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Abstract

Background: Although altered protocols that challenge conventional radiation fractionation have been tested in
prospective clinical trials, we still have limited understanding of how to select the most appropriate fractionation
schedule for individual patients. Currently, the prescription of definitive radiotherapy is based on the primary site
and stage, without regard to patient-specific tumor or host factors that may influence outcome. We hypothesize
that the proportion of radiosensitive proliferating cells is dependent on the saturation of the tumor carrying
capacity. This may serve as a prognostic factor for personalized radiotherapy (RT) fractionation.

Methods: We introduce a proliferation saturation index (PSI), which is defined as the ratio of tumor volume to the
host-influenced tumor carrying capacity. Carrying capacity is as a conceptual measure of the maximum volume that
can be supported by the current tumor environment including oxygen and nutrient availability, immune surveillance
and acidity. PSI is estimated from two temporally separated routine pre-radiotherapy computed tomography scans and
a deterministic logistic tumor growth model. We introduce the patient-specific pre-treatment PSI into a model of
tumor growth and radiotherapy response, and fit the model to retrospective data of four non-small cell lung cancer
patients treated exclusively with standard fractionation. We then simulate both a clinical trial hyperfractionation
protocol and daily fractionations, with equal biologically effective dose, to compare tumor volume reduction as a
function of pretreatment PSI.

Results: With tumor doubling time and radiosensitivity assumed constant across patients, a patient-specific
pretreatment PSI is sufficient to fit individual patient response data (R2 = 0.98). PSI varies greatly between patients
(coefficient of variation >128 %) and correlates inversely with radiotherapy response. For this study, our simulations
suggest that only patients with intermediate PSI (0.45–0.9) are likely to truly benefit from hyperfractionation. For up to
20 % uncertainties in tumor growth rate, radiosensitivity, and noise in radiological data, the absolute estimation error of
pretreatment PSI is <10 % for more than 75 % of patients.

Conclusions: Routine radiological images can be used to calculate individual PSI, which may serve as a prognostic
factor for radiation response. This provides a new paradigm and rationale to select personalized RT dose-fractionation.
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Background
Recent advances in radiation oncology have largely fo-
cused on the physical characteristics of radiation including
beam quality and delivery. Typically, tumor and normal
tissue anatomy/geometry are only used as the main pa-
rameters with which to enhance therapeutic ratios [1–5].
Adaptive radiotherapy and image-guided radiotherapy
have been suggested to primarily re-shape the target vol-
ume based on changes in tumor volume or position [1–4],
rather than as a methodology to adapt to changes in the
intrinsic tumor-host biology. Inroads have been made in
combining intensity-modulated radiation therapy with
functional imaging, such as by [18F]-fluoromisonidazole
positron emission tomography (FMISO-PET) or dynamic
contrast-enhanced magnetic resonance imaging, for radi-
ation planning and response assessment to direct higher
doses of radiation to areas with increased radioresistance
[5–8]. In conventional clinical practice, however, most pa-
tients treated with definitive radiotherapy receive a similar
dose and fractionation scheme based upon primary site
and American Joint Committee on Cancer (AJCC) TNM
stage (Tumor size, lymph Node involvement, Metastasis
presence).
Different fractionation protocols have been tested in

prospective clinical trials [9, 10]. Alternative radiation
fractionation protocols may improve outcome for some
patients but worsen outcome for others. It is important
that we begin to understand which tumors respond bet-
ter to altered fractionation, and how to select the most
appropriate fractionation schedule for an individual pa-
tient. Innovative models that are based upon cell biology
and interactions of the tumor with its unique environ-
ment could forecast individual radiation response and
justify recommendation of either standard of care or al-
ternative radiation fractionation on a per patient basis.
Tumors grow within a host tissue that both facilitates

progression by supplying nutrients and growth factors
[11, 12], and inhibits it through physical constraints [13]
and immune surveillance [14, 15]. Since many of these
factors vary widely across patients, we introduce the con-
cept of tumor carrying capacity as the maximum tumor
volume that is achievable in the patient-specific tumor en-
vironment, and saturation of tumor proliferation as the
tumor approaches its carrying capacity. We propose a
non-invasive radiomics measurement of patient-specific
carrying capacity and proliferation saturation, which may
ultimately help designing more personalized approaches
to radiotherapy.
Tumors are composites of proliferating and growth

arrested cells. Their respective proportions at individual
times during radiation contribute to the population-
level response, in addition to radiation beam and
protocol parameters and host tissue properties. In
multi-compartment mathematical models that distinguish
between cycling and growth-arrested cells, proliferation
and oxygenation status-dependent radiation response
could be simulated on the cellular level [16, 17]. Tumor
growth in vivo can be approximated by logistic dynamics
[18]. Initial exponential growth at low cell densities when
most cells have access to ample resources decelerates
when cells at the core of the tumor become growth-
arrested, mainly due to limited space and exhausted intra-
tumoral nutrient supply as resources are consumed by
cells closer to the tumor surface [19, 20]. This established
the notion of a tumor carrying capacity (K) as the max-
imum tumor volume (V) that can be supported by a given
environment. A tumor carrying capacity may change de-
pending on the oxygen and nutrient supply through tissue
vascularization [21], removal of metabolic waste products
[22], and evasion of immune surveillance [14]. Greater
oxygen supply and removal of metabolic waste increases
tumor carrying capacity; in contrast, infiltration of tumor
specific cytotoxic T lymphocytes exemplifies a reduction
of carrying capacity. Hence, the tumor volume-to-carrying
capacity ratio (V/K) describes the saturation of tumor cell
proliferation at the population level as the tumor ap-
proaches its carrying capacity, and as such is deemed the
Proliferation Saturation Index (PSI). The PSI at any time
reflects the history of the reciprocal changes of a tumor
and its environment – and thus can be expected to be
patient-specific. Tumor volumes close to their carrying
capacity, i.e., with a high PSI, are here assumed to have
only a small proportion of proliferating cells that are most
sensitive to radiation-induced damage. We therefore
hypothesize that a patient-specific PSI may serve as a
novel prognostic factor for radiotherapy response.

Methods
Tumor radiation response model and Proliferation
Saturation Index (PSI)
Logistic tumor growth is modeled as a deterministic
ordinary differential equation between radiation doses

dV
dt

¼ λV 1−PSIð Þ ð1Þ

where PSI is the tumor volume-to-carrying capacity ra-
tio (V/K), and λ ¼ ln2

Teff
is the intrinsic tumor growth rate,

with the effective tumor doubling time Teff being a com-
posite of the potential doubling time, TPOT, reduced by
the cell loss fraction, φ [23]. Teff is assumed to be intrin-
sic and time independent. Radiation response after each
application of a single dose d is modeled as an instantan-
eous volume change VpostIR ¼ V−γdV 1− V

K

� �
at discrete

times during irradiation in the considered treatment proto-
cols (standard of care: once a day [q.d.] at 9 am, no treat-
ment on the weekend; hyperfractionation twice a day [b.i.d]

at 9 am and 3 pm; no weekend), where γd ¼ 1−e− αd∘þ∘βd2ð Þ
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represents radiation-induced death following the linear-
quadratic model [24, 25]. In this form, radiation-induced
cell death is only considered for proliferating cells, while
quiescent and hypoxic cells are assumed radioresistant.
Tumor growth is modeled following (Eqn. 1) between ra-
diation fractions. While other biological effects are with-
out doubt at play before, during and after RT, longitudinal
measurements of these effects are currently impossible
and thus intentionally not considered explicitly. However,
changes in tumor growth rate such as accelerated repopu-
lation as well as other proliferation stimulating radiation
effects (re-oxygenation, re-distribution in the cell cycle)
are inherent to the logistic growth and RT model: as the
tumor volume shrinks, V/K and thus PSI decreases, which
in turn reduces the extrinsically enforced pre-treatment
reduction in proliferation. It follows from (Eqn. 1) that lar-
ger PSI implies a low proliferating cell fraction and thus
treatment refractory tumors, whereas tumors with lower
PSI are more proliferative and thus more radiosensitive
(Fig. 1a), which is in line with the established positive cor-
relation between proliferation rate and radiosensitivity
[18]. Therefore, two patients that present with similar
tumor volume could have a different tumor environmen-
tal conditions and thus different PSI, which results in dif-
ferent responses to the same RT protocol (Fig. 1b).
Here we assume that the tumor carrying capacity is

constant during the 5–7 week course of treatment. This
is, of course, a gross oversimplification of the under-
lying biology, but without longitudinal measurements
of carrying capacity biomarkers, calibration of dynamic
carrying capacity changes during RT is impossible and
would introduce additional uncertainty. The model was
simulated in MATLAB using the analytical expression
Fig. 1 Pretreatment proliferation saturation index (PSI) determines RT respo
care RT (2Gy x 30; q.d. 9 am, no weekend) calculated with Eqn. 1; λ=0.1, γ2G
therapy with different initial PSI. b Two patients with identical tumor volum
reduction in tumor volume after standard of care RT (2Gy x 30; q.d. 9 am, n
for the solution of (Eqn. 1) (MATLAB R2013b, The
MathWorks Inc., Natick, MA).

Prospective estimation of patient-specific
pretreatment PSI
The analytical solution of pretreatment tumor growth

(Eqn. 1) is given by V ¼ K�V 0ð Þ�eλt

KþV 0ð Þ� eλt�1ð Þ , with V(0) being

the initial tumor volume at time t=0. From two differ-
ent radiological scans, routinely taken at diagnosis and
at radiotherapy treatment planning simulation
(Δt=45 days in private hospitals [26]), we obtain two
distinct tumor volumes (V(0) =Vdiagnosis and V=Vsimula-

tion) along the logistic growth trajectory. Then, the ana-
lytical solution of the logistic model can be solved
explicitly for K, giving the following analytic expression
for pretreatment PSI value.

PSI ¼ Vdiagnosis � eλΔt−Vsimulation

Vdiagnosis � eλΔt−1ð Þ ð2Þ

Data fitting
Thirteen longitudinal tumor volume measurements
across four NSCLC patients treated with fractionated RT
(2 Gy x 30 fractions) were taken from the literature [27].
Tumor volumes are available at the beginning of treat-
ment (Vsimulation={7.6, 27.4, 97.7, 189.3} cm

3) and at least
two subsequent RT fractionations for each patient. We
assume that the variations in intrinsic effective tumor
growth rate λ and radiosensitivity γ2Gy are negligible
between patients compared to the variation in individual
carrying capacity K, given the spread of tumor volumes
nse. a Response for tumors with different initial PSIs to standard of

y=0.25. Each curve shows the dynamics response during six weeks of
e but different PSI at treatment beginning (day 0) exhibit different
o weekend). Calculated with Eqn. 1; λ=0.1, γ2Gy=0.25
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across two or three orders of magnitude. We therefore
estimate constant λ and γ2Gy values for all patients, and
individual pretreatment proliferation saturation indices
(PSIs).
We utilize a genetic algorithm that mimics the pro-

cesses of evolution and natural selection [28] to derive a
combination of parameters that best fits patient data.
We generate an initial ‘population’ (N=500 ‘individuals’)
of parameter sets {λ , γ2Gy, PSI1, PSI2, PSI3, PSI4}, with
each element of each individual parameter set drawn at
random from a uniform distribution [0,1]. In each algo-
rithm iteration (‘generation’) we first evaluate the fitness
of each individual in the population by calculating the
sum of residuals between data and corresponding simu-
lation results (‘cost’ C)

C λ; γ2Gy; PSI1; PSI2;PSI3;PSI4
n o� �

¼
X4

k¼1

X
tk;i

V k tk;i
� �

−M λ; γ2Gy; PSI1; PSI2; PSI3; PSI4
n o

; tk;i
� �� �2

V 2
simulation;k

ð3Þ

where tk,i represents the time point when tumor volume
Vk was measured for kth patient, and M is the simulated
tumor volume at that time point. We then select the
50 % fittest individuals (i.e., parameter combinations)
that have the smallest calculated cost (Eqn. 3), and discard
unfit individuals. To maintain a constant population size
N in subsequent generations, additional individuals are
generated using crossover (25 %) and mutation (25 %) of
survived selected individuals. For crossover, two survived
selected individuals are chosen at random to generate a
new individual ‘offspring’, by randomly selecting ‘parental’
parameter combinations (pairwise mixing). For mutation,
a new individual is generated from a survived individual
with either λ, γ2Gy or PSIi being modified randomly by
changing its current value randomly up to ±10 %.
The 500 individuals after 500 iterations of the selec-

tion, crossover, and mutation procedure of the genetic al-
gorithm (i.e., best sets of parameter combinations with
the smallest sum of residuals between data and simula-
tion results) is then refined with a trust-region-reflective
Fig. 2 Genetic algorithm-derived fits of logistic tumor growth and radiation
NSCLC patients data (red circles; [27]) with uniform growth rate λ=0.045 an
capacities Ki. PSIi: Proliferation Saturation Index for patient Pi at beginning o
algorithm (deterministic, gradient based optimization
procedure) implemented in the MATLAB lsqnonlin
function (MATLAB R2013b with Optimization Toolbox,
The MathWorks Inc., Natick, MA), which uses a quad-
ratic approximation for the minimized function in a
neighborhood (trust region) around the current point. In
order to avoid finding a parameter set yielding only local
minimum in the fitness landscape we reiterated the
whole fitting procedure 20 times and compared the
resulting parameter sets.

Alternative radiotherapy protocols
From the estimation of radiation-induced cell death, γ2Gy
we can approximate the radiosensitivity parameters α and
β to derive γd for any dose d using the linear-quadratic

model γd ¼ 1−e− αdþβd2ð Þ.

Virtual patient cohort
We create a cohort of n=1,000 in silico virtual patients
Pi for which we randomly assign tumor growth rate λi ∈ [
λ * (1 − x %), λ * (1 + x %)] and radiation-induced cell

death γ2Gy i∈ γ2Gy � 1−x%ð Þ; γ2Gy � 1þ x%ð Þ
h i

from uni-

form distributions, where x represents the level of uncer-
tainty (width of the uniform distribution support). For
each virtual patient we randomly assign tumor volume
and PSI at beginning of treatment, and simulate tumor
volume reduction after standard of care 2 Gy x 30 fraction-
ation using Eqn. 1. We calculate the coefficient of deter-
mination, R2, to investigate how different degrees of
uncertainty (value of x) impact the predictive power of PSI.

Results
Logistic tumor growth and radiation response model fits
retrospective data
The logistic tumor growth and radiation response model
(Eqn. 1) fits retrospective longitudinal patient-specific
data from the literature [27] with highest accuracy
(R2=0.98) for λ=0.045 day−1 and γ2Gy=0.084 (Fig. 2). The
estimate for λ suggests Teff=15.4 days, which indicates a
cell loss factor of φ=50 % for TPOT=7.7 days for lung
response model predicted curves (Eqn. 1; solid black lines) to 4
d radiation induced cell death γ2Gy=0.084, and patient-specific carrying
f treatment (t=0)
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adenocarcinoma [29]. Similar to oropharyngeal cancer
cells, fast proliferating NSCLC cells are believed to have
a relatively high α/β=20 [30–33]. With the α/β=20 ap-
proximated from literature, γ2Gy=0.084 suggests a radio-
sensitivity parameter α=0.0487 and thus S(2Gy)<91.6 %,
which is similar to that reported for A549 if plated be-
fore irradiation (83.3 %; [34]) with additional consider-
ation for senescence and transient cell cycle arrest.
Patient-specific carrying capacities are estimated at

K={72, 892, 131, 1329} cm3, with pretreatment PSIs ran-
ging from 0.03 (patient 2) to 0.75 (patient 3) with an
average of 0.26±0.33 (Fig. 2). Interestingly, although the
initial tumor volume of patient 4 is 25 times larger than
that of patient 1, the reduction of tumor volume is com-
parable in both patients (53.4 % and 52.1 %) as their PSIs
are similar (0.11 and 0.14). Patient 3, with an intermedi-
ate initial tumor volume but large PSI (0.75), has a sig-
nificantly smaller reduction of tumor volume (20.4 %).
Table 1 summarizes patient-specific tumor volumes Vi,
derived carrying capacities Ki and proliferation satur-
ation indices PSIi, and other model parameter values.
The minima obtained in each of the 20 independent itera-
tions of the data fitting procedure were indistinguishable
(standard deviation/mean = 6x10−6) with negligible differ-
ences between the estimated growth rates and radiosensi-
tivities (λ=0.045±3x10−5 and γ2Gy = 0.084±6x10−5). The
differences in the estimated PSIi values between independ-
ent data fitting iterations did not exceed 10 %.

Pretreatment PSI is a prognostic factor for
radiation response
For less than 8.7 % uncertainty in intrinsic tumor pa-
rameters, pretreatment PSI serves as a prognostic factor
with a high coefficient of determination (R2>0.8; Fig. 3a).
R2 falls below 0.6 for 14.1 % uncertainty in λ and γ2Gy,
but remains a better prognostic factor for radiation re-
sponse than tumor growth rate for uncertainty in intrin-
sic tumor parameters up to around 25 %. Pretreatment
PSI correlates inversely with tumor volume reduction
during RT (Fig. 3b).
Reliable estimation of patient-specific pretreatment PSI

must be achievable despite inter-patient variation in tumor
growth rate λ , as well as limitation in radiological image
resolution and noise in tumor volume measurements [35].
Table 1 Summary of initial tumor volumes, parameters values and f
patients [27]

Initial tumor volume
V(0), cm3

Carrying capacity,
K, cm3

Proliferation satur
index, PSI, dimen

Patient 1 7.6 72 0.11

Patient 2 27.4 892 0.031

Patient 3 97.7 131 0.75

Patient 4 189.3 1329 0.14
For each virtual patient Pi we reverse calculate exact tumor
volume at diagnosis using Eqn. 1 (t-45 days; [26]), and
introduce noise of ±5 % in the tumor volume measures at
both diagnosis and treatment planning. The absolute error
between exact pretreatment PSI and the proposed estimate
using Eqn. 2 from noisy input data for different levels of
uncertainty in tumor growth rate λ is shown in Fig. 3c. For
uncertainties less than 20 %, the absolute estimation error
of pretreatment PSI is <10 % for more than 75 % of
patients.

Pretreatment PSI-dependent response to
hyperfractionation
We consider tumors with fixed estimated radiosensitivity
α=0.045 Gy-1, fixed α/β=20 Gy, and varying pre-treatment
PSI. We simulate response to standard of care (2 Gy/fx x
30; q.d. 9 am; no weekend), and compare final tumor sizes
to simulated responses to hyperfractionated treatment with
1.2 Gy/fx x 58; b.i.d. (9 am and 3 pm; no weekend), as pre-
scribed in the experimental arm of an RTOG phase III trial
in regionally advanced unresectable NSCLC [36]. Model
simulations predict an average of 27.6 % improved tumor
volume reduction after hyperfractionation for all PSI, due
to the larger biologically effective dose (BED) (73.8 Gy20 vs.
66 Gy20 for standard of care) (Fig. 4a). To demonstrate
which patients benefit from hyperfractionation, we com-
pare the clinically applied hyperfractionation protocol to
daily fractionation with equal BED (2.21 Gy x 30; q.d.
9 am; no weekend). An improvement in tumor volume re-
duction of >5 % is predicted for patients with intermediate
PSI (0.45–0.9; Fig. 4b). This demonstrates that a patient-
specific PSI may inform which patients are most likely to
benefit from alternative radiation fractionation prior to
clinical intervention.

Conclusions
Despite inter-patient variability and the differences in
tumor biology across disease sites, radiotherapy is con-
ventionally fractionated at 180–200 cGy daily for 5–7
weeks. Current RT fractionation selection is based on
average responses from large historical data sets and
clinical trial cohorts without consideration of patient-
specific characteristics. The potential uniqueness of each
patient at diagnosis due to variation in tumor intrinsic
ractionation schemes used for four considered NSCLC

ation
sionless

Growth rate,
λ, day−1

Radiosensitivity, γ2Gy,
dimensionless

Fractionation scheme

0.045 0.084 2 Gy x 30; daily at 9 am;
weekend break



Fig. 3 Pretreatment PSI as a prognostic factor. a Coefficient of determination, R2, for pretreatment PSI and growth rate λ as prognostic factors for
tumor volume change after RT (2Gy x 30; q.d. 9 am) dependent on percentage of uncertainty in growth rate λ. b Predicted tumor volume
change as a function of pretreatment PSI, dependent on uncertainty in growth rate λ. c Error in estimated patient-specific pretreatment PSI using
Eq. 2 due to 5 % noise in measured tumor volumes and uncertainty in growth rate λ for N=10,000 independent simulations
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properties such as radiosensitivity and host responses
such as angiogenesis or immunoediting [14, 21], leads
to the establishment of highly patient-specific circum-
stances, which can greatly affect clinical response. Tumors
growing in tissues are faced with harsh biological and
chemical conditions as well as physical forces, which all
influence the maximum tumor volume that can be
achieved in the current condition – the tumor carrying
capacity. As a tumor population approaches its carrying
capacity, overall proliferation rate saturates dependent on
patient specific tumor history. As such, nominal tumor
size alone is insufficient to predict growth dynamics.
It is conceivable that different tumor growth rates

in vitro and in vivo are not primarily cell intrinsic; rather
the impact of the in vivo environment may be the dom-
inant mechanism that modulates cell behavior, which is
Fig. 4 In silico comparison of altered fractionation regimes using paramete
tumor volume reduction when comparing (1.2 Gy x 58; b.i.d. 9 am and 3 p
of care (2 Gy x 30; q.d. 9 am; BED=66 Gy) as a function of proliferation satu
Model predicted improved tumor volume reduction when comparing (1.2
with equal BED (2.21 Gy x 30; q.d. 9 am; BED=73.8 Gy) as a function of pro
absent when expanded in optimal in vitro conditions.
The key feature of the patient-specific volume-to-
carrying capacity ratio and the herein proposed prolifer-
ation saturation index, PSI, is a uniform cell growth rate
as an intrinsic property that is modulated by host tissue
conditions. This leads to different tumor population
growth rates before, during and after radiation, including
accelerated repopulation during radiotherapy. From two
temporally separated radiological scans, routinely taken
at diagnosis and treatment simulation, the change in in-
dividual in vivo tumor volume can be estimated and
compared to the expected in vitro tumor growth, which
allows for the estimation of the tumor environment-
enforced patient-specific proliferation saturation index,
PSI, using the analytic solution to the logistic growth
model (Eqn. 1). If diagnostic images are unavailable, two
rs estimated for NSCLC patients. a Model predicted improvement in
m; BED=73.8 Gy) RTOG phase III hyperfractionation [36] to the standard
ration index (PSI). Red line at 5 % indicates statistical significance. b
Gy x 58; b.i.d. 9 am and 3 pm) hyperfractionation to the daily doses
liferation saturation index (PSI)
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subsequent images taken at later time points during
therapy may be used to forecast the response to the re-
mainder of the treatment schedule, and to adapt the
protocol if necessary.
We introduced a patient-specific tumor carrying cap-

acity in the logistic tumor growth model, and showed that
simulations of tumor volume changes during RT using
individual pretreatment PSI (equivalent to tumor volume-
to-carrying capacity ratio) can reproduce historical ra-
diation response data with high confidence (R2=0.98).
Henceforth, in silico trials may be performed to predict
which patients benefit from altered treatment protocols
dependent on individual PSI and tumor volumes. The
ability to forecast the response of individual tumors to
different fractionations may pave the way for clinical
trials to recommend either standard of care or alterna-
tive radiation fractionation on a per patient basis.
The presented model underestimates radiation-induced

cell kill as non-proliferative cells are assumed to be com-
pletely radioresistant. Before consequential conclusions on
alternative fractionations can be drawn, better approxima-
tions of radiation effects on the non-proliferative compart-
ment have to be derived. We have refrained from such
considerations in the present study in order to keep the
number of unknown parameters small and thus preserve
validity of the discussed concept. For simplicity we have
limited our analysis to the effects of tumor environment
on tumor properties and neglected variability in tumor-
intrinsic properties. It is conceivable that future studies
may integrate patient-specific molecular identifiers of in-
trinsic radiosensitivity [37], such as RSI [38, 39].
While simulation results using the concept of PSI fit

retrospective data with high confidence, additional cau-
tion is warranted. The tumor carrying capacity is a dy-
namic entity that is unlikely to remain constant during
the course of radiotherapy. Numerous biological pro-
cesses such as vascular density, neovascularization, or
immune surveillance contribute to variation in the carry-
ing capacity, and the effects of radiation protocols on
each of these processes individually and in combination
are yet to be fully understood. Whilst high-resolution
longitudinal measurements of contributors to carrying
capacity, including those presently unidentified, are elu-
sive, frequent tumor volume measurements during frac-
tionated radiotherapy will provide patient-specific data
to further fit the tumor growth model. It may also help
us develop models that can form the basis for adaptive
radiation therapy, which are greatly needed. For ex-
ample, insights into the evolution of PSI during a course
of therapy have the potential to help us understand the
predictability of response. With a better understanding
of the evolution of such dynamic factors as tumor re-
sponse and PSI during the initially prescribed radiation
protocol, different protocols could be simulated and the
treatment protocol dynamically adapted to hopefully
provide better outcomes. This will be the subject of fu-
ture investigations.
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