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Abstract

Background: For breast cancer patients who require electron boost energies between 6 and 9 MeV, an energy
degraders (ED) in the 9 MeV beamline was specially designed and manufactured to increase the skin dose of 6 MeV
and to reduce the penetration depth of 9 MeV beam:s.

Methods: We used Monte Carlo (MC) techniques as a guide in the design of ED for use with linear accelerators. In
order to satisfy percent depth dose (PDD) characteristics and dose profile uniformity in water, the shape and
thickness of Lucite® ED in the 9 MeV beamline was iteratively optimized and then manufactured. The ED geometry
consists of a truncated cone attached on top of a plane plate, with total central thickness of 1.0 cm. The ED was
placed on the lower most scraper of the electron applicator. The PDDs, profiles, and output factors were measured
in water to validate the MC-based design.

Results: Skin doses with the EDs increased by 8-9 %, compared to those of the 9 MeV beam. The outputs with the
EDs were 0.882 and 0.972 for 10 x 10 and 15 x 15 cm? cones, respectively, as compared to that of a conventional

9 MeV beam for a 10 x 10 cm? cone. The X-ray contamination remained less than 1.5 %. In-vivo measurements
were also performed for three breast boost patients and showed close agreement with expected values.

Conclusions: The optimally designed ED in the 9 MeV beamline provides breast conserving patients with a new
energy option of 7 MeV for boost of the shallow tumor bed. It would be an alternative to bolus and thus eliminate
inconvenience and concern about the daily variation of bolus setup.
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Background

Electron boost irradiation for breast cancer patients is
routinely practiced in modern radiotherapy clinics. Elec-
tron beams are capable of covering planning target vol-
umes (PTV) with an appropriate prescription dose while
sparing the underlying critical structures [1]. Electron
beams are advantageous over photon beams for breast
boost irradiation due to more effective sparing of distally
located organs at risk (OAR), and the ability to deliver a
fairly uniform dose to the target volume [2]. In general a
depth of 90 % or 80 % of dose maximum is the thera-
peutic range of electron beam [1]. Thus, in order to
allow personalized treatments with an optimal energy,
fine energy spacing of electron beams of commercial lin-
ear accelerators (LINAC) is necessary. However, with an
electron beam of 6 or 9 MeV, it is difficult for the skin
dose to reach 90 % of the dose maximum while at the
same time having the therapeutic range located between
the distal end of the target volume and the proximal part
of the OAR.

In order to increase the skin dose while retaining high
dose fall-off beyond the depth of dose maximum (dyy.y),
a thin tantalum wire mesh placed on the patient’s skin
has been proposed [3, 4]. A similar energy control has
also been achieved through the use of a high-density
metal foil bolus [5]. A water equivalent bolus has been
widely used during part of the treatment to raise the
skin dose and to reduce the energy or therapeutic range
[6, 7]. However, daily setup variation with the bolus may
cause uncertainties in the dose delivered to the target
volume.

An advanced technique using a prototype electron
multi-leaf collimator (eMLC) to create narrow and seg-
mented beams has been used to modulate electron en-
ergy without the setup variation [8—15]. Modulation of
adjacent narrow segments with the eMLC enhances the
skin dose while sparing surrounding normal tissues [16].
In addition to the eMLC, the few leaf electron collimator
(FLEC) has also been used for an alternative to bolus for
boost treatment of tumor bed in breast cancer [17, 18].
Although this technique is promising, it requires an
add-on to the LINAC (i.e., the eMLC) and is still a kind
of prototype. Options for energy spacing remain re-
stricted in clinical situations.

It was well known that a spoiler made of low-atomic
number (Z) material could enhance the skin dose for
electron treatments with beam energies between 6 and
12 MeV while limiting the penetration depths above
OARs [19]. In this study we produced an electron beam
spoiler without modifying components of the LINAC.
The spoiler can provide a therapeutic range between 6
and 9 MeV, and is thus termed an energy degrader (ED).
In addition, it could eliminate concern about the daily
variation of bolus setup. We performed Monte Carlo
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(MC) simulations to optimize the design of the ED sys-
tem by calculating beam characteristics such as depth
doses, uniformity, dose rates, and bremsstrahlung con-
tamination. Prior to clinical use, rigorous measurements
were taken to validate the MC-based optimization.

Methods

Clinical linear accelerator

The medical LINAC used in this study was Varian Tril-
ogy (Varian Oncology Systems, Palo Alto, CA). Six elec-
tron energies (4, 6, 9, 12, 16 and 20 MeV) were available,
and fields were shaped with open walled applicators con-
sisting of three scrapers and matched scattering foils. A
final field-defining Cerrobend cutout was placed on the
lowermost scraper. The electron applicators have a nom-
inal source-to-end of applicator distance of 95 cm. This
indicates a 5 cm air-gap between the applicator end and
the standard source-to-surface distance (SSD) =100 cm
plane. The beams investigated in this study were the
standard 9 MeV beam and an ED-moderated beam in
the standard 9 MeV beamline, hereafter often denoted
7 MeV beam since an ED of 1 c¢cm water-equivalent
thickness moderates electron energy by 2 MeV approxi-
mately. They were collimated by 10x10 and 15 x
15 cm? applicators.

Monte Carlo simulation

The geometry and compositions of the primary collima-
tor, vacuum window, scattering foil, monitoring ion-
chamber, mirror, movable jaws, etc. for the 9 MeV elec-
tron mode, and the 10 x 10 and 15 x 15 cm? applicators
and their scrapers were obtained from information sup-
plied by the manufacturer. The construction details of
the LINAC treatment head were also provided by the
manufacturer, whereas the energy degraders were built
in our laboratory. The uppermost and middle scrapers
of the electron applicator were modeled using the
EGSnrc/BEAMnrc component module (CM) APPLICAT
[20]. The lowermost scraper was modeled by PYRA-
MIDS to insert the ED into the cutout insert, and the
ED was modeled by CONESTAK. Our EGSnrc/
BEAMnrc simulations consisted of two major steps. The
first step involved adjusting the primary electron beam
parameters of our LINAC to match the 9 MeV beam
data measured. In the second step, these beam parame-
ters were then used to compute dose distributions with
various different designs of energy degraders, and
thereby provided guidance for the manufacturing of op-
timized EDs. The EGSnrc/DOSXYZnrc code was used
to calculate dose distributions in a 30 x30x30 cm?
water phantom at 100 cm SSD, irradiated by the 99.9 cm
SSD phase space determined in the previous simulations
[21]. The doses in the water phantom were scored in
voxels of 0.5 cm (width)x 0.5 cm (length) x0.2 cm
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Fig. 1 Construction of energy degrader. Construction of the energy degrader (ED) for 7 MeV beam investigated using the Monte Carlo
simulations. The shape of ED was a truncated cone attached on the plane plate and the central thickness of ED was 1.0 cm. a A picture of the
optimized energy degrader placed on the plane plate of the lowermost scraper for 10x 10 cm? cone. It was secured in the cutout insert. b The
top view of ED; the parameter r is the radius of circle on the upper layer. ¢ The side view of ED; T, is the thickness for upper layer and T, is the
thickness of bottom layer. Ratio of two layer's thickness varied with design-to-design

(depth). In the EGSnrc/BEAMnrc simulations, the initial
number of histories was 3.0 x 10°® particles emitting from
the vacuum window. Approximately 1.0 x 10° particles
were scored in the phase space at 99.9 cm SSD with an
air slab of 0.1 cm thickness. In the EGSnrc/DOSXYZnrc
simulations, 3.0 x 10% particles were sampled from the
99.9 cm SSD phase space file as a source, yielding statis-
tical uncertainties of < £2 % along the cross-beam pro-
files of -8 to +8 cm for a 10 x 10 cm? field, and along
the cross-beam profiles of -9 ¢cm to +9 c¢cm for 15 x
15 cm? Such a number of particles required the phase
space file to be recycled 1 up to three times. Statis-
tical uncertainties in depth doses along the central
axis were less than +1 % except in the bremsstrahl-
ung tails (< £2.5 %). In accordance with previously
published papers [20, 22-28], ECUT (the energy cut-
off for electron transport) was set to 700 keV for the
EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc simula-
tions. PCUT (the energy cut-off photon transport)
was set to 10 keV for both simulations. Below these
cut-off energies the kinetic energy of the particle was
considered to be absorbed locally.

To find the parameters of the electron beam incident
on the vacuum window, we followed published proce-
dures by matching our calculated depth doses and cross-
beam profiles to our measurements in a water phantom
[22, 29, 30]. We started with published beam parameters
from a model of a linear accelerator identical to ours,
and made small fine-tuning adjustments until the best
match was found [22, 23, 28, 31]. Measured cross-beam
dose profiles were found to be symmetric and we thus
used a normally incident beam with no lateral shift. Var-
ied parameters of the parallel circular beam included the
full width at half maximum (FWHM) of the Gaussian
radial distribution and the energy of the incident

electron source. Tuning of incident electron parameters
was performed by comparing calculated and measured
relative central axis depth doses and cross-beam profiles
at 100 cm SSD for 10 x 10 and 15 x 15 cm?® ones.

We investigated beam parameters with incident ener-
gies of 9.75, 9.85, 9.95 and 10.05 MeV having Gaussian
radial distributions with FWHM of 0.12, 0.13, 0.15 cm.
The beam parameters that yielded the closest agreement
between simulations and measurements were considered
as the best estimate of the actual beam parameters and
used for all subsequent calculations.

Design of the energy degrader

It is possible to change the energy of the electron beam
by tuning the current of the bending magnet from the
standard 6 or 9 MeV [32]. However, this procedure re-
quires the standard energy to be replaced with a differ-
ent energy. In contrast, we chose to insert an ED into an

Table 1 Parameterized values to optimize the energy degrader.
Parameterized values to optimize the energy degrader for 10 x
10 cm? and 15 15 cm? cone size. r is the radius of top layer. T,
is the top layer thickness. Ty, is the bottom layer thickness. T, +
Ty is equal to 1.0 cm

10x 10 cm? cone 15% 15 cm? cone

r T; Tp r I To
ED-P? - - 1.0 ED-P? - - 10
ED-1 2 0.7 03 ED-1 2 06 04
ED-2 2 0.6 04 ED-2 3 0.6 04
ED-3 2 05 05 ED-3 6 04
ED-4 2 04 06 ED-4 4 03 0.7
ED-5 2 03 0.7 ED-5 6 03 0.7

®ED-P is a Lucite® slab plate, thickness of which is1.0 cm
Highlighted bold ED-4 was selected as an optimal design
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Fig. 2 The setup picture of in-vivo dosimetry for patient 2. NanoDot™
optically stimulated luminescent (OSLD) dosimeters (Landauer Inc,

Glenwood, IL) were used to measure the irradiated dose. The 15 x

15 cm? cone was used to irradiate the target which size was 10 cm
(superior-to-inferior) X 11 cm (Anterior-to-inferior). OSLD3 and OSLD4
are numbered 1 and 2 in the figure. OSLD3 and OSLD4 were located

at the 2 cm and 3 cm from the isocenter, respectively
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electron applicator. Once the source parameters of the
9 MeV beam were determined, various EDs inserted into
an applicator of either 10 x 10 or 15 x 15 cm? cone were
tested using MC simulations. We limited our investiga-
tion to the EDs placed on the lowermost scraper, which
was the case to minimize scattered doses outside of
treatment field (Fig. 1a). With an ED in place, dose uni-
formity at depths could be worse than that of electron
beams with no ED (ED-P). Thus one of our design goals
was to achieve a uniform dose region at treatment
depths. A simple double-layer approach was chosen for
the ED design as shown in Fig. 1b-c. Our investigations
included six different ED designs for both 10 x 10 and
15 x 15 cm? cones, as summarized in Table 1. Five of the
ED designs incorporated a truncated cone attached on
top of the plane plate, where the bottom layer was a
plate shape and the edge of the upper layer was carved
to improve uniformity as shown in Fig. 1c. As shown in
Table 1, the radius of the top layer 7, top layer thickness
T, and bottom layer thickness 7}, were chosen to
achieve the best possible uniformity at dp,.. of the
cross-beam dose profile. The total thickness of the
Lucite® (T + Tp) was 1 cm to reduce electron energy
by approximately by 2 MeV. The radius of the top
plate was fixed as an empirically chosen value (2 cm)
when simulating the 10 x 10 cm? field because varying

Percent dose (%)

Relative dose (%)

Fig. 3 Comparison of the measured and calculated beam characteristics curves for 9 MeV beam. A comparison of the measured and calculated
relative central-axis depth dose curves in water for 9 MeV beam of (a) 10 x 10 cm? and (b) 15 x 15 cm? cones. Measured and calculated cross-
beam profiles at the depth of dose maximum in water for 9 MeV electron beam of (c) 10x 10 cm? and (d) 15 x 15 cm? cones. Solid lines indicate
measurements data with an ionization chamber (CC13). Squares indicate the calculated data from Monte Carlo simulations. The energy and lateral
spread of incident electron beam for MC simulations were 9.85 MeV and 0.13 cm FWHM of Gaussian distribution, respectively
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only T, or T, was sufficient for improving the profile
uniformity. In addition, a simple plate (ED-P) was
simulated for comparison. Output factors were calcu-
lated to quantify the output loss by scattering with
the EDs and compared with measured values. The
reference configuration of the output factor was a
10x10 cm® open applicator field with the water
phantom at a nominal SSD of 100 c¢cm. The output
factor for a given field with the ED was calculated by
taking the ratio of the maximum calculated dose in
that configuration to the maximum calculated dose in
the reference configuration. Output factors with opti-
mized EDs were calculated for 10 x 10 cm?® and 15 x
15 cm? applicators.

Lucite®, also known as polymethly methacrylate
(PMMA), was chosen as the selected material for the
ED. Lucite® is a water-equivalent material with a rela-
tively low Z, which is expected to decrease electron en-
ergy by approximately 2 MeV per cm and to cause
relatively low X-ray contamination [33].

Measurement with ion-chamber

Relative central-axis depth dose and cross-beam dose
profiles for the standard 9 MeV electron beam were
measured in water using a CC13 thimble ion-chamber
(PTW, Freiburg, Germany) in a Blue phantom (IBA
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dosimetry, Louvain-la-Neuve, Belgium) at 100 cm SSD.
These measured data were acquired and analysed with
data acquisition software (OmniPro Accept version
7.1A). The electron beams were perpendicular to the
phantom within the accuracy of machine setup. Steps of
0.5 mm with a 1 s dwell time at each measurement pos-
ition were used. The depth of dose maximum, along
with 90, 80 and 50 % of dose maximum are represented
by dimaxw Roo, Rgo, and Rsg. The practical range, which is
the depth where the tangent to the linear portion of the
central-axis depth-dose curve intersects the extrapolated
X-ray contamination, is represented by R, The most
probable energy (Ey) of the incident electron beam was
calculated. All measurements and corrections in this study
were done in accordance with the recommendations of
the AAPM TG-51 protocol and TG-25 report [34, 35].
Output factors were measured with a CC13 ion-
chamber by placing the effective point of measure-
ment at the predetermined measured position of d.y
for the given and reference fields. The TG-51 protocol
recommends the use of a parallel plate chamber for elec-
tron beams with Ry less than or equal to 4.3 cm [34]. The
thimble ionization chamber (Scanditronix Medical AB,
Uppsala, Sweden) was used to measure the output factors
for electron beams of energy less than 10 MeV [36-38].
The thimble ionization chamber has the geometry
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almost identical to a CC13 ion-chamber. Several other
studies also used the cylindrical chambers to measure dos-
imetry data for low energy electron beams [32, 39]. The
reference field for output factor measurements was an
open field with the 10 x 10 cm? applicator. In this study, a

10 x 10 cm? applicator defines a field of 10 x 10 cm? at

SSD =100 cm. The diameters of the Cerrobend cutouts
were 3, 4, 5, 6, 7, 8 and 9 cm for the 10x 10 c¢m?
cone, and 8, 9, 10 and 12 cm for 15 x 15 cm? Values
of cutout factor were listed along the ratio of area to

— —6MeV
—7MeV
\ ——9MeV

9 w/ bolus

X
<
)
n
[e]
T
4
3
"4

= 78.6 |
[
o 30 | Enhanced skin dose

20

\
10 .
\‘\
0 — T =
0 1 4 5

for 7 MeV beam were shown in this figure

2 3
Depth (cm)

Fig. 6 Comparison of measured depth-dose curves of electron beams. Comparison of measured depth-dose curves for new 7 MeV (bold solid),
9 MeV (solid), 6 MeV (dashed) and 9 MeV with 1 cm bolus (dotted) for 10 x 10 cm? cone. Reduced penetration depth and enhanced skin doses
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Table 2 Central-axis depth dose characteristics for 10 x 10 cm? cone. Central-axis depth dose characteristics for 7 MeV, 9 MeV, and
9 MeV with 1 cm bolus of 10x 10 cm? cone. X, indicates X-ray contamination that is extracted from Ry plus 2 cm

Nominal energy (MeV) Surface dose (%) max (€M) Rao (€M) Rgo (€M) Rsq (cm) Ry, (cm) Eo (MeV) Xeon (%)
7 8838 1.16 1.83 207 2.59 335 6.03 13

9 80.7 2.05 2.74 2.99 354 439 8.25 12

9 with bolus 913 1.05 1.74 1.99 254 333 592 -

perimeter (A/P) of the equivalent square field for a
circular cutout (Table 5).

In-vivo dosimetry
The new 7 MeV beam was implemented to our in-house
MU calculation software. Dose characteristics were inves-
tigated from SSD =90 cm to 110 cm. This software was
based on AAPM TG-71 protocol [40]. The reference dos-
imetry following the AAPM TG-51 protocol was per-
formed to calibrate the OSLDs [34, 41]. The PTW30013
Farmer type chamber (PTW, Freiburg, Germany) was
used for this purpose. It was reported that the cylindrical
PTW Farmer chamber and the parallel plate PTW Roos
chamber agreed within 1 % for the 4 and 6 MeV energies,
and within 0.5 % for the 9 and 12 MeV energies [42].
Calibrated OSLDs were in agreement within 2 % with
dose readings of an ion-chamber at d,,, of the 7 MeV.
To minimize statistical uncertainty, five dose readings
were performed and averaged over each dosimeter. In-
vivo dosimetry was performed for the first three patients
who were treated with the newly-developed 7 MeV
beam. The setup of the OSLD was shown in Fig. 2 (pa-
tent 2). The treatment field was defined by a radiation
oncologist on the basis of clinical examination. Monitor
units were calculated using the in-house calculation soft-
ware. Daily 180 cGy fractions were prescribed at d,y.
Two OSLDs were placed on the skin of each patient.

Results

Head component modelling for source parameters

As shown in Fig. 3, the calculated values of d,,,., Rso,
and R, agreed well with measured data, within 1 mm,
when incident electron energy of 9.85 MeV was chosen.
The calculated cross-beam dose profiles at d,,,,, and Rsy
agreed well with measured data, within 2 %, except in
penumbra regions when 0.13 cm FWHM of the incident
electron beam was chosen. Thus, the energy and lateral
spread of the incident electron beam for the standard

9 MeV electron beam were determined to be 9.85 MeV
and 0.13 cm FWHM of Gaussian distribution, respect-
ively. All subsequent simulations with the various energy
degraders were carried out using these two source
parameters.

Monte Carlo simulations of the energy degraders
Calculated relative depth-dose curves along the central-
axis were almost identical among the all ED designs de-
scribed in Table 1. Therefore, dose profiles at d,,,, and
Rsp with the EDs were mainly used to evaluate the per-
formance of the EDs. Figure 4 shows calculated cross-
beam dose profiles along the x-axis normalized to the
value at the central-axis. As shown in Fig. 4, the cross-
beam dose profile of ED-P falls off rapidly as distance
from the central axis increases. The ED-P failed to
achieve acceptable profile uniformity.

For the 10x 10 ¢m? cone (Fig. 4a and b), electrons
penetrating through the thick part of the ED degrade
their energy more than those penetrating the thinner re-
gions. Thus, truncated EDs show better uniformity with
increasing 7T, or decreasing T, as compared to ED-P.
Considering uniformity and the horn in the dose profiles
at d,,,,, and Rsy, ED-4 was selected as the optimal design
for the 7 MeV beam of 10 x 10 cm? cone. Fig. 4c and d
for the 15 x 15 cm?® cone show the effects of the radius
of the top layer (r) on the profile at d,,,, and Rsy, re-
spectively. The horn dose at Rs, increased as r decreased
as shown in Fig. 3d. ED-1, ED-2 and ED-3 show un-
acceptable dose horns at 4 — 7 cm (>10 %). As ED-4
showed less penumbra region at Rs, than did ED-5, ED-
4 was selected as an optimized design for our 7 MeV
beam of 15 x 15 cm? cone.

Relative central-axis depth-dose curve and cross-beam
dose profiles

Based on the guidance of the previous section, the two
optimized EDs for 10 x 10 cm”® and 15 x 15 cm?® cones

Table 3 Central-axis depth dose characteristics for 15 x 15 cm? cone. Central-axis depth dose characteristics for 7 MeV, 9 MeV, and
9 MeV with 1 cm bolus of 15X 15 cm? cone. X.., indicates X-ray contamination that is extracted from R, plus 2 cm

Nominal energy (MeV) Surface dose (%) Arnax (CM) Rgo (cm) Rgo (cm) Rso (cm) R, (cm) Eo (MeV) Xeon (%)
7 89.7 112 1.74 199 252 3.31 587 1.1

9 80.5 2.03 2.72 2.98 3.55 438 827 1.1

9 with bolus 91.1 1.03 1.72 1.98 2.55 332 594 -




Park et al. Radiation Oncology (2016) 11:112

Table 4 Output factors for 7 MeV electron beam. Output factors
for 7 MeV electron beam (reference: measured output for 9 MeV
beam of 10x 10 cm? cone)

Cone (cm?) Output factor Output factor Difference (%)

calculated measured
10x10 0.888 0.882 0.6
15x 15 0.980 0972 038

were fabricated to produce 7 MeV electron beams. The
relative central-axis depth-dose curves measured at
100 cm SSD are plotted in Fig. 5a and b along with the
corresponding calculated values. The agreement between
the calculations and measurements was found to be
within 2-3 % at d ., for the two cone sizes employed in
this study. The disagreement was larger in the region
closer to the phantom surface for both cones. Cross-
beam dose profiles of the 7 MeV beam at d,,, are
shown in Fig. 5¢ and d for 10x 10 and 15x 15 cm?
cones, respectively. All the measured profiles were in
agreement with the calculated cross-beam dose profiles
within 2-3 % except for the penumbra and beyond the
penumbra.

As shown in Fig. 6, the central-axis depth dose charac-
teristics were compared with those of the standard
6 MeV beam and the 9 MeV beams with and without a
1 ¢cm bolus. The characteristics of the 9 MeV beam with
the bolus were similar to that of our 7 MeV beam, but
had a surface dose a few % higher than the 7 MeV beam.
The 7 MeV beam showed a reduced penetration to a
depth between the 6 and 9 MeV beams, as well as an in-
creased skin dose up to approximately 90 % of dose
maximum. As shown in Tables 2 and 3, the practical
range, R, reduced from 4.39 to 3.35 cm for 10 x 10 cm”
cone and from 4.38 to 3.31 cm for 15 x 15 cm? cone by
using the 7 MeV beam instead of the 9 MeV beam. The
values of d,,,, were 1.16 cm and 1.12 c¢m for the 10 x 10
and 15 x 15 cm? cones, respectively.

Output factors

The presence of the ED through the beamline caused a
decrease in output due to the scattered electrons from
the ED with large angles. Table 4 shows the calculated
and measured output factors for the new 7 MeV beams.
The reference of the output factor was measured using
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an open 10 x 10 cm? cone of a 9 MeV beam, which has
a value of 1.0. The measured output factors of the
7 MeV beam were 0.882 and 0.972 for 10 x 10 ¢cm? and
15 x 15 cm?, respectively. The measurements and calcu-
lations were within 1 % of each other for the 10 x 10 and
the 15 x 15 cm? cones. Table 5 shows the measured cut-
out factors of our 7 MeV beam for several different sizes
of circular electron beam blocks of 10 x 10 c¢m? and
15 x 15 cm? cones. The cutout factor of the 9 MeV beam
showed no significant variation, however the cutout fac-
tor of the 7 MeV beam widely varied with sizes of cutout
inserts.

In-vivo dosimetry

Table 6 summarizes the results of in-vivo dosimetry for
three patients in different irradiation conditions. In
Table 6, the differences are expressed as the measured
dose relative to the expected surface dose (160 cGy) on
the central axis. We assume that the expected value at
the surface dose was 89 % of the maximum dose. Differ-
ences between measured and expected doses were less
than 8 cGy except in the case of one OSLD. The devi-
ation of OSLD 4 could be explained by its large off-axis
distance (approximately 4 cm) and thus a prolonged
SSD due to the curved skin.

Discussion
We developed energy degraders for a new electron en-
ergy for the breast boost irradiation when using the elec-
tron mode of a commercial LINAC. Iterative MC
simulations were performed to obtain the optimal struc-
ture and dimensions of the EDs. By placing the ED in
the lowermost scraper of the applicator to minimize
scattered doses out of the treatment field, it was also se-
cured during LINAC rotation without an extra fixing de-
vice. The design of EDs can be considered as one of the
alterative of modifying the LINAC’s own energy when
we need certain electron beam between energies. Thus,
the developed method can be easily applied to other
intermediate energies by selecting the base design of this
study which consists of a truncated cone attached on
top of a plane plate.

A Lucite® plate was shown to be a suitable material for
the reduction of X-ray contamination.*® Scattered

Table 5 Measured cutout factors for 7 MeV electron beam. Measured cutout factors for 7 MeV electron beam (reference: measured

output for 9 MeV beam of 10x 10 cm? cone; A/P: area to perimeter)

A/P ratio
Energy Cone size (cm?) 0.75 1.00 1.25 1.50 1.75 2.00 225 250 3.00 375
7 MeV 10x 10 0335 0490 0623 0.738 0.805 0.858 0870 0.882 - -
15%15 - - - - - 0.900 0922 0.946 0.963 0972
9 MeV 10x 10 0.903 0.952 0.983 1.000 1.005 1.008 1.004 1.000 - -
15%15 - - - - - 1.003 1.005 1.007 1.004 0.996
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Table 6 In vivo dose results. In vivo doses of 7 MeV beam
measured with optically stimulated luminescence dosimeters

OSLD SSD Cone size Measure Dose
number (cm) (cm?) (cGy)
Patient 1 1 100 10 156
2 153
Patient 2 3 100 15 152
4 139
Patient 3 5 105 15 152
6 152

electrons from the ED that interact with the applicator
are able to cause X-ray contamination. Since the X-ray
contamination of electron beams is produced mainly in
the scattering foils of the LINAC [43, 44]. The slight in-
crease (0.1 %) in the X-ray contamination of depth-dose
curves of the 7 MeV beams was most likely caused by
the ED. The Lucite® ED in place can be used to raise the
surface dose of a 9 MeV electron beam to up to 90 % of
dose maximum as well as to reduce the penetration
depth of electrons. Thus, the technique suggested here
could be an acceptable alternative to the use of a bolus
for boost treatment of the tumour bed of the breast. In
particular, the ED minimizes the variation in patient’s
setup. Also the setup time is reduced when the ED is
implemented, as the device is located on the lowermost
scraper of the electron applicator rather than on the pa-
tient’s skin. As shown in Fig. 6, this technique is able to
fill the energy gap between 6 MeV and 9 MeV to some
degree.

The tantalum wire mesh bolus and metal bolus in-
creased the surface dose and kept only a small change of
the depth dose curve [4, 7]. These materials should be
placed on the patient surface. It may cause the setup
variations during the treatment course. However, the
final design of the ED is easily fixed to the lowermost
scarper of electron applicator at the same position for
every fraction as shown in Fig. la.

The results of the in-vivo dosimetry showed lower
than the expected value on the central axis (see Table 6).
The measured points on the skin were several cm away
from the central axis as shown in Fig. 2. Since our EDs
were designed to achieve optimal uniformity at d,,,, the
cross-beam dose profile at shallow depth was somewhat
parabolic from the center to the penumbra, rather than
uniform. Furthermore, the measured skin doses could
vary with off-axis distances due to varying SSDs caused
by the slope of the breast. These reasons may contribute
to the lower in-vivo results than the expected value.
Nonetheless, all in-vivo doses to the skin ranged from
78 to 87 % of the prescription dose.

Unfortunately, current treatment planning systems
(TPS) do not provide adequate flexibility to support
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beam data from a modified electron spoiler or ED on
the electron applicator. Thus, the 3D dose distribution
with the EDs was not calculated by the TPS. An in-
house Monte Carlo-based TPS is under development to
evaluate the 3D dose distribution of the 7 MeV beam.

Conclusions

In this study we developed novel energy degraders for
7 MeV electron beams that are capable of reducing the
penetration depth and enhancing the skin dose, com-
pared to the standard 9 MeV beam. The efficacy of the
optimally-designed EDs was validated through experi-
mental evaluation. Thus the optimally designed ED in
the 9 MeV beamline provides breast conserving patients
with a new energy option of 7 MeV for boost of the shal-
low tumor bed. It would be an alternative to bolus and
thus eliminate inconvenience and concern about the
daily variation of bolus setup.
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