medical condi-
tions or for the development of distant metastasis.

18F-FDG PET-CT
All 44 patients underwent baseline PET-CT (mean time
from diagnosis: 6.6 ± 3.4 weeks): the mean value of SUL-

peak of the primary tumour and lymph-node was 14.9
(±6.7) and 9.3 (±6.6), respectively.

Table 1 Patients’ characteristics

N° Percent

Histology

Adenocarcinoma 25 56,8

Squamous cell carcinoma 15 34,1

Not otherwise specified 4 9,1

T classification

1 3 6,8

2 15 34,1

3 15 34,1

4 11 25,0

N classification

0 3 6,8

1 5 11,4

2 26 59,1

3 10 22,7

Clinical stage

IIIA 26 59,1

IIIB 18 40,9

Total 44 100

Fig. 2 Treatment flow-chart. Legend: IC-LDRT: low-dose radiotherapy
performed during induction chemotherapy; BSC: best supportive
care; CCRT: concurrent chemo-radiotherapy; PET-CT: positron emission
tomography-computed tomography

Mattoli et al. Radiation Oncology  (2017) 12:4 Page 4 of 11



Forty-two out of 44 patients (95.5%), who completed
IC-LDRT, underwent early PET-CT (after a mean time
of 4.5 ± 2.8 weeks): the mean value of SULpeak of the pri-
mary tumour and lymph-node was 11.8 (±7.8) and 5.3
(±6.3), respectively. A significant reduction in SULpeak of
the primary tumour and lymph-node (p = 0.004, p =
0.0002), respectively was observed between baseline
PET-CT and early PET-CT, as shown in Fig. 3. The
mean value of ΔSULpeak of the primary tumour and
lymph-node between early PET-CT and baseline PET-
CT was −14.9% (±63.5%) and −43.3% (±53.9%), respect-
ively. No significant difference in tumour SULpeak or
lymph-node SULpeak was found between stage IIIA and
stage IIIB, either at baseline PET-CT or at early PET-
CT.
Applying the PERCIST criteria at early PET-CT, 20/42

(47.6%) patients were classified as early responders of
whom one with complete and 19 with partial metabolic
response; 22/42 (52.3%) patients were classified as non-
responders of whom 20 with stable disease and 2 with
progressive disease. We describe, in detail, the treatment
scheme performed after IC-LDRT and the follow-up of
the 22 NR patients at early PET-CT. Twelve out of 22
NR patients underwent CCRT of whom: 7/12 showed
local disease progression, 8/12 developed distant metas-
tases, and 10/12 showed global disease progression.
Eight out of 22 NR patients underwent palliative treat-
ments, such as chemotherapy and/or palliative radio-
therapy, of whom: 4 developed distant metastasis and 4
showed local disease progression. One out of 22 NR pa-
tient underwent surgery and developed distant metasta-
sis. One out of 22 NR patient underwent best supportive
care due to worsening of medical conditions.
At baseline PET-CT, responder patients did not show

any significant difference in SULpeak of the primary
tumour and lymph-node when compared with non-
responder patients.
Twenty-three out of 26 patients (88.5%) who com-

pleted CCRT underwent final PET-CT (after mean time
5.5 ± 1.7 weeks): the mean value of SULpeak of the pri-
mary tumour and lymph-node was 5.6 (±2.8) and 1.8

(±2.2), respectively. A significant reduction (p = 0.0001,
p = 0.0002, respectively) was observed in SULpeak of the
primary tumour and lymph-node between baseline PET-
CT and final PET-CT, as well as between early PET-CT
and final PET-CT (p = 0.0006, p = 0.02, respectively), as
shown in Fig. 3.
Applying the PERCIST criteria at final PET-CT, 19/23

(82.6%) patients were classified as responders of whom
two with complete and 17 with partial metabolic re-
sponse; 4/23 (17.4%) patients were classified as non-
responders all with stable disease. All patients classified
as responders at early PET-CT remained responders at
final PET-CT (12/12); 7/11 patients classified as non-
responders at early PET-CT became responders at final
PET-CT: 100% vs 63.6%, p = ns.

Metabolic response and clinical outcomes
In all patients (n = 44), the two-year loco-regional, dis-
tant and global disease progression free survival rates
were 51.7, 48.3, and 34%, respectively; the two-year over-
all survival rate was 59%. The median loco-regional, dis-
tant, and global disease progression free survival times
were 33, 24, and 17 months, respectively; the median
overall survival time was 51 months. After IC-LDRT, re-
sponder patients at early PET-CT (20/42) had significant
better loco-regional, distant, and global disease progres-
sion free survival and overall survival than non-
responder patients (22/42): p = 0.0007, p = 0.0007, p =
0.0002, p = 0.01 (Fig. 4, Table 2).
In patients who underwent CCRT (n = 26), the two-

year loco-regional, distant, and global progression dis-
ease free survival rates were 67.3, 54.6, 44.7%, respect-
ively; the two-year overall survival rate was 65.4%.
Regarding patients who underwent baseline, early and
final PET-CT (n = 23), patients classified as responders
at early PET-CT (n = 12/23) had significant better loco-
regional, distant, and global progression disease free sur-
vival than patients classified as non-responder at early
PET-CT (11/23): p = 0.007, p = 0.03, p = 0.02, respectively
(Tables 2).

Fig. 3 SULpeak of primary tumour (a) and lymph node (b) in each patient at baseline PET-CT (n = 44), early PET-CT (n = 42), and final PET-CT
(n = 23). Legend: Dashed lines represent mean values
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In patients who underwent surgery (n = 20), the two-
year loco-regional, distant and global disease progression
free survival rates were 77.3, 67.5, and 59.8%, respect-
ively; the two-year overall survival rate was 78.6%. Also
in this sub-group, patients classified as responders at
early PET-CT (n = 13) had significant better loco-
regional, distant and global disease progression free sur-
vival than non-responder patients (n = 7): p = 0.04, p =
0.01, p = 0.04, respectively (Table 2).
At univariate analysis, surgery, SULpeak of N at staging,

and metabolic response evaluated at early PET-CT were
significant predictive factors for loco-regional disease
progression free survival (p = 0.0001, p = 0.02, p = 0.001,
respectively); SULpeak of T at staging and metabolic re-
sponse evaluated at early PET-CT were significant pre-
dictive factors for distant disease progression free
survival (p = 0.02, p = 0.01, respectively); surgery and

metabolic response evaluated at early PET-CT were sig-
nificant predictive factors for global disease progression
free survival (p = 0.0006, p = 0.0002, respectively); sur-
gery and metabolic response evaluated at early PET-CT
were significant predictive factors for overall survival (p
= 0.02, p = 0.02, respectively). The multivariate analysis
showed, surgery and metabolic response at early PET-
CT were significant predictive factors for loco-regional
disease progression free survival (p = 0.03, p = 0.02, re-
spectively); SULpeak of T at staging and metabolic re-
sponse at early PET-CT were significant predictive
factors for distant disease progression free survival (p =
0.04, p = 0.01, respectively); age, surgery and metabolic
response at early PET-CT were significant predictive fac-
tors for global disease progression free survival (p = 0.04,
p = 0.009, p = 0.005, respectively). No parameter was a
significant predictive factor for overall survival (Table 3).

Fig. 4 Loco-regional (a), distant (b) and global (c) progression free survival and overall survival (d) according to early metabolic response

Table 2 Two-year survival endpoints according to metabolic response at early PET-CT in different patients’ groups

N° Early metabolic response Loco-regional PFS Distant PFS Global PFS Overal survival

Patients who underwent early PET-CT 42 R 20 84.7% p = 0.0007 70.7% p = 0.0007 63.6% p = 0.0002 73.5% p = 0.01

NR 22 21.5% 20.5% 7.4% 45.9%

Patients who underwent final PET-CT 23 R 12 100% p = 0.007 67.9% p = 0.03 67.9% p = 0.02 77.8% p = 0.06

NR 11 35.4% 30.5% 15.2% 62.3%

Patients who underwent surgery 20 R 13 100% p = 0.04 83.3% p = 0.01 83.3% p = 0.04 87.5% p = 0.16

NR 7 41.7% 42.9% 28.6% 66.7%

R responder, NR non-responder, PFS progression free survival, PET-CT positron emission tomography-computed tomography
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Discussion
To the best of our knowledge, this is the first study that
has evaluated the role of 18F-FDG PET-CT performed
early after low-dose fractionated radiotherapy concur-
rent to the induction chemotherapy for predicting the
clinical outcomes in patients with non-small-cell lung
cancer stage III. In these patients, several efforts have
been made to find the best therapeutic approach to im-
prove the prognosis. The National Comprehensive Cancer
Network guidelines (NCCN) (http://www.nccn.org/pro-
fessionals/physician_gls/pdf/nscl.pdf) recommend concur-
rent definitive chemo-radiotherapy as the standard
treatment in patients with locally advanced disease. How-
ever, in patients with ipsilateral mediastinal or sub-carinal
lymph-node disease (N2), the induction chemotherapy
with or without concurrent radiotherapy, is an additional
option to reinforce the effects of neo-adjuvant chemo-
radiotherapy aiming to downstage the disease. In N2-
patients, the choice between concurrent definitive chemo-
radiotherapy and induction therapy is based on factors re-
garding either the patient or the neoplastic disease: clinical
conditions, primary tumour resectability, and extension
and bulkiness of mediastinal lymphadenopathy [22]. Des-
pite these different approaches, the patients have a slight
chance of survival or being free from disease long-term
progression. In particular, in patients treated with concur-
rent chemo-radiotherapy the predominant failure is the
loco-regional recurrence ranging from 63 to 84% at three
years [23]. From these data, it is possible to state that the
current radiation dose seems insufficient to reliably estab-
lish the local control. A randomized study (the Intergroup
0139) [24] in patients with NSCLC stage IIIA (N2) has
demonstrated that, by completely removing the tumour
and the lymph-node metastasis, surgery improves the
local control when compared with radiotherapy, however,
not improving the overall survival. Therefore, it is still de-
bated whether surgery with comorbidity risk is a justifiable
option in patients with such an aggressive and unfavour-
able disease. In this scenario, it is of paramount import-
ance to have a reliable tool to evaluate the response to
treatment as early as possible, in order to prompt select

patients who either continue, or change or intensify the
treatment, personalizing it. 18F-FDG PET-CT is largely
used in oncology particularly to monitor the early changes
in glucose metabolism after treatment and for prognostic
information [12–18]. The PERCIST criteria were proposed
as a functional method to evaluate the treatment response
in several cancers [19].
From our results, we observed that at baseline PET-

CT, the glucose avidity of primary tumours and lymph-
nodes, as expressed by SULpeak, was high and variable
among patients and similar to that reported by Ding et
al. [25]. The enhanced trapping and the large variability
of 18F-FDG in the tumour cells is still being studied be-
cause several biological mechanisms, such as the up-
regulation of glucose transporters and hexokinase en-
zymes, tumour aggressiveness, hypoxia, etc. [26–29] are
responsible for the different levels of 18F-FDG uptake, as
well as the histotype and the histological grading. In our
population, the predominant histotype was adenocarcin-
oma, as expected being the most frequent histotype [30],
that has a relatively low 18F-FDG avidity [31, 32]; on the
other hand, also the squamous histotype was well-
represented that has a high 18F-FDG avidity [33, 34]. In
addition, in both histotypes the histological grading was
G2 or G3 (moderately or poorly differentiated) that are
typically more 18F-FDG avid than G1 (well-differenti-
ated) [33–36]. Moreover, we did not find any significant
difference in metabolic activity between stage IIIA and
stage IIIB. This result can be explained because this clas-
sification is based on two morphological criteria (size of
primary tumour and anatomic localization of lymph-
node) and it does not take into account any metabolic
characteristic (18F-FDG uptake/SUV) that, conversely,
reflects biological features of tumour cells.
In the last years, low-dose fractionated radiotherapy

(<1 Gy) concurrent to the induction chemotherapy has
been proposed to further improve the effects of induc-
tion chemotherapy in several solid tumours, such as lo-
cally advanced breast cancer [37, 38], pancreatic cancer
[39], head neck carcinoma [40], glioblastoma [41] and
NSCLC [42]. In-vitro studies have demonstrated that

Table 3 Multivariate analysis for potential prognostic factors

Loco-regional PFS Distant PFS Global PFS Overall Survival

Characteristics OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value

Gender 0,41 0,03–4,94 0,4804 1,16 0,15–8,71 0,8880 0,80 0,09–6,83 0,8367 4,31 0,56–32,84 0,1591

Age 1,02 0,90–1,15 0,7026 0,92 0,83–1,02 0,1201 0,88 0,78–0,99 0,0413 1,04 0,93–1,15 0,4658

Baseline SULpeak of T 0,87 0,75–0,99 0,0489

Baseline SULpeak of N 1,16 0,97–1,38 0,0984

Early metabolic response 0,14 0,02–0,82 0,0292 0,15 0,03–0,71 0,0171 0,05 0,00–0,41 0,0059 0,24 0,05–1,06 0,0608

Surgery 0,14 0,02–0,91 0,0399 0,04 0,00–0,44 0,0093 0,23 0,03–1,39 0,1093

SULpeak standardized uptake value corrected for lean body mass, PFS progression free survival, OR Odds ratio, CI confidence interval, T primary tumour,
N lymph-node
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LDRT chemo-potentiates the effects of cisplatin [42],
and that concomitant four low-dose radiotherapy frac-
tions provide the optimal cell killing, either with apop-
tosis or clonogenic inhibition [43, 44], without further
increasing toxicity. Moreover, in-vivo studies on several
types of epithelial cancer have demonstrated that LDRT
is feasible and well tolerated [42], having an overall re-
sponse rate of 45% [42, 45]. In our study, after two cy-
cles of IC-LDRT, we observed a significant reduction of
the metabolic activity, as expressed by the SULpeak re-
duction, indicating that also this approach acts on all
tumour cells both in primary tumours and lymph-nodes.
In particular, the metabolic reduction was more evident
in lymph-nodes: this finding could be probably due to
their higher radio-sensitivity that could be linked either
to a higher cell replication rate or to their less amount
of hypoxia and/or necrosis in lesions with small size
[46]. In addition, after IC-LDRT, approximately 50% of
patients showed good results, such as complete and/or
partial metabolic response and, therefore, defined as re-
sponders. This finding allows to state that also this in-
duction approach, considered preparatory for the
stronger subsequent therapies, acts on tumour cells kill-
ing or stunning them [42, 43] as demonstrated by the re-
duction of metabolic activity. These favourable results
allowed modifying, although in few patients, the planned
therapeutic scheme leading them directly to surgery.
Regarding non-responder patients, 18F-FDG PET-CT
allowed to identify not only patients with stable disease
but also those who developed earlier distant metastasis.
In our study, the rate of patients with progressive meta-
bolic disease after IC-LDRT was remarkably lower than
that recently reported in literature [47] in a similar
population treated with induction chemotherapy and
assessed with PERCIST criteria. The addition of low-
dose radiotherapy to the induction chemotherapy, prob-
ably induces an early improvement of anti-tumour
immune-response also against micrometastases outside
of the radiation field [48].
We did not find any significant difference in SULpeak

either in primary tumour or in lymph-node by analys-
ing the baseline PET-CT in responder and in non-
responder patients. Since the metabolic activity of the
primary tumour and/or neoplastic lymph-nodes at
baseline PET-CT did not distinguish responders from
non-responders, and considering that tumours are in-
homogeneous, it is hoped that SULpeak limitation could
be overcome by using either more sophisticated param-
eters (Ki, k1, k2, ecc) obtained by absolute quantifica-
tion, or evaluating additional metabolic pathways
(hypossia, aminoacids, ecc.) with other radiotracers.
These new approaches could highlight differences be-
tween responders and non-responders at baseline PET-
CT, still hidden at SULpeak..

Lastly, in patients that completed the treatment (IC-
LDRT plus CCRT), we found a further reduction of 18F-
FDG uptake at final PET-CT, as expected, in primary tu-
mours and lymph-nodes when compared either with
baseline PET-CT or early PET-CT, suggesting a further
effect of the CCRT on tumour cells. The completed
treatment provided very good results: while all re-
sponder patients at early PET-CT persisted as responder
at final PET-CT, the CCRT allowed to rescue several pa-
tients defined as non-responders after IC-LDRT increas-
ing the rate of responder patients at final PET-CT.
In our population, we found good overall survival: this

result is in line with that reported by some Authors [49,
50] in patients treated with standard chemo-radiotherapy
and surgery but remarkably higher than that reported by
other Authors [47, 51] in patients treated with induction
chemotherapy. These data further suggest that the im-
provement of the overall survival seems to be influenced
by: 1) surgery, that removing the disease, can play an im-
portant role in patients with locally advanced NSCLC; 2)
induction therapy, particularly when concurrent low-dose
radiotherapy is added, that boosts the subsequent treat-
ment; 3) the personalization of the treatment that allows
to tailor the therapy to the individual patient. Finally, in
our population we observed that the rate of loco-regional
recurrence was less than 30% with a tendency to decrease
when loco-regional treatments, in particular surgery, were
performed allowing to achieve a more effective loco-
regional control.
Regarding the relationship between clinical outcomes

and metabolic response, we observed that patients clas-
sified as non-responders at early PET-CT had a shorter
loco-regional, distant, and global disease progression free
survival, and overall survival than those classified as re-
sponders. This result was also observed in patients that
completed all treatment (IC-LDRT, CCRT) and in those
who underwent surgery. Therefore, we can assert that
the early metabolic response performed after two cycles
of IC-LDRT using “functional” PERCIST criteria, allows
to identify patients with poor prognosis: indeed, the ma-
jority of patients classified as non-responders showed
early disease progression during follow-up. From a clin-
ical point of view, non-responder patients after IC-
LDRT despite becoming responders after CCRT and/or
surgery, have poor prognosis: therefore, the choice of a
more appropriate therapy after IC-LDRT still represents
a difficult challenge. Probably for these patients even
more intensified local treatment are needed.
Similarly to our study, Fledelius J et al. [47] applied

PERCIST criteria to retrospectively evaluate the prog-
nostic value of PET-CT after induction chemotherapy.
Although the metabolic response rate appears similar
(almost 50%) between the two studies, the clinical out-
comes were different: both our responder and non-
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responder patients had remarkable longer disease pro-
gression free survival and overall survival. This finding
could be due to differences in baseline features of the in-
cluded patients or to a potential effect of low-dose
radiation therapy as a chemo-enhancer [42] to the sub-
sequent concurrent radio-chemotherapy or to the “tai-
lored” treatment scheme for the individual patients.
From our data, even if only at a univariate analysis, we

found that the distant and the loco-regional progression
free survival were affected by SULpeak of the primary
tumour and SULpeak of the lymph-nodes at staging, re-
spectively: higher SULpeak, higher aggressiveness, higher
chances to develop distant micrometastasis, as well as
loco-regional recurrences. The multivariate analysis
showed that surgery was a predictive factor for assessing
the loco-regional and global disease progression free sur-
vival, suggesting that medically fit patients could benefit
from surgery improving the disease control. Moreover,
the early metabolic response was the only predictive fac-
tor for assessing all disease endpoints: it is well known
that the tumour metabolism, as expressed by SULpeak,
reflects the metabolic behaviour in terms of cell aggres-
siveness, proliferation, and de-differentiation [52, 53].
Therefore, the early SULpeak reduction suggests that the
tumour cells are either more sensitive to treatment or,
probably, not so aggressive, despite their high metabolic
activity at staging. From a clinical point of view, the
early metabolic response, being predictive of prognosis,
allows to personalize the subsequent therapeutic strat-
egy, taking into account the functional changes in
addition to the clinical conditions and the morphological
aspects. Lastly, any parameter was able to predict the
overall survival: NSCLC stage III still remains a shadow
area for clinicians and further efforts should be made.
The main limitations of our study are: the relatively

small size of the population and its retrospective charac-
teristics, however a series of consecutive patients with
LA-NSCLC were included and clinical data were pro-
spectively collected on an electronic data-base.

Conclusions
18F-FDG PET-CT is a reliable tool to: assess the meta-
bolic response also in LA-NSCLC patients after low-
dose radiotherapy concurrent to the induction chemo-
therapy; early select non-responder from responder pa-
tients allowing to tailor the subsequent therapeutic
approach; predict the clinical outcomes on the basis of
early metabolic changes. Indeed, patients with LA-
NSCLC are a heterogeneous group in terms of tumour
volume/extension, lymph-nodal spread and prognosis;
therefore, the important functional information provided
earlier by 18F-FDG PET-CT could allow to select differ-
ent subgroups of patients that may deserve different
therapeutic strategies, beyond TNM staging based on

morpho-dimensional criteria and anatomic localization.
Moreover, this multimodal approach, including both the
low-dose radiotherapy that increases the effect of induc-
tion chemotherapy, and surgery that removes the dis-
ease, has proven to be a promising treatment option,
improving the clinical outcomes in patients with such an
aggressive and unfavourable disease. Further randomized
and controlled prospective investigations of this new in-
duction strategy are warranted.
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